About the book by E. M. Stein & R. Shakarchi, Fourier analysis, an introduction

notes by T. H. Koornwinder, thk@science.uva.nl

last modified: March 21, 2006

These notes concern the book

E. M. Stein and R. Shakarchi, *Fourier analysis, an introduction*, Princeton University Press, 2003.

Here I will rephrase some definitions and theorems from the book more generally, by using spaces of Lebesgue integrable functions. Unless otherwise stated, our function spaces are taken over \mathbb{C} : they will contain complex-valued functions.

Function spaces

We will use the following notations (different from the usage in the book).

- $C_{2\pi}$ is the space of 2π -periodic continuous functions on \mathbb{R} with norm $||f||_{\infty} := \sup\{|f(x)| \mid x \in \mathbb{R}\} = \max\{|f(x)| \mid x \in [-\pi, \pi]\}.$
- $C_{2\pi}^k$ is the space of k times continuously differentiable 2π -periodic functions on \mathbb{R} .
- C[∞]_{2π} is the space of arbitrarily often continuously differentiable 2π-periodic functions on ℝ.
- $L_{2\pi}^{\infty}$ is the space of measurable 2π -periodic functions on \mathbb{R} which are bounded outside a set of measure zero. The norm is $||f||_{\infty} := \text{ess sup}\{|f(x)| \mid x \in \mathbb{R}\} = \inf\{a \ge 0 \mid \{x \in \mathbb{R} \mid |f(x)| > a\}$ has measure 0}.
- $L^p_{2\pi}$ $(1 \le p < \infty)$ is the space of measurable 2π -periodic functions on \mathbb{R} for which

$$||f||_p := \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^p \, dx\right)^{1/p} < \infty.$$

More precisely, the elements of the L^p spaces are equivalence classes of functions, where f and g are equivalent if they coincide outside a set of measure zero (see Appendix, Theorem 1.7).

In each function class the functions may also be considered while restricted to an interval $[a, a + 2\pi]$ (usually $[-\pi, \pi]$). The restriction map will be bijective if we take into account that: (i) on $C_{2\pi}^k$ we have $f(a) = f(a + 2\pi)$ and $f^{(j)}(a) = f^{(j)}(a + 2\pi)$ for all appropriate derivatives; and (ii) the integral of an integrable 2π -periodic function is the same on any interval of length 2π .

The spaces $C_{2\pi}$ and $L_{2\pi}^p$ $(1 \le p \le \infty)$ are Banach spaces w.r.t. their given norms. The space $L_{2\pi}^2$ is moreover a Hilbert space with inner product

$$\langle f,g \rangle := rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, \overline{g(x)} \, dx.$$

We have inclusions and corresponding norm inequalities (use Hölder's inequality) as follows:

$$C_{2\pi} \subset L_{2\pi}^{\infty} \subset L_{2\pi}^{q} \subset L_{2\pi}^{p} \subset L_{2\pi}^{1}, \quad \|f\|_{\infty} \ge \|f\|_{q} \ge \|f\|_{p} \ge \|f\|_{1} \qquad (1$$

 $C_{2\pi}$ is dense in $L_{2\pi}^p$ if $1 \le p < \infty$, but is is not dense in $L_{2\pi}^\infty$. If $1 \le p < q \le \infty$ then $L_{2\pi}^q$ is dense in $L_{2\pi}^p$.

Let $\operatorname{Trig}_{2\pi}$ be the space of trigonometric polynomials, i.e., the space spanned by the functions $x \mapsto e^{inx}$ $(n \in \mathbb{Z})$. Then $\operatorname{Trig}_{2\pi}$ is dense in $C_{2\pi}$ (see Corollary 2.5.4), and hence also in $L_{2\pi}^p$ $(1 \leq p < \infty)$.

Let $\mathcal{R}_{2\pi}$ be the space of Riemann integrable functions on $[-\pi,\pi]$ (extended to a 2π -periodic function on \mathbb{R} whenever this is convenient). Then $f \in \mathcal{R}_{2\pi}$ iff $f \in L_{2\pi}^{\infty}$ and f is a.e. continuous.

