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This note gives a minor extension to Chap. 5 of the book Fourier analysis, an introduction
by E. M. Stein and R. Shakarchi.

Dense subspaces of Lp(R)

By a simple function on R we mean a finite linear combination of characteristic functions
χE of measurable subsets E of R. In particular, a simple function on R is integrable iff it
is a finite linear combination of characteristic functions χE with λ(E) < ∞.
The Lebesgue measure λ on R is regular, i.e., for every measurable set E ⊂ R we have:

λ(E) = inf{λ(V ) : E ⊂ V and V open},
λ(E) = sup{λ(K) : K ⊂ E and K compact}.

This follows from Theorem 2.18 in Rudin, Real and complex analysis.

Proposition Let 1 ≤ p < ∞. The following spaces are dense in Lp(R):

1. The space of integrable simple functions on R.

2. The linear span of the characteristic functions of bounded intervals in R.

3. The space of continuous functions on R of compact support, i.e., which vanish outside
some bounded interval.

Proof We will prove these results for p = 1. The proof for other p is similar.
Proof of 1. Every f ∈ L1(R) can be written as f = f1 − f2 + if3 − if4 with f1, f2, f3, f4

nonnegative L1 functions. So it is sufficient to prove that every nonnegative L1 function
f can be approximated in L1 norm by integrable simple functions. There is an increasing
sequence of nonnegative simple functions tn(x) which tend pointwise to f as n →∞. Then∫

tn tends to
∫

f as n →∞, so ‖f − tn‖1 → 0.

Proof of 2. By 1. it is sufficient to prove that, if E ⊂ R is measurable with λ(E) < ∞
then χE can be approximated in L1 norm by finite linear combinations of characteristic
functions of bounded intervals. Let ε > 0. By regularity of λ there is an open set V ⊃ E
such that λ(V ) < λ(E) + 1

2ε < ∞. Since V is a countable disjoint union of open intervals,
there is a finite union W ⊂ V of bounded open intervals such that λ(W ) > λ(V ) − 1

2ε.
Hence ‖χE − χW ‖ < ε.

Proof of 3. Every characteristic function of a bounded interval can be approximated in
L1 norm by continuous functions of compact support. Now use 2.

We can use part 2. of this Proposition in order to prove the Riemann-Lebesgue Lemma
for the Fourier transform:

If f ∈ L1(R) then f̂(ξ) → 0 as ξ → ±∞.
Just observe that the statement is true for f = χ[a,b].

1



Exercises

Vrst 1. (For this exercise use results from both Fourier series and Fourier integrals.)
Below define x−1 sinx for x = 0 by continuity.

a) Let t ∈ R. Show that for each x ∈ (−π, π) we have

∞∑
n=−∞

sin(π(t− n))
π(t− n)

einx = eixt

with pointwise convergence. What is the evaluation of the sum on the left-hand side
for other real values of x?

b) Show that, for all n, m ∈ Z, we have∫ ∞

−∞

sin(π(t− n))
π(t− n)

sin(π(t−m))
π(t−m)

dt = δn,m,

where the integral converges absolutely.

c) Does there exist f ∈ L2(R) with f 6= 0 such that∫ ∞

−∞
f(t)

sin(π(t− n))
π(t− n)

dt = 0 for all n ∈ Z ?

d) Let f ∈ L2([−π, π]). Define f̂ as a function on R by

f̂(t) :=
1
2π

∫ π

−π
f(x) e−ixt dx (t ∈ R). (1)

(For t ∈ Z this defines the Fourier coefficients of f ; for general t ∈ R this defines the
Fourier transform of a function on R which vanishes outside [−π, π].) Show that

f̂(t) =
∞∑

n=−∞
f̂(n)

sin(π(t− n))
π(t− n)

(t ∈ R) (2)

with absolutely convergent sum.
(This shows in particular the following. Let g be an L2 function on R which is the
Fourier transform g = f̂ of an L2 function f on R vanishing outside [−π, π] (see
(1)). So g is also continuous. Then g is completely determined by its restriction to
Z, with reconstruction formula given by (2).)
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Hints to Problem 7 in Chapter 5 of Stein & Shakarchi
A result from (a) is:

hk(x) = (−1)kex2/2
( d

dx

)k
e−x2

.

Show, by once differentiating this formula, that

hk+1(x) =
(
x− d

dx

)
hk(x). (3)

Use (3) in (c) in order to prove the result there by induction with respect to k.
Now show, by applying the operator x+ d

dx to both sides of (3) and by using induction
with respect to k, that (

x + d
dx

)
hk+1(x) = 2(k + 1)hk(x). (4)

Now it has to be proved in (d) that

(Lhk)(x) :=
(
x2 − d2

dx2

)
hk(x) = (2k + 1)hk(x).

Show this by expressing the operator L in terms of x − d
dx and x + d

dx and by using (3)
and (4).
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