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This note gives a minor extension to Chap. 5 of the book Fourier analysis, an introduction
by E. M. Stein and R. Shakarchi.

Dense subspaces of L?(R)

By a simple function on R we mean a finite linear combination of characteristic functions
x e of measurable subsets E of R. In particular, a simple function on R is integrable iff it
is a finite linear combination of characteristic functions xg with A(E) < oo.

The Lebesgue measure A on R is regular, i.e., for every measurable set F C R we have:

AME) =inf{\(V): ECV and V open},
AME) =sup{A\(K): K C E and K compact}.

This follows from Theorem 2.18 in Rudin, Real and complex analysis.

Proposition Let 1 < p < oo. The following spaces are dense in LP(R):

1. The space of integrable simple functions on R.
2. The linear span of the characteristic functions of bounded intervals in R.

3. The space of continuous functions on R of compact support, i.e., which vanish outside
some bounded interval.

Proof We will prove these results for p = 1. The proof for other p is similar.

Proof of 1. Every f € L*(R) can be written as f = f1 — fo +if3 — ifs with fi1, fo, 3, f1
nonnegative L' functions. So it is sufficient to prove that every nonnegative L' function
f can be approximated in L' norm by integrable simple functions. There is an increasing
sequence of nonnegative simple functions ¢, (x) which tend pointwise to f as n — oco. Then
[ t, tends to [ f as n — oo, so ||f —tul1 — 0.

Proof of 2. By 1. it is sufficient to prove that, if £ C R is measurable with A\(F) < oo
then yg can be approximated in L' norm by finite linear combinations of characteristic
functions of bounded intervals. Let € > 0. By regularity of A\ there is an open set V O F
such that A(V) < A(E)+ 4e < cc. Since V is a countable disjoint union of open intervals,
there is a finite union W C V' of bounded open intervals such that A(W) > A(V) — e.
Hence ||[xg — xw| <e.

Proof of 3. Every characteristic function of a bounded interval can be approximated in
L' norm by continuous functions of compact support. Now use 2. ]

We can use part 2. of this Proposition in order to prove the Riemann-Lebesgue Lemma
for the Fourier transform:

If f € LY(R) then f(£) — 0 as & — Foo.
Just observe that the statement is true for f = x/qy-



Exercises
Vrst 1. (For this exercise use results from both Fourier series and Fourier integrals.)
Below define #~!sinx for = 0 by continuity.
a) Let t € R. Show that for each x € (—m,7) we have
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with pointwise convergence. What is the evaluation of the sum on the left-hand side
for other real values of =7

b) Show that, for all n,m € Z, we have
/°° sin(w(t —n)) sin(w(t —m)) g =5
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where the integral converges absolutely.

c¢) Does there exist f € L?(R) with f # 0 such that

/ f(t) Sm t— )))dt—O forallne Z?

d) Let f € L*(]—m, 7). Define f as a function on R by

1

o | f( Je dx  (t€R). (1)

ft) =
(For t € Z this defines the Fourier coefficients of f; for general ¢ € R this defines the
Fourier transform of a function on R which vanishes outside [—m,7].) Show that
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with absolutely convergent sum.
(This shows in particular the following. Let g be an L? function on R which is the
Fourier transform g = f of an L? function f on R vanishing outside [—m, 7] (see
(1)). So g is also continuous. Then g is completely determined by its restriction to
Z, with reconstruction formula given by (2).)



Hints to Problem 7 in Chapter 5 of Stein & Shakarchi
A result from (a) is:

hio(x) = (—1)%962/2(%)'“@*22.

Show, by once differentiating this formula, that

hi1(2) = (z = ) hi(@). (3)

Use (3) in (c) in order to prove the result there by induction with respect to k.
Now show, by applying the operator x4+ % to both sides of (3) and by using induction
with respect to k, that

(+ &) hara(z) = 2(k + Dhy(2). (4)
Now it has to be proved in (d) that

(Lhi) () = (22 — L) hy(2) = (2k + Dhy(2).

Show this by expressing the operator L in terms of = — % and z + % and by using (3)

and (4).