Let $l^{\infty}(\mathbb{Z})$ the space of bounded functions on \mathbb{Z} with norm $||g||_{\infty} := \sup_{n \in \mathbb{Z}} |g(n)|$. Let $c_0(\mathbb{Z})$ be its subspace of functions g on \mathbb{Z} for which $\lim_{|n|\to\infty} g(n) = 0$, with the same norm $|| \cdot ||_{\infty}$. These are Banach spaces.

Let $l^p(\mathbb{Z})$ $(1 be the space of functions g on <math>\mathbb{Z}$ such that

$$||g||_p := \left(\sum_{n \in \mathbb{Z}} |g|^p\right)^{1/p} < \infty.$$

These are Banach spaces, and $l^2(\mathbb{Z})$ is moreover a Hilbert space with inner product

$$\langle g,h \rangle := \sum_{n \in \mathbb{Z}} g(n) \,\overline{h(n)}.$$

The embeddings of spaces and the norm inequalities are here in converse direction as for the function spaces on $[-\pi, \pi]$:

$$l^{1}(\mathbb{Z}) \subset l^{p}(\mathbb{Z}) \subset l^{q}(\mathbb{Z}) \subset c_{0}(\mathbb{Z}) \subset l^{\infty}(\mathbb{Z}), \quad ||g||_{1} \ge ||g||_{p} \ge ||g||_{q} \ge ||g||_{\infty} \quad (1$$

All embeddings are dense, except for the last one: $c_0(\mathbb{Z})$ is a non-dense closed subspace of $l^{\infty}(\mathbb{Z})$.

Fourier coefficients and the Riemann-Lebesgue lemma

For $f \in L^1_{2\pi}$ write its Fourier coefficients as

$$\widehat{f}(n) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \qquad (n \in \mathbb{Z}).$$

If $f \in L^1_{2\pi}$ then

$$\|\widehat{f}\|_{\infty} \le \|f\|_1$$
 and $\lim_{|n|\to\infty} \widehat{f}(n) = 0.$

Then $f \mapsto \hat{f} \colon L_{2\pi}^1 \to c_0(\mathbb{Z})$ is continuous, but not surjective. The statement $\lim_{|n|\to\infty} \hat{f}(n) = 0$ is the *Riemann-Lebesgue lemma*, This was stated for $f \in \mathcal{R}_{2\pi}$ in Theorem 3.1.4, as a corollary of Theorem 1.3. But the result extends to $L_{2\pi}^1$ by an argument which uses that $\mathcal{R}_{2\pi}$ (or already $C_{2\pi}$ or $\operatorname{Trig}_{2\pi}$) is dense in $L_{2\pi}^1$.

More generally than Theorem 1.3 we can state: The map $f \mapsto \hat{f}$ is a Hilbert space isomorphism from $L^2_{2\pi}$ onto $l^2(\mathbb{Z})$.

Re: Theorem 2.2.1

This can be formulated more generally as: If $f \in L^1_{2\pi}$ and $\hat{f} = 0$ then $f(x_0) = 0$ whenever f is continuous at x_0 .

Re: §2.3 Convolutions

In connection with Proposition 2.3.1 we have (special cases of *Young's inequality*):

• $L_{2\pi}^1 * L_{2\pi}^p \subset L_{2\pi}^p$, $||f * g||_p \le ||f||_1 ||g||_p$ $(1 \le p \le \infty);$ • $L_{2\pi}^p * L_{2\pi}^q \subset C_{2\pi}$, $||f * g||_{\infty} \le ||f||_p ||g||_q$ (1 $• <math>L_{2\pi}^1 * C_{2\pi} \subset C_{2\pi}, \quad ||f * g||_{\infty} \le ||f||_1 ||g||_{\infty}.$

Re: §2.4 Good kernels

More generally we can call $\{K_n\}_{n=1}^{\infty}$ a family of good kernels if $K_n \in L^1_{2\pi}$ for all n such that:

- a) $\widehat{K}_n(0) = 1$ for all n;
- b) there exists M > 0 such that $||K_n||_1 \leq M$ for all n;
- c) for every $\delta \in (0, \pi)$ we have $||K_n(\chi_{[-\pi, -\delta]} + \chi_{[\delta, \pi]})||_1 \to 0$ as $n \to \infty$. (Here χ_E is the characteristic function of a set E.)

