More on Fourier series

notes by T. H. Koornwinder, thk@science.uva.nl
written for the course on Linear analysis, September-December 2005, University of Amsterdam
last modified: October 27, 2005

1 Some extensions to Chaps. 2 and 3 of the book Fourier analysis, an introduction by E. M. Stein and R. Shakarchi

Remark 1. (Alternative method for Exercise 16 in Ch.2)
We use the Chebyshev polynomials (of the first kind)

$$
T_{n}(\cos \theta):=\cos (n \theta) \quad\left(\theta \in \mathbb{R}, n \in \mathbb{Z}_{\geq 0}\right)
$$

The above definition determines $T_{n}(x)$ uniquely for $x \in[-1,1]$. We also see that $T_{n}(x)$ is a polynomial of degree n in x because

$$
\cos \theta \cos n \theta=\frac{1}{2} \cos (n+1) \theta+\frac{1}{2} \cos (n-1) \theta
$$

hence

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \quad\left(n \in \mathbb{Z}_{>0}\right)
$$

while $T_{0}(x)=1$. Now the claim follows by induction w.r.t. n.
Now we prove the Weierstrass approximation theorem for $f \in C([a, b])$. Without loss of generality we may assume that $[a, b]=[-1,1]$. Put $g(\theta):=f(\cos \theta)$. Then g is continuous, even and 2π-periodic on \mathbb{R}. Hence $\widehat{g}(n)=\widehat{g}(-n)$ and

$$
\sigma_{N}(g)(\theta)=\widehat{g}(0)+2 \sum_{n=1}^{N-1} \frac{N-n}{N} \widehat{g}(n) \cos n \theta
$$

Then $\sigma_{N}(g) \rightarrow g$ uniformly, certainly on $[0, \pi]$, as $N \rightarrow \infty$ (see Ch.2, Theorem 5.2). Put

$$
f_{N-1}(x):=\widehat{g}(0)+2 \sum_{n=1}^{N-1} \frac{N-n}{N} \widehat{g}(n) T_{n}(x)
$$

Then $f_{N-1}(\cos \theta)=\sigma_{N}(g)(\theta)$ and $f_{N-1}(x)$ is a polynomial of degree $\leq N-1$ in x. Then $f_{N-1} \rightarrow f$, uniformly on $[-1,1]$, as $N \rightarrow \infty$.

Remark 2. (Extension of Exercise 12 in Ch.2)
(b) Let $\left(c_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers, put $s_{n}:=\sum_{k=1}^{n} c_{k}$ and $\sigma_{n}:=n^{-1} \sum_{k=1}^{n} s_{k}$. Show that $\lim _{n \rightarrow \infty} s_{n}=\infty$ implies that $\lim _{n \rightarrow \infty} \sigma_{n}=\infty$. So a series diverging to $+\infty$ is not Cesàro summable.
(c) Show (by the same method as on p.84, Ch.3) that

$$
\sum_{n=2}^{\infty} \frac{1}{n \log n}=\infty
$$

(d) Show that the trigonometric series

$$
\sum_{|n| \geq 2} \frac{1}{|n| \log |n|} e^{i n x}
$$

cannot be the Fourier series of a 2π-periodic continuous function.
Hint Otherwise the series would be Cesàro summable for all x, certainly for $x=0$.
(e) Conclude that $c_{n}=o\left(|n|^{-1}\right)$ as $|n| \rightarrow \infty$ is not a sufficient condition in order that $\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}$ is the Fourier series of a 2π-periodic continuous function.
Remark 3. (Extension of Exercise 18 in Ch.3)
For a sequence $\left(c_{n}\right)_{n \in \mathbb{Z}}$ there is a hierarchy of its behaviour as $|n| \rightarrow \infty$ given by $c_{n}=$ $\mathcal{O}\left(|n|^{-\alpha}\right)$ or $c_{n}=o\left(n^{-\alpha}\right)(\alpha \in \mathbb{R})$. Then $c_{n}=o\left(|n|^{-\alpha}\right) \Longrightarrow c_{n}=\mathcal{O}\left(|n|^{-\alpha}\right)$ and, with $\alpha>\beta, c_{n}=\mathcal{O}\left(|n|^{-\alpha}\right) \Longrightarrow c_{n}=o\left(|n|^{-\beta}\right)$, but the converses of these implications are not valid.

