# O P-S F N E T – Volume 24, Number 5 – September 15, 2017

The Electronic News Net of the SIAM Activity Group on Orthogonal Polynomials and Special Functions

# http://math.nist.gov/opsf

OP-SF Net is distributed through OP-SF Talk. Subscribe to OP-SF Talk at http://lists.siam.org/mailman/listinfo/siam-OPSF. Please send contributions to the OP-SF Net editors.

> Editors: Howard S. Cohl Sarah Post

howard.cohl@nist.gov spost@hawaii.edu

# Topics:

- 1. "Partition Functions and Automorphic Forms" at Dubna, Russia
- 2. "International Conf. on Special Functions & Applications" at Bikaner, India
- 3. Volume: "Analytic, Algebraic and Geometric Aspects of Differential Equations"
- 4. Review of Beals & Wong, "Special Functions and Orthogonal Polynomials"
- 5. Comments on OPSFA-14 at the University of Kent
- 6. Special issue on OPSFA in the journal SIGMA
- 7. Special issue on Elliptic Hypergeometric Functions in the journal SIGMA
- 8. Orthogonal polynomials associated with nonconventional potentials
- 9. Preprints in arXiv.org
- 10. Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)

# Calendar of Events:

# September 18-22, 2017

Integrable systems, symmetries, and orthogonal polynomials (Celebrating Peter Clarkson's and Liz Mansfield's 60<sup>th</sup> birthdays) Instituto de Ciencias Matemáticas (ICMAT) Madrid, Spain. https://www.icmat.es/RT/optrim/conference/index.php

# October 23-27, 2017

II Orthonet School Orthogonal polynomials and Special functions in Approximation Theory and Mathematical Physics, Madrid, Spain https://www.icmat.es/RT/optrim/school/index.php

# November 2-4, 2017

International Conference on Special Functions & Applications (ICSFA-2017) Bikaner (Rajasthan), India http://www.ssfaindia.webs.com/conf.htm

# November 30-December 2, 2017

International Conference Approximation and Computation – Theory and Applications (Dedicated to Professor Walter Gautschi on the Occasion of his 90<sup>th</sup> Anniversary) Belgrade, Serbia

http://easychair.org/smart-program/ACTA2017/Home.html

### January 10-13, 2018

2018 Joint Mathematics Meetings, American Mathematical Society, San Diego Convention Center and San Diego Marriott Hotel and Marina, San Diego, CA, USA http://jointmathematicsmeetings.org/meetings/national/jmm2018/2197\_intro

AMS Special Session on Orthogonal Polynomials and Applications, Organized by Abey Lopez-Garcia and Xiang-Sheng Wang

AMS Special Session on Orthogonal Polynomials, Quantum Probability, and Stochastic Analysis, Organized by Julius N. Esunge and Aurel I. Stan

AMS Special Session on Special Functions and Combinatorics (in honor of Dennis Stanton's 65th birthday), Organized by Susanna Fishel, Mourad Ismail, and Vic Reiner

AMS Special Session on Algebraic, Analytic, and Geometric Aspects of Integrable Systems, Painlevé Equations, and Random Matrices, Organized by Vladimir Dragovic, Anton Dzhamay, and Sevak Mkrtchyan,

### January 29-February 2, 2018

Partition Functions and Automorphic Forms Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia http://indico.jinr.ru/event/diastp/Winter2018

### November 11–17, 2018

Symmetries and Integrability of Difference Equations (SIDE13:2018) Fukuoka, Japan http://side-conferences.net

### Summer, 2019

OPSFA 15 International Symposium Linz, Austria

Topic #1 \_\_\_\_\_ OP – SF Net 24.5 \_\_\_\_\_ September 15, 2017

From: Vyacheslav Spiridonov (spiridon@theor.jinr.ru) Subject: "Partition Functions and Automorphic Forms" at Dubna, Russia

Bogoliubov Laboratory of Theoretical Physics, JINR (Dubna) and International Laboratory for Mirror Symmetry and Automorphic Forms, NRU HSE (Moscow) are organizing an international winter school "Partition Functions and Automorphic Forms".

The school will take place at BLTP JINR (Dubna, Russia) from January 29 to February 2, 2018 in the framework of the program DIAS-TH.

The scientific coordinators are V. A. Gritsenko and V. P. Spiridonov. The registration to the school is open on the website: http://indico.jinr.ru/event/diastp/Winter2018.

From: S. Ahmad Ali, Member, ICSFA-2017 Committee (ssfaindia@gmail.com) Subject: "International Conf. on Special Functions & Applications" at Bikaner, India

I am pleased to announce that the 16th Annual Meeting of the Society for Special Functions & their Applications (SSFA) - International Conference on Special Functions & Applications (ICSFA-2017) is being organized by the Department of Mathematics, College of Engineering & Technology, Bikaner (Rajasthan), India, during November 2-4, 2017. The academic programs of the conference shall consist of plenary sessions, invited talks and paper presentations covering a wide range of topics in special functions and related areas. A symposium on the application of mathematical sciences in engineering problems shall be organized during the conference.

Important Dates:

- 15 September 2017: Last date for submission of a paper for the A. K. Agarwal Best Publication Award.
- 20 September 2017: Last date for nomination of the A. M. Mathai Research Excellence Award.
- 30 September 2017: Last date for submission of abstracts/full length papers for presentation or submission of papers for the Aruna Gupta and M. I. Qureshi Best Presentation Awards.
- 10 October 2017: Last date for registration.
- 15 January 2018: Last date for submission of papers for conference proceedings.

The SSFA and the Organizing Committee – ICSFA–2017 cordially invites you to participate in the conference. The conference details are available at:

http://www.ssfaindia.webs.com/conf.htm

We also request that you to circulate the conference information to your colleagues, friends and research scholars interested in the field of special functions and their applications in diverse areas of research.

Looking forward to your active participation for the success of ICSFA-2017.

Topic #3 \_\_\_\_\_ OP - SF Net 24.5 \_\_\_\_\_ September 15, 2017

From: Galina Filipuk (filipuk@mimuw.edu.pl)

Subject: Volume: "Analytic, Algebraic and Geometric Aspects of Differential Equations"

"Analytic, Algebraic and Geometric Aspects of Differential Equations" Editors: Filipuk, Galina, Haraoka, Yoshishige, Michalik, Sławomir Bedlewo, Poland, September, 2015 Trends in Mathematics, Birkhäuser, 2015. Web Site

We would like to announce the publication of a recent volume, "Analytic, Algebraic and Geometric Aspects of Differential Equations," that may be of interest to the SIAG/OPSF activity group members. These lecture notes, survey papers, and original research articles from the AAGADE school and conference held in Będlewo, Poland in September, 2015 provide an introduction and overview of the interaction between these different aspects (analytic, algebraic and geometric) of differential equations as well as a discussion of recent trends and open problems.