For a given family of good kernels as above we can now formulate Theorem 4.1 as follows:

Let $f \in L^{\infty}_{2\pi}$. Then $\lim_{n\to\infty} (f * K_n)(x) = f(x)$ whenever f is continuous at x. If f is continuous everywhere, then this limit is uniform.

If we replace in c) of the definition of good kernel the L^1 -norm by the L^p -norm and if we replace in the reformulation of Theorem 4.1 the assumption $f \in L^{\infty}_{2\pi}$ by $f \in L^q_{2\pi}$ $(p^{-1} + q^{-1} = 1 \text{ and } 1 \leq p \leq \infty)$ then the Theorem remains valid. For the Fejér and the Poisson kernel we can make these changes for all p, in particular for $p = \infty$.

Theorem 4.1, in all its reformulated versions, has as an immediate Corollary:

Let $f \in L^r_{2\pi}$ $(1 \le r < \infty)$. Then $\lim_{n \to \infty} f * K_n = f$ in $L^r_{2\pi}$.

Prove it first for $f \in C_{2\pi}$ and then use density of $C_{2\pi}$ in $L_{2\pi}^r$.

From this it follows that the map $f \mapsto \hat{f} \colon L^r_{2\pi} \to c_0(\mathbb{Z})$ is injective for $1 \leq r < \infty$, in particular for r = 1 (we knew it already for r = 2).

Re: §3.2.1 A local result

Theorem 3.2.1 can be formulated more generally as follows:

Let $f \in L^1_{2\pi}$, $x_0 \in \mathbb{R}$. Suppose that there are $\delta, M > 0$ such that $|f(x) - f(x_0)| \leq M |x - x_0|$ if $|x - x_0| < \delta$. Then $\lim_{N \to \infty} (S_N[f])(x_0) = f(x_0)$.

Theorem 3.2.2 can be formulated more generally as follows:

Let $f, g \in L^1_{2\pi}$, $x_0 \in \mathbb{R}$, and suppose that f(x) = g(x) for x in some neighbourhood of x_0 .

Then either $(S_N[f])(x_0)$ and $(S_N[g])(x_0)$ both converge as $N \to \infty$, while tending to the same limit, or both diverge as $N \to \infty$.

Re: Exercise 3.13, Fourier coefficients of C^{∞} -function

Exercise 3.13 can be formulated more generally as follows:

The map $f \mapsto \hat{f}$ is a bijection from $C_{2\pi}^{\infty}$ onto the space of rapidly decreasing functions g on \mathbb{Z} , i.e., g such that for all k > 0 we have $g(n) = O(|n|^{-k})$ as $|n| \to \infty$.

Re: §3.2.2 A continuous function with diverging Fourier series

Lemma 3.2.3 can be applied more generally to Fourier series, not just to the Fourier series (4) in §3.2.2:

If
$$f \in L^{\infty}_{2\pi}$$
 and $\widehat{f}(n) = O(|n|^{-1})$ as $|n| \to \infty$ then $||S_N[f]||_{\infty} = O(1)$ as $N \to \infty$.

Re: Exercises 3.19, 3.20, The Gibbs phenomenon

We can write

$$D_N(x) = \frac{\sin((N + \frac{1}{2})x)}{\sin(\frac{1}{2}x)} = \frac{2\sin(Nx)}{x} + \theta(x)\sin(Nx) + \cos(Nx) \qquad (0 < |x| < 2\pi),$$

where

$$\theta(x) := \cot(\frac{1}{2}x) - 2x^{-1}$$

Put $\theta(0) := 0$. Then θ is an odd, differentiable and strictly decreasing function on $(-2\pi, 2\pi)$ with $\theta'(0) = -\frac{1}{6}$, $\theta(\pm \pi) = \mp 2\pi^{-1}$ and $\max_{\pi \le x \le \pi} |\theta(x)| = 2\pi^{-1}$. Thus