Now let f be an arbitrary 2π-periodic function on \mathbb{R}, integrable over bounded intervals. Replace f by a (unique) 2π-periodic continuous function if the difference h of f with that function has $\int_{-\pi}^{\pi}|h(x)| d x=0$. Then there are the following implications, and these implications are sharpest for the estimate for $\widehat{f}(n)$ in the above hierarchy:

$$
\begin{aligned}
f \text { is continuous } & \Longrightarrow \widehat{f}(n)=o(1) ; \\
f \text { is continuous } & \Longleftrightarrow \widehat{f}(n)=O\left(|n|^{-1-\varepsilon}\right) \text { for some } \varepsilon>0 ; \\
f \text { is continuously differentiable } & \Longleftrightarrow \widehat{f}(n)=o\left(|n|^{-1}\right) ; \\
f \text { is continuously differentiable } & \Longleftrightarrow \widehat{f}(n)=O\left(|n|^{-2-\varepsilon}\right) \text { for some } \varepsilon>0 ; \\
f \text { is } C^{k} & \Longleftrightarrow \widehat{f}(n)=o\left(|n|^{-k}\right) ; \\
f \text { is } C^{k} & \Longleftrightarrow \widehat{f}(n)=O\left(|n|^{-k-1-\varepsilon}\right) \text { for some } \varepsilon>0 ; \\
f \text { is } C^{\infty} & \Longleftrightarrow \widehat{f}(n)=O\left(|n|^{-k}\right) \text { for all } k>0 .
\end{aligned}
$$

Theorem 4 (Extension of Ch.3, Theorem 2.1).
Let f be an integrable function on the circle which has a jump discontinuity at θ_{0} in the sense that the two limits

$$
f\left(\theta_{0}^{+}\right):=\lim _{h \downarrow 0} f\left(\theta_{0}+h\right), \quad f\left(\theta_{0}^{-}\right):=\lim _{h \uparrow 0} f\left(\theta_{0}+h\right)
$$

exist, and which is right and left differentiable at θ_{0} in the sense that the two limits

$$
f^{\prime}\left(\theta_{0}^{+}\right):=\lim _{h \downarrow 0} \frac{f\left(\theta_{0}+h\right)-f\left(\theta_{0}^{+}\right)}{h}, \quad f^{\prime}\left(\theta_{0}^{-}\right):=\lim _{h \uparrow 0} \frac{f\left(\theta_{0}+h\right)-f\left(\theta_{0}^{-}\right)}{h}
$$

exist. Then $S_{N}(f)\left(\theta_{0}\right) \rightarrow \frac{1}{2}\left(f\left(\theta_{0}^{+}\right)+f\left(\theta_{0}^{-}\right)\right)$as N tends to infinity.
See also Exercise 17 in Chapter 2, which formulates similar theorems for the Abel means and the Cesàro means.
Theorem 5 (Extension of Ch.3, Theorem 2.2).
Suppose f and g are two integrable functions defined on the circle, and for some θ_{0} there exists an open interval I containing θ_{0} such that $f(\theta)=g(\theta)$ for all $\theta \in I$. Then either $S_{N}(f)\left(\theta_{0}\right)$ and $S_{N}(g)\left(\theta_{0}\right)$ both converge as $N \rightarrow \infty$, while tending to the same limit, or both diverge as $N \rightarrow \infty$.