The collection includes lecture notes of Jean-Philippe Anker on "An introduction to Dunkl theory and its analytic aspects" as well as papers concerning Painlevé equations by Nalini Josh, "On Stokes Phenomena for the Alternate Discrete PI Equation" and Mitsuo Kato "Flat Structures and Algebraic Solutions to Painlevé VI Equation." Semi-classical orthogonal polynomials and their connection with nonlinear differential equations are discussed in "Relation of Semi-Classical Orthogonal Polynomials to General Schlesinger Systems via Twistor Theory" by Hironobu Kimura.

More information, including a complete list of contents is available at the following link: http://www.springer.com/gp/book/9783319528410.

Topic #4 \_\_\_\_\_ OP – SF Net 24.5 \_\_\_\_\_ September 15, 2017

From: Martin Muldoon (muldoon@yorku.ca) Subject: Review of Beals & Wong, "Special Functions and Orthogonal Polynomials"

> Review of Richard Beals and Roderick Wong, "Special functions and Orthogonal Polynomials", Cambridge Studies in Advanced Mathematics 153, Cambridge University Press, 2016. xiii+473 pp. ISBN: 978-1-107-10698-7. Web Site

This book is essentially a revision of the authors' "Special Functions – a Graduate Text", published as vol. 126 in the same series in 2010, and reviewed in Topic #6, OP–SF NET 18.5, 2011. The material on Orthogonal Polynomials has been extended from 2 to 4 chapters, there is more material on asymptotics and there are new chapters on generalized hypergeometric functions (including Meijer G-functions) and Painlevé Transcendents. The chapter summaries, that formed a prominent feature of the earlier book, are not included. However, the Remarks (including historical and expository references) are still a feature of each Chapter as are the Exercises (more than 400) that sometimes involve steps in the proofs of theorems. There are references to 449 books and articles – up from 322 in the earlier book.

Wong's earlier research has been largely devoted to asymptotics including the book "Asymptotic Approximations of Integrals" (1989), republished on the SIAM "Classics in Applied Mathematics" series in 2001. Some of Beals' earlier work is described in his article "PDE and Special Functions" in a volume dedicated to Yakar Kannai. This article goes a long way to explaining why the present book has a chapter on generalized hypergeometric functions and *G*-functions.

The authors of any textbook face choices when deciding on content, motivation and arrangement of material. In the present case, the authors devote particular care to these issues, calling them "Organising Principles". They write that their main goals are to "provide clear motivation, efficient proofs, and original references for all the principal results" and "This book emphasizes general principles that unify and demarcate the subjects of study". This point of view influences the content, exercises, and references. While other books use such principles, it is rare to find them so central and explicit.

For example, in Chapter 1 "Orientation", the authors raise three questions:

- How can it be that so many of the functions (mentioned in the introduction) can be associated with just two differential equations (confluent hypergeometric and hypergeometric)?
- What does one want to know about these functions?
- Is this list of functions or related equations exhaustive in any sense?

Already in Section 1.1, they explain the idea of recursiveness of a second order linear differential equation, the idea that it can be solved in a simple way using power series. This leads in a natural way to the two kinds of equations mentioned in the first question. Later (Chapter 3) the classical orthogonal polynomials are explained as the ones that arise when the eigenvalues of a certain kind of second order differential equation are polynomials.

The end-of-chapter remarks include information on the history of the topics considered. But the authors remark on p. 15, "There is much that could be said for proceeding historically ... but we shall not make a point of doing so ... later expositions can often be made more efficient ... and ... more transparent than the original derivations."

Although the book will probably be mainly used as a graduate level textbook, many of its ideas and approaches can be useful at the undergraduate level and even at the research level.

Contents:

- 1. Orientation
- 2. Gamma, beta, zeta
- 3. Second-order differential equations
- 4. Orthogonal polynomials on an interval
- 5. The classical orthogonal polynomials
- 6. Semi-classical orthogonal polynomials
- 7. Asymptotics of orthogonal polynomials: two methods
- 8. Confluent hypergeometric functions
- 9. Cylinder functions
- 10. Hypergeometric functions
- 11. Spherical functions
- 12. Generalized hypergeometric functions; *G*-functions
- 13. Asymptotics
- 14. Elliptic functions
- 15. Painlevé Transcendents
- Appendix A. Complex analysis
- Appendix B. Fourier analysis

From: Eric Shirley (eric.shirley@nist.gov)

Subject: Comments on OPSFA-14 at the University of Kent

I enjoyed attending OPSFA-14 for a variety of reasons, mostly related to applicability of other researchers' results to my own work. This included automated algorithms for determining points and weights for Gaussian cubature (i.e., quadrature in more than one dimension, analysis of the stability of numerical grid-based methods to solve partial differential equations, and a robust tutorial (by means of very many lectures) on the theory of orthogonal polynomials. Regarding guadrature techniques, which are an especially important class of methods in Green's function-based methods, integration over polygons and hyperspheres were of particular interest.

I was also very impressed by the advances in the areas of the Painlevé equations and exceptional orthogonal polynomials. Both of these topics may be of interest in upcoming advances in physics, including in the field of quantum information. For this reason, I would recommend that applied physical scientists consider attending future conferences in the same series. The potential for interdisciplinary collaborations between physical scientists and applied mathematicians is particularly alluring.

The conference was well run, being housed in a new building devoted to mathematical sciences at the University of Kent. It featured an enjoyable public lecture related to medical imaging, emphasizing the benefits of robust applied mathematical theory in a way that was accessible to non-specialists. Overall, the venue of Canterbury was attractive, and the mood of the conference could be described best, perhaps, in one word: festive.

Topic #6 \_\_\_\_\_ OP - SF Net 24.5 \_\_\_\_\_ September 15, 2017

From: OP-SF NET Editors Subject: Special issue on OPSFA in the journal SIGMA

The journal Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) (ISSN 1815–0659) is publishing a special issue on "Orthogonal Polynomials, Special Functions and Applications (OPSFA14)".

The Guest Editors for this special issue are:

- Peter Clarkson (University of Kent at Canterbury, UK)
- Erik Koelink (Radboud University Nijmegen, The Netherlands)
- Ana Loureiro (University of Kent at Canterbury, UK)
- Walter Van Assche (University of Leuven, Belgium)

The deadline for paper submissions is January 31, 2018.