$$\sum_{n=1}^{N} \frac{\sin(nx)}{n} = \frac{1}{2} \int_{0}^{x} (D_{N}(t) - 1) dt = \int_{0}^{x} \frac{\sin(Nt)}{t} dt + \frac{1}{2} \int_{0}^{x} \theta(t) \sin(Nt) dt + \frac{\sin(Nx)}{2N} - \frac{1}{2}x$$
$$= \int_{0}^{Nx} \frac{\sin s}{s} ds - \frac{\theta(x)\cos(Nx)}{2N} + \frac{1}{2N} \int_{0}^{x} \theta'(t) \cos(Nt) dt + \frac{\sin(Nx)}{2N} - \frac{1}{2}x.$$
$$= \int_{0}^{Nx} \frac{\sin s}{s} ds - \frac{1}{2}x + O(N^{-1}) = O(1) \quad \text{as } N \to \infty, \text{ uniformly for } x \in [-\pi, \pi]$$

This answers Exercise 3.19. For Exercise 3.20 we can write (f the sawtooth function):

$$(S_N[f])(x) - f(x) = \int_0^{Nx} \frac{\sin s}{s} \, ds - \frac{1}{2}\pi + O(N^{-1}) \quad \text{as } N \to \infty, \text{ uniformly for } x \in (0,\pi].$$

Now use that the function $y \mapsto \int_0^y \frac{\sin s}{s} ds$ is nonnegative on $[0, \infty)$ and increasing on $[0, \pi]$, that it attains its absolute maximum (approximately $1.18 \pi/2$) for $y = \pi$, and that it tends to $\pi/2$ as $y \to \infty$.

Re: §4.3 A continuous but nowhere differentiable function

Lemma 4.3.2 can be formulated more generally as follows:

For the Fejér kernel F_N we have:

 $|F'_N(x)| = O(N^2)$ as $N \to \infty$, uniformly for $x \in [-\pi, \pi]$;

 $|x^2 F'_N(x)| = O(1)$ as $N \to \infty$, uniformly for $x \in [-\pi, \pi]$.

If $g \in L^{\infty}_{2\pi}$ and if g is differentiable at x_0 then $(\sigma_N[g])'(x_0) = O(\log N)$ as $N \to \infty$.

Re: §5.1.2 Definition of the Fourier transform

More generally, the Fourier transform

$$\widehat{f}(\xi) := \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx$$

is well defined if $f \in L^1(\mathbb{R})$. In fact, \hat{f} is then continuous on \mathbb{R} and $\hat{f}(\xi) = o(1)$ as $|\xi| \to \infty$. These statements generalize Exercise 5.5(a). The first statement follows because $\hat{f}(\xi) \to \hat{f}(\xi_0)$ as $\xi \to \xi_0$ by dominated convergence. As for the second statement (Riemann-Lebesgue lemma for the Fourier transform on \mathbb{R}), prove it first if f is a characteristic function $\chi_{[a,b]}$ and next use density of the step functions in $L^1(\mathbb{R})$. Thus $f \mapsto \hat{f}$ is a bounded linear map of $L^1(\mathbb{R})$ into $C_0(\mathbb{R})$ (the space of continuous functions on \mathbb{R} which tend to 0 at $\pm \infty$):

$$\|f\|_{\infty} \le \|f\|_1$$

Re: §5.1.4 The Fourier transform on S

Proposition 5.1.2 remains valid for $f \in L^1(\mathbb{R})$. For part (iv) we have to add the additional condition that f'(x) exists almost everywhere, that $f' \in L^1(\mathbb{R})$, and that $f(x) = \int_{-\infty}^x f'(y) \, dy$. For part (v) we have to add that $x \mapsto xf(x)$ is in $L^1(\mathbb{R})$. Part of the conclusion in (v) is then that \widehat{f} is differentiable.