Remark 6. (Extension of Exercise 12 in Ch.3)
Observe that

$$
\begin{aligned}
D_{N}(x) & =\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \left(\frac{1}{2} x\right)} \\
& =\frac{\sin (N x) \cos \left(\frac{1}{2} x\right)+\cos (N x) \sin \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)} \\
& =\sin (N x) \cot \left(\frac{1}{2} x\right)+\cos (N x) \\
& =\frac{2 \sin (N x)}{x}+\cos (N x)+\left(\cot \left(\frac{1}{2} x\right)-2 x^{-1}\right) \sin (N x)
\end{aligned}
$$

Put

$$
\begin{equation*}
\phi(x):=\cot \left(\frac{1}{2} x\right)-2 x^{-1} \quad(0<|x|<2 \pi) \tag{1}
\end{equation*}
$$

and put $\phi(0):=0$. Then

$$
\begin{equation*}
D_{N}(x)=\frac{2 \sin (N x)}{x}+\cos (N x)+\phi(x) \sin (N x) \tag{2}
\end{equation*}
$$

It can be proved, as an exercise, that:
a) ϕ is continuous on $(-2 \pi, 2 \pi)$;
b) $\phi^{\prime}(0)=-\frac{1}{6}$;
c) ϕ is C^{1} on $(-2 \pi, 2 \pi)$ and strictly decreasing;
d) $\phi(\pi)=-2 \pi^{-1}, \quad \phi(-\pi)=2 \pi^{-1}, \quad \max _{|x| \leq \pi}|\phi(x)|=2 \pi^{-1}$.

Integration of (2) yields for $0<x \leq 2 \pi$:

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{x} D_{N}(t) d t & =\int_{0}^{x} \frac{\sin (N t)}{t} d t+\frac{\sin (N x)}{2 N}+\frac{1}{2} \int_{0}^{x} \phi(t) \sin (N t) d t \\
& =\int_{0}^{N x} \frac{\sin s}{s} d s+\frac{\sin (N x)}{2 N}-\frac{\phi(x) \cos (N x)}{2 N}+\frac{1}{2 N} \int_{0}^{x} \phi^{\prime}(t) \cos (N t) d t
\end{aligned}
$$

Hence, if $0<a<\pi$ then

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{x} D_{N}(t) d t=\int_{0}^{N x} \frac{\sin s}{s} d s+\mathcal{O}\left(N^{-1}\right), \quad \text { uniformly as } N \rightarrow \infty \text { for } 0<x \leq a \tag{3}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\frac{1}{2} \pi=\frac{1}{2} \int_{0}^{\pi} D_{N}(t) d t=\int_{0}^{N \pi} \frac{\sin s}{s} d s+\mathcal{O}\left(N^{-1}\right)=\int_{0}^{\infty} \frac{\sin s}{s} d s \tag{4}
\end{equation*}
$$

Remark 7. (Concerning Exercise 20 in Ch.3)
Let f be the sawtooth function, for which the Fourier series was computed in Ch.2, Exercise 8:

$$
f(x) \sim \sum_{n \neq 0}(2 i n)^{-1} e^{i n x}
$$

Then (see Ch.3, Exercise 20)

$$
S_{N}(f)(x)=\sum_{0<|n| \leq N}(2 i n)^{-1} e^{i n x}=\frac{1}{2} \int_{0}^{x}\left(\sum_{0<|n| \leq N} e^{i n x}\right) d x=\frac{1}{2} \int_{0}^{x} D_{N}(t) d t-\frac{1}{2} x
$$

Now let $0<a<\pi$, use (3) and observe that $f(x)=\frac{1}{2} \pi-\frac{1}{2} x$ on $(0,2 \pi)$. Thus

$$
\begin{equation*}
S_{N}(f)(x)-f(x)=\int_{0}^{N x} \frac{\sin s}{s} d s-\frac{1}{2} \pi+\mathcal{O}\left(N^{-1}\right), \quad \text { uniformly as } N \rightarrow \infty \text { for } 0<x \leq a \tag{5}
\end{equation*}
$$

Define the function Si (integral sine) (see also (4)) by

$$
\begin{equation*}
\operatorname{Si}(y):=\int_{0}^{y} \frac{\sin t}{t} d t \quad(y \geq 0), \quad \operatorname{Si}(\infty):=\lim _{y \rightarrow \infty} \operatorname{Si}(y)=\frac{1}{2} \pi . \tag{6}
\end{equation*}
$$