More information on this special issue and the submission procedure can be found at http://www.emis.de/journals/SIGMA/OPSFA2017.html.

From: Michael Schlosser (michael.schlosser@univie.ac.at) Subject: Special issue on Elliptic Hypergeometric Functions in the journal SIGMA

We would like to remind you about the Special Issue of the journal SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) on Elliptic Hypergeometric Functions and Their Applications.

The Guest Editors for this special issue are:

- Michael J. Schlosser (University of Vienna, Austria)
- Vyacheslav P. Spiridonov JINR, Dubna, Russia)
- S. Ole Warnaar (University of Queensland, Australia)

The deadline for submission of papers has been extended to January 31, 2018.

Both original research articles and review papers are welcome.

For further details, please see: https://www.emis.de/journals/SIGMA/EHF2017.html.

Feel free to contact the guest editors if you have any questions.

Topic #8 \_\_\_\_\_ OP – SF Net 24.5 \_\_\_\_\_ September 15, 2017

From: Walter van Assche (walter.vanassche@kuleuven.be) Subject: Orthogonal polynomials associated with nonconventional potentials

**Introduction**: We often have the impression that all the important orthogonal polynomials are known, at least those that appear in applications, but now and then a new family is encountered and little is known about them. The OPSF Newsletter is a good place to mention this and to invite people to have a look at them, thereby bringing researchers in OPSF together and opening possibilities for international collaboration.

One prime example was brought to my attention recently by researchers from Saudi Arabia, and I asked the OP-SF NET Editors to include it as a topic in this newsletter. The problem is to derive properties of two new orthogonal polynomials on the real line that were overlooked in the mathematics literature, but have been encountered frequently in the physics literature since 2005. Currently, they are defined by their three-term recursion relations and initial values. If you are able to work out some of the relevant properties of these orthogonal polynomials, then please contact the author.

Abdulaziz D. Alhaidari Saudi Center for Theoretical Physics, P.O. Box 32741, Jeddah 21438, Saudi Arabia Haidari@sctp.org.sa

# **Physical Background:**

The wavefunction in quantum mechanics could be viewed as a vector field in an infinite dimensional space with local unit vectors. Thus, in one of the formulations of quantum mechanics, the wavefunction at an energy E,  $\psi_E(x)$ , is written as a bounded sum over a

complete set of square integrable basis functions (the local unit vectors) in configuration space:

$$|\psi_{E}(x)\rangle = \sum_{n} f_{n}(E) |\phi_{n}(x)\rangle, \tag{1}$$

where  $\{\phi_n(x)\}\$  are the basis elements and  $\{f_n(E)\}\$  are proper expansion coefficients in the energy (the components of the wavefunction along the unit vectors). All physical information (structural and dynamical) are contained in the expansion coefficients. In this formulation, called the "Tridiagonal Representation Approach" [1–4], the basis elements are chosen such that the matrix representation of the wave operator (e.g., the Schrödinger or Dirac operator) is tridiagonal. Consequently, the resulting matrix wave equation becomes a three-term recursion relation for the expansion coefficients, which is solved in terms of orthogonal polynomials in some physical parameter(s) and/or the energy. We write  $f_n(E) = f_0(E)P_n(\varepsilon)$ , where  $\varepsilon$  is an appropriate function of the energy and physical parameters. Then, we have shown that  $\{P_n(\varepsilon)\}$  is a complete set of orthogonal polynomials satisfying the said recursion relation with  $P_0(\varepsilon) = 1$  and having a positive weight function as  $|f_0(E)|^2$ . These polynomials are associated with the continuum scattering states of the system where E is a continuous set. On the other hand, the discrete bound states are associated with the discrete version of these polynomials.

We found all such polynomials that correspond to well-known physical systems and to new ones. For example, the scattering states of the Coulomb problem are associated with Meixner-Pollaczek polynomial whereas the bound states are associated with its discrete version, the Meixner polynomial. Additionally, the scattering states of the Morse oscillator are associated with the continuous dual Hahn polynomial whereas the finite number of bound states are associated with its discrete version, the dual Hahn polynomial. And so on.

Nonetheless, since 2005 we did encounter physical problems that are associated with orthogonal polynomials, which were not treated in the mathematics or physics literature in the past [5–12]. These are defined, up to now, by their three-term recursion relations and initial value  $P_0(\varepsilon) = 1$ . However, their other important properties are yet to be derived analytically. These include the weight functions, generating functions, asymptotics, orthogonality relation, etc. The target polynomials are the two defined below.

# The first polynomial:

The first orthogonal polynomial is a four-parameter polynomial, which we designate as  $H_n^{(\mu,\nu)}(z;\alpha,\theta)$ . It satisfies the following three-term recursion relation

$$\begin{aligned} (\cos\theta)H_{n}^{(\mu,\nu)}(z;\alpha,\theta) \\ &= \left\{ z\sin\theta \left[ \left( n + \frac{\mu + \nu + 1}{2} \right)^{2} + \alpha \right] + \frac{\nu^{2} - \mu^{2}}{(2n + \mu + \nu)(2n + \mu + \nu + 2)} \right\} H_{n}^{(\mu,\nu)}(z;\alpha,\theta) \\ &+ \frac{2(n + \mu)(n + \nu)}{(2n + \mu + \nu)(2n + \mu + \nu + 1)} H_{n-1}^{(\mu,\nu)}(z;\alpha,\theta) \\ &+ \frac{2(n + 1)(n + \mu + \nu + 1)}{(2n + \mu + \nu + 1)(2n + \mu + \nu + 2)} H_{n+1}^{(\mu,\nu)}(z;\alpha,\theta), \end{aligned}$$
(2)

where n = 1, 2, ... and  $0 \le \theta \le \pi$ . It is a polynomial of degree n in z and in  $\alpha$ . From physical arguments, we expect that  $\mu$  and  $\nu$  be greater than -1 and  $z \in \mathbb{R}$ . The polynomial of the

first kind satisfies this recursion relation together with  $H_0^{(\mu,\nu)}(z;\alpha,\theta) = 1$  and

$$H_1^{(\mu,\nu)}(z;\alpha,\theta) = \frac{\mu - \nu}{2} + \frac{\mu + \nu + 2}{2} \left\{ \cos \theta - z \sin \theta \left[ \frac{(\mu + \nu + 1)^2}{4} + \alpha \right] \right\},$$
 (3)

which is obtained from (2) by setting n = 0 and  $H_{-1}^{(\mu,\nu)}(z; \alpha, \theta) \equiv 0$ . This polynomial has only a continuous spectrum over the whole real z line. This could be verified numerically by looking at the distribution of its zeros for a very large order. The asymptotics  $(n \to \infty)$ of  $H_n^{(\mu,\nu)}(z; \alpha, \theta)$  could also be obtained numerically and found to be sinusoidal, which is consistent with the expected physical behavior. Additionally, the physics of the problems associated with this polynomial suggests that it should have two discrete versions (defined by the replacements  $\theta \to i\theta$  and  $z \to -iz$  in the above recursion relation). One with an infinite spectrum (for  $\alpha > 0$ ) and another with a finite spectrum (for  $\alpha < 0$ ). This is similar to the Meixner-Pollaczek polynomial and its discrete versions of the Meixner and Krawtchouk polynomials with infinite and finite spectra, respectively.