Proof of Theorem 5.1.4 We can also prove this by complex analysis: if $f(x) = e^{-\pi x^2}$ then

$$\widehat{f}(\xi) = e^{-\pi\xi^2} \int_{-\infty}^{\infty} e^{-\pi(x+i\xi)^2} dx = e^{-\pi\xi^2} \int_{-\infty}^{\infty} e^{-\pi x^2} dx = e^{-\pi\xi^2},$$

where we used in the second equality Cauchy's theorem and estimates on $\int e^{-\pi z^2} dz$ over contours $-\infty, -M, -M + i\xi, -\infty + i\xi$ and $\infty, M, M + i\xi, \infty + i\xi$.

Good kernels More generally than is written in the book after Corollary 5.1.5 we can define a family $\{K_{\delta}\}_{\delta>0}$ as a family of good kernels if $K_{\delta} \in L^1(\mathbb{R})$ and (i), (ii), (iii) are satisfied.

We call K a very good kernel if moreover:

(iv) For every $\eta > 0$ we have $\sup_{|x| \ge \eta} |K_{\delta}(x)| \to 0$ as $\delta \downarrow 0$.

For instance, K_{δ} given by Corollary 5.1.5 is a very good kernel.

Convolution Formula (5.7), i.e.,

$$(f*g)(x) := \int_{-\infty}^{\infty} f(x-t) g(t) dt,$$

defines more generally (f * g)(x) for almost all x if $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$ $(1 \le p \le \infty)$. Then $f * g \in L^p(\mathbb{R})$ and we have norm estimates

$$||f * g||_p \le ||f||_1 ||g||_p,$$

in particular,

$$||f * g||_1 \le ||f||_1 ||g||_1$$
 and $||f * g||_{\infty} \le ||f||_1 ||g||_{\infty}$.

Corollary 5.1.7 This can be formulated more generally as follows.

Let $\{K_{\delta}\}$ be a family of good kernels. If $f \in L^{\infty}(\mathbb{R})$ and f is continuous at x_0 then $(f * K_{\delta})(x_0) \to f(x_0)$ as $\delta \downarrow 0$.

If $\{K_{\delta}\}$ is a family of very good kernels, if $f \in L^{1}(\mathbb{R})$ and f is continuous at x_{0} , then $(f * K_{\delta})(x_{0}) \to f(x_{0})$ as $\delta \downarrow 0$.

In both cases, if f is moreover uniformly continuous on \mathbb{R} then $f * K_{\delta} \to f$ uniformly on \mathbb{R} as $\delta \downarrow 0$.

Re: §5.1.5 The Fourier inversion

Proposition 1.8 holds more generally for $f, g \in L^1(\mathbb{R})$. For the proof use Fubini's theorem.

Proof of Theorem 1.9 (Fourier inversion) We can prove more generally: If $f, \hat{f}, g, \hat{g} \in L^1(\mathbb{R})$ and if moreover f, g are continuous and bounded on \mathbb{R} (for instance if $f, g \in \mathcal{S}(\mathbb{R})$), then

$$g(0)\int_{-\infty}^{\infty}\widehat{f}(\xi)\,e^{2\pi ix\xi}\,d\xi = f(x)\int_{-\infty}^{\infty}\widehat{g}(y)\,dy.$$

This can be proved first for x = 0, by using dominated convergence as $\delta \downarrow 0$ in

$$\int_{-\infty}^{\infty} \widehat{f}(\xi) g(\delta\xi) d\xi = \int_{-\infty}^{\infty} f(x) \,\delta^{-1} \widehat{g}(\delta^{-1}x) \,dx = \int_{-\infty}^{\infty} f(\delta y) \,\widehat{g}(y) \,dy.$$

Then we obtain

$$g(0)\int_{-\infty}^{\infty}\widehat{f}(\xi)\,d\xi = f(0)\int_{-\infty}^{\infty}\widehat{g}(y)\,dy.$$

Finally, put f(x) := h(x+a), so $\widehat{f}(\xi) = e^{2\pi i a \xi} \widehat{h}(\xi)$, in order to get the result for x := a.

So the inversion formula of the Fourier transform for general f as above can be formulated in terms of a special g as above with $g(0) \neq 0$ as follows:

$$\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2\pi i x\xi} d\xi = C f(x) \quad \text{with} \quad C = \frac{1}{g(0)} \int_{-\infty}^{\infty} \widehat{g}(y) dy$$

We already know (see Theorem 5.1.4) $g(x) := e^{-\pi x^2}$ with $\hat{g} = g$ and $g(0) \neq 0$ (in fact g(0) = 1). So $C = \hat{g}(0)/g(0) = g(0)/g(0) = 1$.