Then Si is increasing on intervals $(2 k \pi,(2 k+1) \pi)\left(k \in \mathbb{Z}_{\geq 0}\right)$ and Si is decreasing on intervals $((2 k+1) \pi,(2 k+2) \pi)\left(k \in \mathbb{Z}_{\geq 0}\right)$, and

$$
\operatorname{Si}(\pi)>\operatorname{Si}(3 \pi)>\operatorname{Si}(5 \pi)>\ldots>\operatorname{Si}(\infty)=\frac{1}{2} \pi>\ldots>\operatorname{Si}(4 \pi)>\operatorname{Si}(2 \pi)>\operatorname{Si}(0)=0 .
$$

Thus Si is positive on $(0, \infty)$ and it attains its absolute maximum on $[0, \infty)$ at π. A numerical computation yields that

$$
\int_{0}^{\pi} \frac{\sin t}{t} d t=\operatorname{Si}(\pi) \approx 1.18 \operatorname{Si}(\infty)=1.18 \pi / 2
$$

We obtain from (5) that

$$
\begin{align*}
\max _{0<x \leq \pi}\left(S_{N}(f)(x)-f(x)\right)=S_{N}(f)(\pi / N)-f(\pi / N)+\mathcal{O}\left(N^{-1}\right) & \\
& =\operatorname{Si}(\pi)-\operatorname{Si}(\infty)+\mathcal{O}\left(N^{-1}\right) \approx 0.09 \pi \quad \text { as } N \rightarrow \infty \tag{7}
\end{align*}
$$

This is the Gibbs phenomenon: for large N the partial Fourier sum of the sawtooth function f fastly increases from 0 at $x=0$ to approximately $1.18 f\left(0^{+}\right)=1.18 \pi / 2$ at $x=\pi / N$, and it oscillates for $x>\pi / N$ around f with decreasing local maxima and minima for $S_{N}(f)-f$. See the Mathematica notebook gibbs.nb for pictures.

Remark 8. (Extension of Exercise 14 in Ch.3)
Let f be a 2π-periodic C^{1}-function. The absolute convergence of the Fourier series of f (to be proved in this exercise), together with the pointwise convergence of $S_{n}(f)$ to f (Theorem 2.1 in Ch.3), implies the uniform convergence of $S_{n}(f)$ to f. Prove this uniform convergence also in a different way, by a slight adaptation of the proof of Theorem 2.1 in Ch.3.

These conclusions about absolute and uniform convergence remain valid if f is continuous and the derivative of f is only piecewise continuous. A piecewise continuous derivative means that f on any finite interval is continuously differentiable outside finitely many points x_{1}, \ldots, x_{n}, and that at x_{i} the right derivative $f^{\prime}\left(x_{i}^{+}\right)$and left derivative $f^{\prime}\left(x_{i}^{-}\right)$ exist, and that $\lim _{x \downarrow x_{i}} f^{\prime}(x)=f^{\prime}\left(x_{i}^{+}\right)$and $\lim _{x \uparrow x_{i}} f^{\prime}(x)=f^{\prime}\left(x_{i}^{-}\right)$.

Now let g be a 2π periodic function which is C^{1} outside $x_{0}+2 \pi \mathbb{Z}$, and which behaves near $x=x_{0}$ such that the four limits

$$
\begin{aligned}
g\left(x_{0}^{+}\right):=\lim _{h \downarrow 0} g\left(x_{0}+h\right), \quad g\left(x_{0}^{-}\right):=\lim _{h \uparrow 0} g\left(x_{0}+h\right), \\
g^{\prime}\left(x_{0}^{+}\right):=\lim _{h \downarrow 0} \frac{g\left(x_{0}+h\right)-g\left(x_{0}^{+}\right)}{h}, \quad g^{\prime}\left(x_{0}^{-}\right):=\lim _{h \uparrow 0} \frac{g\left(x_{0}+h\right)-g\left(x_{0}^{-}\right)}{h}
\end{aligned}
$$

exist. For convenience assume that $x_{0}=0$ and that $g\left(x_{0}^{+}\right)>g\left(x_{0}^{-}\right)$. Let f be the sawtooth function. Then $p(x):=g(x)-\pi^{-1}\left(g\left(0^{+}\right)-g\left(0^{-}\right)\right) f(x)$ is a 2π-periodic continuous function with a derivative which is continuous except for a possible jump at 0 (and at integer multiples of 2π). Hence, in combination with the results for Exercise 20 in Ch. 3 above, we see the Gibbs phenomenon for g :