# The second polynomial:

The second orthogonal polynomial is a three-parameter polynomial designated as  $G_n^{(\mu,\nu)}(z^2;\sigma)$ . It satisfies the following there-term recursion relation for n = 1, 2, ...

$$\begin{split} z^2 G_n^{(\mu,\nu)}(z^2;\sigma) \\ &= \left\{ (\sigma + B_n^2) \left[ \frac{\mu^2 - \nu^2}{(2n + \mu + \nu)(2n + \mu + \nu + 2)} + 1 \right] - \frac{2n(n + \nu)}{(2n + \mu + \nu)} - \frac{(\mu + 1)^2}{2} \right\} G_n^{(\mu,\nu)}(z^2;\sigma) \\ &\quad - \frac{2(\sigma + B_{n-1}^2)(n + \mu)(n + \nu)}{(2n + \mu + \nu)(2n + \mu + \nu + 1)} G_{n-1}^{(\mu,\nu)}(z^2;\sigma) \\ &\quad - \frac{2(\sigma + B_n^2)(n + 1)(n + \mu + \nu + 1)}{(2n + \mu + \nu + 1)(2n + \mu + \nu + 2)} G_{n+1}^{(\mu,\nu)}(z^2;\sigma), \end{split}$$
(4)

where  $B_n = n + 1 + \frac{\mu + \nu}{2}$ , and  $\{\mu, \nu\}$  are greater than -1. It is a polynomial of degree n in  $z^2$ . The polynomial of the first kind satisfies this recursion relation with  $G_0^{(\mu,\nu)}(z^2;\sigma) = 1$  and

$$G_1^{(\mu,\nu)}(z^2;\sigma) = \mu + 1 - (\mu + \nu + 2) \frac{z^2 + \frac{1}{2}(\mu + 1)^2}{2(\sigma + B_0^2)}.$$
(5)

which is obtained from (4) by setting n = 0 and  $G_{-1}^{(\mu,\nu)}(z^2;\sigma) \equiv 0$ . The physics of the problems associated with this polynomial suggests that if  $\sigma$  is positive then this polynomial has only a continuous spectrum on the positive  $z^2$  line. However, if  $\sigma$  is negative then the spectrum is a mix of a continuous part on the positive  $z^2$  line and a discrete part on the negative  $z^2$  line. This could also be verified numerically by looking at the distribution of the zeros of this polynomial for a very large order. We can also show numerically that the asymptotics  $(n \to \infty)$  is sinusoidal and assumes the following form

$$G_n^{(\mu,\nu)}(z^2;\sigma) \approx \frac{1}{n} A(z) \cos\left[\log(n)\theta(z) + \delta(z)\right],$$
(6)

where the three functions A(z),  $\theta(z)$  and  $\delta(z)$  are independent of n but depend on the polynomial parameters  $\{\sigma, \mu, \nu\}$ . The well-known energy spectrum of the physical problems associated with this polynomial gives its spectrum formula as

$$z_m^2 = -2\left(m + \frac{\nu + 1}{2} - \sqrt{-\sigma}\right)^2,$$
(7)

where m = 0, 1, ..., N and N is the largest integer less than or equal to  $\sqrt{-\sigma} - \frac{\nu+1}{2}$ . Therefore, the zeros of the scattering amplitude A(z) in the asymptotic formula (6) are at  $z = i\sqrt{-z_m^2}$ . Consequently, the orthogonality relation for negative  $\sigma$  reads as follows

$$\int_{0}^{\infty} \rho(z) G_{n}^{(\mu,\nu)}(z^{2};\sigma) G_{m}^{(\mu,\nu)}(z^{2};\sigma) dz + \sum_{k=0}^{N} \omega_{k} G_{n}^{(\mu,\nu)}(z_{k}^{2};\sigma) G_{m}^{(\mu,\nu)}(z_{k}^{2};\sigma) = \lambda_{n} \delta_{m,n}, \quad (8)$$

where  $\rho(z)$  is the continuous weight function,  $\omega_k$  is the discrete weight function and  $\lambda_n > 0$ . For positive  $\sigma$ , however, only the integral part of this orthogonality survives. Moreover, the physics of the problems associated with this polynomial suggest that it has a discrete version with finite spectrum.

### **References**:

- [1] A. D. Alhaidari and M. E. H. Ismail, Quantum mechanics without potential function, J. Math. Phys. 56 (2015) 072107
- [2] A. D. Alhaidari and T. J. Taiwo, Wilson-Racah Quantum System, J. Math. Phys. 58 (2017) 022101
- [3] A. D. Alhaidari, H. Bahlouli, and M. E. H. Ismail, The Dirac-Coulomb Problem: a mathematical revisit, J. Phys. A 45 (2012) 365204
- [4] A. D. Alhaidari, Solution of the nonrelativistic wave equation using the tridiagonal representation approach, J. Math. Phys. 58 (2017) 072104
- [5] A. D. Alhaidari, An extended class of L 2 -series solutions of the wave equation, Ann. Phys. 317 (2005) 152
- [6] A. D. Alhaidari, Analytic solution of the wave equation for an electron in the field of a molecule with an electric dipole moment, Ann. Phys. 323 (2008) 1709
- [7] A. D. Alhaidari and H. Bahlouli, Extending the class of solvable potentials: I. The infinite potential well with a sinusoidal bottom, J. Math. Phys. 49 (2008) 082102
- [8] A. D. Alhaidari, Extending the class of solvable potentials: II. Screened Coulomb potential with a barrier, Phys. Scr. 81 (2010) 025013
- [9] H. Bahlouli and A. D. Alhaidari, Extending the class of solvable potentials: III. The hyperbolic single wave, Phys. Scr. 81 (2010) 025008
- [10] A. D. Alhaidari, Extending the class of solvable potentials. IV Inverse square potential with a rich spectrum, arXiv:1706.09212 [quant-ph]
- [11] A. D. Alhaidari and T. J. Taiwo, Five-parameter potential box with inverse square singular boundaries, arXiv:1708.05767 [quant-ph]
- [12] I. A. Assi, A. D. Alhaidari and H. Bahlouli, Solution of the spin and pseudo-spin symmetric Dirac equation in 1+1 space-time using the tridiagonal representation approach, arXiv:1707.05625 [hep-th]

Topic #9 \_\_\_\_\_ OP – SF Net 24.5 \_\_\_\_\_ September 15, 2017

From: OP-SF Net Editors Subject: Preprints in arXiv.org

The following preprints related to the fields of orthogonal polynomials and special functions were posted or cross-listed to one of the subcategories of arXiv.org during July and August 2017. This list has been separated into two categories.