Re: §5.1.6 The Plancherel formula

In the proof of Proposition 5.1.11 it is sketched how to see that $f, g \in \mathcal{S}(\mathbb{R})$ implies $f * g \in \mathcal{S}(\mathbb{R})$. The inequality $\sup_x |x|^l |g(x-y)| \leq A_l(1+|y|)^l$ is used. The hint for the proof of this inequality distinguishes two cases. For the case $|x| \geq 2|y|$ note that then $|x| \leq |x-y| + |y| \leq |x-y| + |x| - |y| \leq 2|x-y|$. This inequality can also be proved by an application of the binomial formula:

$$|x|^{l} g(x-y)| \leq \sum_{j=0}^{l} {l \choose j} |y|^{l-j} |x-y|^{j} |g(x-y)| \leq A_{l} \sum_{j=0}^{l} {l \choose j} |y|^{l-j} = A_{l} (1+|y|)^{l},$$

where $A_l := \sup\{|x|^j | g(x)| \mid x \in \mathbb{R}, \ j = 0, 1, \dots, l\}.$

Yet another proof that f * g decreases faster than any inverse power if f and g do so, runs as follows.

$$\begin{split} |(f*g)(x)| &\leq \int_{-\infty}^{\infty} |f(y)| \, |g(x-y)| \, dy = \int_{-\infty}^{\infty} |f(\frac{1}{2}x+y)| \, |g(\frac{1}{2}x-y)| \, dy \\ &\leq C \int_{-\infty}^{\infty} \frac{1}{(1+(\frac{1}{2}x+y)^2)^l \, (1+(\frac{1}{2}x-y)^2)^l} \, dy \leq C \int_{-\infty}^{\infty} \frac{1}{(1+\frac{1}{2}x^2+2y^2)^l} \, dy \\ &\leq \frac{C}{(1+\frac{1}{2}x^2)^{l-1}} \int_{-\infty}^{\infty} \frac{dy}{1+2y^2} \, . \end{split}$$

Re: §5.1.7 Extension to functions of moderate decrease

There is a further extension of the Fourier transform, the Fourier inversion formula and the Plancherel formula to $L^2(\mathbb{R})$. In fact, since $\mathcal{F}: f \to \hat{f}$ is a unitary transformation on $\mathcal{S}(\mathbb{R})$ (Theorem 5.1.12) and since \mathcal{S} is dense in $L^2(\mathbb{R})$, \mathcal{F} extends uniquely to a unitary transformation $\mathcal{F}_2: L^2(\mathbb{R}) \to L^2(\mathbb{R})$. So, if $f \in L^2(\mathbb{R})$, (f_n) is a sequence in $\mathcal{S}(\mathbb{R})$ and $f = \lim_{n \to \infty} f_n$ in $L^2(\mathbb{R})$, then $\mathcal{F}_2 f := \lim_{n \to \infty} \mathcal{F}(f_n)$ in $L^2(\mathbb{R})$, independent of the choice of the sequence (f_n) . On the other hand, for $f \in L^1(\mathbb{R})$, $\mathcal{F}(f)$ can be defined as

$$\mathcal{F}(\xi) = \widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$$

So on $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ we have two definitions \mathcal{F} and \mathcal{F}_2 of the Fourier transform. We will show that they agree.