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left(\max _{0<x \leq \pi}\left(S_{N}(g)(x)-g(x)\right)\right)=\lim _{N \rightarrow \infty}\left(S_{N}(g)(\pi / N)-g(\pi / N)\right) \\
=\lim _{N \rightarrow \infty} \pi^{-1}\left(g\left(0^{+}\right)-g\left(0^{-}\right)\right)(\operatorname{Si}(\pi)-\operatorname{Si}(\infty)) \approx 0.09\left(g\left(0^{+}\right)-g\left(0^{-}\right)\right)
\end{aligned}
$$

The case of finitely many jumps in g can be handled in a similar way.

2 The isoperimetric inequality

Below we write

$$
\|f\|_{2}:=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x\right)^{\frac{1}{2}}
$$

Theorem 9. The area A of a region in the plane which is enclosed by a closed nonselfintersecting C^{1}-curve of length L satisfies $A \leq L^{2} /(4 \pi)$. Equality holds iff the curve is a circle.

Proof Without loss of generality we may assume that $L=2 \pi$, and that the curve is positively oriented and parametrized by its arc length. We may also identify the plane with \mathbb{C}. Then the curve has the form $t \mapsto f(t)$ with f a 2π-periodic C^{1}-function and with $\left|f^{\prime}(t)\right|=1$ for all t. Furthermore we may assume without loss of generality that $\widehat{f}(0)=(2 \pi)^{-1} \int_{0}^{2 \pi} f(t) d t=0$. Then we have to show that $A \leq \pi$ with equality iff $f(t)=e^{i\left(t+t_{0}\right)}$ for some $t_{0} \in \mathbb{R}$. Now we have

$$
\begin{align*}
& A \stackrel{(1)}{=} \frac{1}{2} \operatorname{Im} \int_{0}^{2 \pi} f^{\prime}(t) \overline{f(t)} d t=\pi \operatorname{Im}\left\langle f^{\prime}, f\right\rangle \leq \pi\left|\left\langle f^{\prime}, f\right\rangle\right| \stackrel{(2)}{\leq} \pi\left\|f^{\prime}\right\|_{2}\|f\|_{2} \\
& \stackrel{(3)}{=} \pi\|f\|_{2} \stackrel{(4)}{=} \pi\|f-\widehat{f}(0)\|_{2} \stackrel{(5)}{\leq} \pi\left\|f^{\prime}\right\|_{2} \stackrel{(6)}{=} \pi \tag{8}
\end{align*}
$$

Equality (1) follows from Vrst 1. Inequality (2) is the Cauchy-Schwarz inequality. Equalities (3) and (6) use that $\left\|f^{\prime}\right\|_{2}=1$ by the assumption $\left|f^{\prime}(t)\right|=1$. Equality (4) uses the assumption $\widehat{f}(0)=0$. Equality (5) follows from Vrst 2. The proof of the last part of the theorem is in Vrst 3.

Exercises

Vrst 1. Let $t \mapsto f(t)$ be a positively oriented closed non-selfintersecting C^{1}-curve in \mathbb{C}. Show that the area of the enclosed region equals $\frac{1}{2} \operatorname{Im} \int_{0}^{2 \pi} f^{\prime}(t) \overline{f(t)} d t$.

Vrst 2. Let f be a 2π-periodic C^{1}-function. Show that $\|f-\widehat{f}(0)\|_{2} \leq\left\|f^{\prime}\right\|_{2}$ with equality iff $\widehat{f}(n)=0$ for $n \neq-1,0,1$.

Vrst 3. Show that equality everywhere in formula (8) implies that $f(t)=e^{i\left(t+t_{0}\right)}$ for some $t_{0} \in \mathbb{R}$.