# **OP-SF Net Subscriber E-Prints**

# http://arxiv.org/abs/1707.00430

Spatial asymptotics of Green's function for elliptic operators and applications: a.c. spectral type, wave operators for wave equations Sergey A. Denisov

# http://arxiv.org/abs/1707.00897

Factorizations of symmetric Macdonald polynomials Laura Colmenarejo, Charles F. Dunkl, Jean-Gabriel Luque

# http://arxiv.org/abs/1707.01616

A continuous analogue of lattice path enumeration T. Wakhare, C. Vignat, Q.-N. Le, S. Robins

# http://arxiv.org/abs/1707.01734

An inverse factorial series for a general gamma ratio and related properties of the Nørlund-Bernoulli polynomials Dmitrii B. Karp, Elena G. Prilepkina

# http://arxiv.org/abs/1707.01737

*q*-Viscous Burgers' Equation: Dynamical Symmetry, Shock Solitons and *q*-Semiclassical Expansion Sengul Nalci Tumer, Oktay K. Pashaev

# http://arxiv.org/abs/1707.01867

Jacobi matrices generated by ratios of hypergeometric functions Maxim Derevyagin

# http://arxiv.org/abs/1707.02417

On the derivatives  $\partial^2 P_{\nu}(z)/\partial \nu^2$  and  $\partial Q_{\nu}(z)/\partial \nu$  of the Legendre functions with respect to their degrees Radosław Szmytkowski

# http://arxiv.org/abs/1707.02615

Solutions of KZ differential equations modulo p Vadim Schechtman, Alexander Varchenko

# http://arxiv.org/abs/1707.03018

A Feynman integral in Lifshitz-point and Lorentz-violating theories in  $R^D \oplus R^m$ R. B. Paris, M. A. Shpot

http://arxiv.org/abs/1707.03843

Hahn polynomials on polyhedra and quantum integrability Plamen Iliev, Yuan Xu

http://arxiv.org/abs/1707.04379

Revisiting The Riemann Zeta Function at Positive Even Integers Krishnaswami Alladi, Colin Defant

The general form of the Euler-Poisson-Darboux equation and application of transmutation method Elina L. Shishkina, Sergei M. Sitnik

## http://arxiv.org/abs/1707.04842

Large N expansions for the Laguerre and Jacobi  $\beta$  ensembles from the loop equations Peter J. Forrester, Anas A. Rahman, Nicholas S. Witte

## http://arxiv.org/abs/1707.04989

Liouville integrability of conservative peakons for a modified CH equation Xiang-Ke Chang, Jacek Szmigielski

http://arxiv.org/abs/1707.05206

**Umbral Methods and Harmonic Numbers** Giuseppe Dattoli, Bruna Germano, Silvia Licciardi, Maria Renata Martinelli

## http://arxiv.org/abs/1707.07190

Introduction to Cluster Algebras. Chapters 4–5 Sergey Fomin, Lauren Williams, Andrei Zelevinsky

## http://arxiv.org/abs/1707.07211

Nonintersecting Brownian bridges on the unit circle with drift Robert Buckingham, Karl Liechty

### http://arxiv.org/abs/1707.07927

Uniform asymptotics as a stationary point approaches an endpoint Arran Fernandez, Athanassios S. Fokas, Euan A. Spence

### http://arxiv.org/abs/1707.08138

Combinatorial and Arithmetical Properties of the Restricted and Associated Bell and Factorial Numbers Victor H. Moll, José L. Ramirez, Diego Villamizar

### http://arxiv.org/abs/1707.08175

Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions Gergő Nemes

### http://arxiv.org/abs/1707.08929

A Koksma-Hlawka-Potential Identity on the d Dimensional Sphere and its Applications to Discrepancy S. B. Damelin

http://arxiv.org/abs/1707.08942

An Extension of the Method of Brackets. Part 1 Ivan Gonzalez, Karen Kohl, Lin Jiu, Victor H. Moll

http://arxiv.org/abs/1707.09120

**Counting Planar Eulerian Orientations** Andrew Elvey-Price, Anthony J Guttmann

A variation on the theme of Nicomachus Florian Luca, Geremías Polanco, Wadim Zudilin

## http://arxiv.org/abs/1707.09511

What is ... a multiple orthogonal polynomial? Andrei Martínez-Finkelshtein, Walter Van Assche

## http://arxiv.org/abs/1708.00548

Liouville-Green expansions of exponential form, with an application to modified Bessel functions

T. M. Dunster

## http://arxiv.org/abs/1708.01637

Matrix biorthogonal polynomials, associated polynomials and functions of the second kind Amilcar Branquinho, Juan Carlos García-Ardila, Francisco Marcellán

## http://arxiv.org/abs/1708.01638

Ratio asymptotic for bi-orthogonal matrix polynomials with unbounded recurrence coefficients

Amilcar Branquinho, Juan Carlos García-Ardila, Francisco Marcellán

## http://arxiv.org/abs/1708.01957

Some Elementary Partition Inequalities and Their Implications Alexander Berkovich, Ali K. Uncu

## http://arxiv.org/abs/1708.02519

Asymptotics for Hankel determinants associated to a Hermite weight with a varying discontinuity Christophe Charlier, Alfredo Deano

# http://arxiv.org/abs/1708.02381

A magnetic double integral David Broadhurst, Wadim Zudilin

http://arxiv.org/abs/1708.02868

Explicit asymptotics for certain single and double exponential sums Konstantinos Kalimeris, Athanassios S. Fokas

### http://arxiv.org/abs/1708.03106

Exceptional Laguerre polynomials Niels Bonneux, Arno B. J. Kuijlaars

http://arxiv.org/abs/1708.03368

A *q*-generalization of the para-Racah polynomials Jean-Michel Lemay, Luc Vinet, Alexei Zhedanov

### http://arxiv.org/abs/1708.03379

Fifth-order superintergrable quantum system separating in Cartesian coordinates. Doubly exotic potentials Ismail Abouamal, Pavel Winternitz

The generating function for the Airy point process and a system of coupled Painlevé II equations Tom Claeys, Antoine Doeraene

## http://arxiv.org/abs/1708.04122

Fourier optimization and prime gaps Emanuel Carneiro, Micah B. Milinovich, Kannan Soundararajan

## http://arxiv.org/abs/1708.05781

Universality at an Endpoint for Orthogonal Polynomials with Geronimus-Type Weights Brian Simanek

### http://arxiv.org/abs/1708.04824

Some remarks on the theorems of Wright and Braaksma on the Wright function  ${}_p\Psi_q(z)$  R. B. Paris

## http://arxiv.org/abs/1708.06113

Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system Shuai-Xia Xu, Dan Dai

## http://arxiv.org/abs/1708.06205

Inequalities for integrals of modified Bessel functions and expressions involving them Robert E. Gaunt

## http://arxiv.org/abs/1708.06606

On the proof of a variant of Lindelöf's hypothesis Athanassios S. Fokas

# http://arxiv.org/abs/1708.06607

A formal proof of a slight variant of Lindelöf's hypothesis Athanassios S. Fokas

http://arxiv.org/abs/1708.06611

Functional inequalities for Fox-Wright functions Khaled Mehrez, Sergei M. Sitnik

### http://arxiv.org/abs/1708.06666

Interbasis expansions in the Zernike system Natig M. Atakishiyev, George S. Pogosyan, Kurt Bernardo Wolf, Alexander Yakhno

http://arxiv.org/abs/1708.07729

Hankel determinant of the Rayleigh sums of zeros of Bessel functions Árpád Baricz

# http://arxiv.org/abs/1708.08034

Product formulas on posets, Wick products, and a correction for the q-Poisson process Michael Anshelevich

On the quasi-Ablowitz-Segur and quasi-Hastings-McLeod solutions of the inhomogeneous Painlevé II equation Dan Dai, Weiying Hu

# http://arxiv.org/abs/1708.09525

Decompositions of amplituhedra Steven N. Karp, Lauren K. Williams, Yan X. Zhang

## http://arxiv.org/abs/1708.09656

A note on the asymptotics of the modified Bessel functions on the Stokes lines R. B. Paris

# **Other Relevant OP-SF E-Prints**

### http://arxiv.org/abs/1707.00336

On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops Miguel Méndez, Rafael Sánchez

## http://arxiv.org/abs/1707.00379

Starlikeness of the generalized Bessel function Rosihan M. Ali, See Keong Lee, Saiful R. Mondal

### http://arxiv.org/abs/1707.00789

A conjecture on the zeta functions of pairs of ternary quadratic forms Jin Nakagawa

## http://arxiv.org/abs/1707.00840

New and Sharp Bounds for Orthogonal Polynomial Approximation of Functions in Fractional Sobolev-type Spaces I: Chebyshev Case Wenjie Liu, Li-Lian Wang, Huiyuan Li

### http://arxiv.org/abs/1707.01229

Fast Approximate Implicitization of Envelope Curves using Chebyshev Polynomials Oliver J. D. Barrowclough, Bert Jüttler, Tino Schulz

### http://arxiv.org/abs/1707.01465

Spectral asymptotics for  $\delta$ -interactions on sharp cones Thomas Ourmières-Bonafos, Konstantin Pankrashkin, Fabio Pizzichillo

### http://arxiv.org/abs/1707.01622

The signs of the Stieltjes constants associated with the Dedekind zeta function Sumaia Saad Eddin

### http://arxiv.org/abs/1707.01674

Generalized quaternionic Bargmann-Fock spaces and associated Segal-Bargmann transforms

A. El Hamyani, A. Ghanmi

An experimental study of the monotonicity property of the Riemann zeta function Yochay Jerby

#### http://arxiv.org/abs/1707.02278

Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms Peter Ochs, Jalal Fadili, Thomas Brox

#### http://arxiv.org/abs/1707.02688

A General Framework of Enhancing Sparsity of Generalized Polynomial Chaos Expansions Xiu Yang, Xiaoliang Wan, Lin Lin

### http://arxiv.org/abs/1707.03259

Irregular Hodge filtration of some confluent hypergeometric systems Alberto Castaño Domínguez, Christian Sevenheck

#### http://arxiv.org/abs/1707.03287

An algorithm for the numerical evaluation of the associated Legendre functions that runs in time independent of degree and order James Bremer

#### http://arxiv.org/abs/1707.03289

A class of exactly solvable rationally extended non-central potentials in Two and Three Dimensions Nisha Kumari, Rajesh Kumar Yadav, Avinash Khare, Bhabani Prasad Mandal

#### http://arxiv.org/abs/1707.03379

Ramanujan's Thoughts from God Frank Aiello

### http://arxiv.org/abs/1707.03582

Generalized Theta Functions. I Yuriy Smilyanets

#### http://arxiv.org/abs/1707.03737

On the connection problem for nonlinear differential equation Zhao-Yun Zeng, Lin Hu

#### http://arxiv.org/abs/1707.04163

Laplace-type representation for some generalized spherical functions of type BC P. Sawyer

## http://arxiv.org/abs/1707.04451

On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers Wolfdieter Lang

## http://arxiv.org/abs/1707.04667

Odd Dunkl Operators and nilHecke Algebras Ritesh Ragavender

Jacobi matrices: continued fractions, approximation, spectrum Eduard Ianovich

## http://arxiv.org/abs/1707.04801

Asymptotic formula of the number of Newton polygons Shushi Harashita

## http://arxiv.org/abs/1707.05008

Cyclotomic analogues of finite multiple zeta values Henrik Bachmann, Yoshihiro Takeyama, Koji Tasaka

# http://arxiv.org/abs/1707.05126

Some analytic functions involving Gamma function and their various properties Sercan Topkaya, Nizami Mustafa

## http://arxiv.org/abs/1707.05202

Zeros of exceptional orthogonal polynomials and the maximum of the modulus of an energy function Yu Luo

## http://arxiv.org/abs/1707.05208

Characterization of certain sequences of q-polynomials P. Njionou Sadjang

## http://arxiv.org/abs/1707.05216

On basic Fourier-Bessel expansions J. L. Cardoso

### http://arxiv.org/abs/1707.05218

Higher derivatives of Airy functions and of their products E. G. Abramochkin, E.V. Razueva

http://arxiv.org/abs/1707.05222

Poles of Painlevé IV Rationals and their Distribution Davide Masoero, Pieter Roffelsen

### http://arxiv.org/abs/1707.05412

Real-Root Preserving Differential Operator Representations of Orthogonal Polynomials David A. Cardon, Evan L. Sorensen, Jason C. White

### http://arxiv.org/abs/1707.05751

Two exercises of Comtet and two identities of Ruehr Jan-Paul Allouche

http://arxiv.org/abs/1707.06275

On integral representations and asymptotics of some hypergeometric functions in two variables Sascha Wald, Malte Henkel

Orthogonal Ramanujan Sums, its properties and Applications in Multiresolution Analysis Devendra Kumar Yadav, Gajraj Kuldeep, S. D. Joshi

## http://arxiv.org/abs/1707.06309

New integral operators arising from new bilateral generating functions for the weighted univariate complex Hermite polynomials Abdelhadi Benahmadi, Abdelatif El Kachkouri, Allal Ghanmi

## http://arxiv.org/abs/1707.06673

Some infinite series involving hyperbolic functions Ce Xu

## http://arxiv.org/abs/1707.06771

Generalized Arakawa-Kaneko zeta functions Kwang-Wu Chen

## http://arxiv.org/abs/1707.06877

Permutation properties of Dickson polynomials and connections to number theory Antonia W. Bluher

## http://arxiv.org/abs/1707.06969

Mehler's formulas for the univariate complex Hermite polynomials and applications Allal Ghanmi

### http://arxiv.org/abs/1707.07174

Large deviation theorem for random covariance matrices Tien-Cuong Dinh, Duc-Viet Vu

# http://arxiv.org/abs/1707.07492

The Two-Weight Inequality for the Poisson Operator in the Bessel Setting Ji Li, Brett D. Wick

# http://arxiv.org/abs/1707.07701

Interpolation on Gauss hypergeometric functions with an application Hina Manoj Arora, Swadesh Kumar Sahoo

### http://arxiv.org/abs/1707.07776

Renewal sequences and record chains related to multiple zeta sums Jean-Jil Duchamps, Jim Pitman, Wenpin Tang

# http://arxiv.org/abs/1707.07871

On the sharpness of the weighted Bernstein-Walsh inequality, with applications to the superlinear convergence of conjugate gradients Bernhard Beckermann, Thomas Helart

## http://arxiv.org/abs/1707.07900

Sur l'irrationalité des racines de certaines familles de polynômes Lionel Ponton

On some linear combination of two contiguous hypergeometric functions Imane Ghanimi

#### http://arxiv.org/abs/1707.08178

Relationship between multiple zeta values of depths 2 and 3 and period polynomials Ding Ma, Koji Tasaka

#### http://arxiv.org/abs/1707.08343

Dynamics beyond dynamic jam; unfolding the Painlevé paradox singularity Arne Nordmark, Peter Varkonyi, Alan Champneys

### http://arxiv.org/abs/1707.08708

On the ternary Hermite polynomials Zhi-Guo Liu

#### http://arxiv.org/abs/1707.09106

Rotundus: triangulations, Chebyshev polynomials, and Pfaffians Charles Conley, Valentin Ovsienko

#### http://arxiv.org/abs/1707.09537

Degenerate Daehee polynomials of the second kind Taekyun Kim, Dae San Kim

## http://arxiv.org/abs/1707.09721

Degenerate Changhee numbers and polynomials of the second kind Taekyun Kim, Dae San Kim

### http://arxiv.org/abs/1707.09748

Orthogonal rational functions on the unit circle with prescribed poles not on the unit circle Adhemar Bultheel, Ruyman Cruz-Barroso, Andreas Lasarow

## http://arxiv.org/abs/1708.00230

On the higher-order differential equations for the generalized Laguerre polynomials and Bessel functions Clemens Markett

#### http://arxiv.org/abs/1708.01830

Casoratian Identities for the Discrete Orthogonal Polynomials in Discrete Quantum Mechanics with Real Shifts Satoru Odake

#### http://arxiv.org/abs/1708.01978

Sequences of Orthogonal Polynomials related to Isotropy Orbits of Symmetric Spaces Gregor Weingart

#### http://arxiv.org/abs/1708.02154

Total positivity, Grassmannian and modified Bessel functions Victor Buchstaber, Alexey Glutsyuk

Some evaluation of infinite series involving trigonometric and hyperbolic functions Ce Xu

### http://arxiv.org/abs/1708.02303

A Symmetric Integral Identity for Bessel Functions with Applications to Integral Geometry Yehonatan Salman

#### http://arxiv.org/abs/1708.02611

An adaptive partition of unity method for Chebyshev polynomial interpolation Kevin W. Aiton, Tobin A. Driscoll

## http://arxiv.org/abs/1708.02653

On Hilbert's 8th Problem Nicholas G. Polson

### http://arxiv.org/abs/1708.02671

Variants of the Riemann zeta function Barry Brent

#### http://arxiv.org/abs/1708.02725

An Algorithm for Numerically Inverting the Modular j-function Ethan Alwaise

#### http://arxiv.org/abs/1708.20857

On Borwein's conjectures for planar uniform random walks Yajun Zhou

### http://arxiv.org/abs/1708.02962

Algebraic Independence of generic Painlevé Transcendents:  $P_{III}$  and  $P_{VI}$  Joel Nagloo

## http://arxiv.org/abs/1708.03003

Uniform bounds for sums of Kloosterman sums of half integral weight Alexander Dunn

#### http://arxiv.org/abs/1708.03091

Airy series solution of Painlevé II in electrodiffusion: conjectured convergence A. J. Bracken, L. Bass

#### http://arxiv.org/abs/1708.03160

An integral transform connecting spherical analysis on complex, quaternionic and octonionic hyperbolic spaces to the ones of odd dimensional real hyperbolic spaces A. Intissar, M.V. Ould Moustapha, Z. Mouhcine

#### http://arxiv.org/abs/1708.03195

WKB approach to evaluate series of Mathieu functions in scattering problems Maxime Hubert, Remy Dubertrand

## http://arxiv.org/abs/1708.03227

The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials Simon Willerton

Perfect quantum state transfer in weighted paths with potentials (loops) using orthogonal polynomials Steve Kirkland, Darian McLaren, Rajesh Pereira, Sarah Plosker, Xiaohong Zhang

# http://arxiv.org/abs/1708.03358

A generating function and formulae defining the first-associated Meixner-Pollaczek polynomials Khalid Ahbli, Zouhair Mouayn

## http://arxiv.org/abs/1708.03375

Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles Justin Holmer, Chang Liu

## http://arxiv.org/abs/1708.03668

A Central Limit Theorem for First Passage Percolation in the Slab Wei Wu, Serena Sian Yuan

## http://arxiv.org/abs/1708.04136

Theory of Series in the A-calculus and the N-Pythagorean Theorem James S. Cook, Daniel Freese

### http://arxiv.org/abs/1708.04213

On unbounded denominators and hypergeometric series Cameron Franc, Terry Gannon, Geoffrey Mason

### http://arxiv.org/abs/1708.04269

Surprising identities for the hypergeometric  ${}_4F_3$  function Jacopo D'Aurizio, Sabino Ditrani

### http://arxiv.org/abs/1708.04356

On the Euler discretization error of Brownian motion about random times A. B. Dieker, Guido Lagos

http://arxiv.org/abs/1708.04505

On solving a restricted linear congruence using generalized Ramanujan sums K. Vishnu Namboothiri

### http://arxiv.org/abs/1708.04847

Unnormalized quasi-distributions and tomograms of quantum states V. I. Man'ko, L. A. Markovich

http://arxiv.org/abs/1708.04939

On the number of solutions of a restricted linear congruence K. Vishnu Namboothiri

# http://arxiv.org/abs/1708.05109

On the  $\psi$ -Hilfer fractional derivative J. Vanterler da C. Sousa, E. Capelas de Oliveira

Fundamental polyhedra for all Deligne-Mostow lattices in PU(2,1) Irene Pasquinelli

## http://arxiv.org/abs/1708.05547

Hirzebruch *L*-polynomials and multiple zeta values Alexander Berglund, Jonas Bergström

## http://arxiv.org/abs/1708.05758

A Liouville theorem for some Bessel generalized operators Vanesa Galli, Sandra Molina, Alejandro Quintero

## http://arxiv.org/abs/1708.05806

Coarsening model on  $\mathbb{Z}^d$  with biased zero-energy flips and an exponential large deviation bound for ASEP Michael Damron, Leonid Petrov, David Sivakoff

## http://arxiv.org/abs/1708.06286

Bifurcations of self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption Jamie M. Foster, Peter Gysbers, John R. King, Dmitry E. Pelinovsky

## http://arxiv.org/abs/1708.06394

Expressions for the entropy of binomial-type distributions Mahdi Cheraghchi

## http://arxiv.org/abs/1708.06434

Level Spacings and Nodal Sets at Infinity for Radial Perturbations of the Harmonic Oscillator

Thomas Beck, Boris Hanin

### http://arxiv.org/abs/1708.06941

A matrix formulation of the Tau method for the numerical solution of non-linear problems Kourosh Parand, Amin Ghaderi, Mehdi Delkhosh, Reza Pourgholi

### http://arxiv.org/abs/1708.07119

Distribution modulo one and denominators of the Bernoulli polynomials Bernd C. Kellner

### http://arxiv.org/abs/1708.07464

A dimension conjecture for q-analogues of multiple zeta values Henrik Bachmann, Ulf Kuehn

### http://arxiv.org/abs/1708.07647

Existence of meromorphic solutions of first order difference equations Risto Korhonen, Yueyang Zhang

### http://arxiv.org/abs/1708.07929

Accurate calculation of oblate spheroidal wave functions Arnie L. Van Buren

Fourier series of modular graph functions Eric D'Hoker, William Duke

## http://arxiv.org/abs/1708.08445

Totally positive matrices and dilogarithm identities Andrei Bytsko, Alexander Volkov

## http://arxiv.org/abs/1708.08566

Asymptotics of sums of partial theta functions with a Dirichlet character Su Hu, Min-Soo Kim

## http://arxiv.org/abs/1708.08646

Recursion for the smallest eigenvalue density of  $\beta$ -Wishart-Laguerre ensemble Santosh Kumar

## http://arxiv.org/abs/1708.09245

Schur complement preconditioners for multiple saddle point problems of block tridiagonal form with application to optimization problems Jarle Sogn, Walter Zulehner

## http://arxiv.org/abs/1708.09715

Integral representation for Bessel's functions of the first kind and Neumann series Enrico De Micheli

## http://arxiv.org/abs/1708.09837

Nikolskii constants for polynomials on the unit sphere Feng Dai, Dmitry Gorbachev, Sergey Tikhonov

| Topic #10 | —— OP – SF Net 24.5 – | September 15, 2017 |
|-----------|-----------------------|--------------------|
|-----------|-----------------------|--------------------|

From: OP-SF Net Editors Subject: Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)

To contribute a news item to OP-SF NET, send e-mail to one of the OP-SF Editors howard.cohl@nist.gov, or spost@hawaii.edu.

Contributions to OP-SF NET 24.6 should be sent by November 1, 2017.

OP-SF NET is an electronic newsletter of the SIAM Activity Group on Special Functions and Orthogonal Polynomials. We disseminate your contributions on anything of interest to the special functions and orthogonal polynomials community. This includes announcements of conferences, forthcoming books, new software, electronic archives, research questions, and job openings as well as news about new appointments, promotions, research visitors, awards and prizes. OP-SF Net is transmitted periodically through a post to SIAM-OPSF (OP-SF Talk).

SIAM-OPSF (OP-SF Talk) is a listserv of the SIAM Activity Group on Special Functions and Orthogonal Polynomials, which facilitates communication among members, and friends of the Activity Group. See the previous Topic. To post an item to the listserv, send e-mail to siam-opsf@siam.org.

WWW home page of this Activity Group: http://math.nist.gov/opsf Information on joining SIAM and this activity group: service@siam.org

The elected Officers of the Activity Group (2017-2019) are: Walter Van Assche, Chair Andrei Martínez-Finkelshtein, Vice Chair Sarah Post, Program Director Yuan Xu, Secretary

The appointed officers are: Howard Cohl, OP-SF NET co-editor Sarah Post, OP-SF NET co-editor Diego Dominici, OP-SF Talk moderator Bonita Saunders, Webmaster and OP-SF Talk moderator

# Thought of the month

"Legendre is an extremely amiable man, but unfortunately as old as the stones."

Niels Henrik Abel, October, 1826. This was in response to Legendre's refusal in 1824 to vote for the government's candidate for the Institut National. As a result of Legendre's refusal to vote for the government's candidate in 1824 his pension was stopped and he died in poverty.