Let $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Take $\varepsilon > 0$. Then there exists M > 1 such that $\|f\chi_{[-M,M]} - f\|_1 < \varepsilon$ and $\|f\chi_{[-M,M]} - f\|_2 < \varepsilon$. Then there exists $g \in \mathcal{S}(\mathbb{R})$ with support within [-2M, 2M] such that $\|g - f\chi_{[-M,M]}\|_2 < (2M)^{-\frac{1}{2}}\varepsilon < \varepsilon$. Hence $\|g - f\chi_{[-M,M]}\|_1 < \varepsilon$. Hence $\|f - g\|_1 < 2\varepsilon$ and $\|f - g\|_2 < 2\varepsilon$. Hence $\|\mathcal{F}f - \mathcal{F}g\|_{\infty} < 2\varepsilon$ and $\|\mathcal{F}_2f - \mathcal{F}g\|_2 = \|\mathcal{F}_2f - \mathcal{F}_2g\|_2 = \|f - g\|_2 < 2\varepsilon$. Since $\varepsilon > 0$ was taken arbitrarily, there is a sequence (g_n) in $\mathcal{S}(\mathbb{R})$ such that $\|\mathcal{F}f - \mathcal{F}g_n\|_{\infty} \to 0$ and $\|\mathcal{F}_2f - \mathcal{F}g_n\|_2 \to 0$ as $n \to \infty$. Since a converging sequence in $L^2(\mathbb{R})$ has an almost everywhere converging subsequence, we see, by replacing (g_n) by a suitable subsequence again written as (g_n) , that $\|\mathcal{F}f - \mathcal{F}g_n\|_{\infty} \to 0$ and $\mathcal{F}_2f - \mathcal{F}g_n \to 0$ almost everywhere as $n \to \infty$. Thus $\mathcal{F}f = \mathcal{F}_2f$ almost everywhere.

Thus we are entitled to use the notation $\mathcal{F}f = \widehat{f}$ unambiguously for $f \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$.

Let $f \in L^2(\mathbb{R})$. Since $f\chi_{[-n,n]} \to f$ in $L^2(\mathbb{R})$ as $n \to \infty$, we have $\mathcal{F}(f\chi_{[-n,n]}) \to \mathcal{F}(f)$ in $L^2(\mathbb{R})$ as $n \to \infty$. Thus \widehat{f} is the function in $L^2(\mathbb{R})$ which is almost everywhere determined by

$$\int_{-\infty}^{\infty} \left| \widehat{f}(\xi) - \int_{-n}^{n} f(x) e^{-2\pi i x\xi} dx \right|^2 d\xi \to 0 \quad \text{as } n \to \infty.$$

The inverse Fourier transform on $L^2(\mathbb{R})$ can be treated in a similar way. For $f \in L^2(\mathbb{R})$ we get:

$$\int_{-\infty}^{\infty} \left| \widehat{f}(x) - \int_{-n}^{n} f(\xi) e^{2\pi i x\xi} d\xi \right|^2 dx \to 0 \quad \text{as } n \to \infty.$$

Re: §5.3.1 Theta and zeta functions

Theorem 5.3.1 applied to

$$\Theta(z \mid \tau) := \sum_{n = -\infty}^{\infty} e^{i\pi n^2 \tau} e^{2\pi i n z} \quad (\operatorname{Im}(\tau) > 0, \ z \in \mathbb{C})$$

gives

$$\Theta(z \mid \tau) = (-i\tau)^{-\frac{1}{2}} e^{-i\pi z^2/\tau} \Theta(z/\tau \mid -\tau^{-1}).$$

For this we need that the Fourier transform of $f(x) := e^{i\pi\tau x^2}$ is equal to $\hat{f}(\xi) = (-i\tau)^{-\frac{1}{2}} e^{-i\pi\xi^2/\tau}$ if Im $(\tau) > 0$. This can be reduced to the known case $i\tau < 0$ by deforming the contour defining the Fourier integral, where Cauchy's theorem and suitable estimates have to be used.

We see from the above two formulas that $\Theta(z \mid \tau)$ is complex analytic in z with period 1 and that $e^{i\pi z^2/\tau} \Theta(z \mid \tau)$ is complex analytic in z with period τ . The quotient

$$\frac{\Theta(z \mid \tau)}{\Theta(z + \frac{1}{2} \mid \tau)} = e^{i\pi/(4\tau)} e^{i\pi z/\tau} \frac{\Theta(z/\tau \mid -\tau^{-1})}{\Theta((z + \frac{1}{2})/\tau \mid -\tau^{-1})}$$

has periods 1 and 2τ , but it will have poles. It is essentially an *elliptic function*.

These poles are more visible from Jacobi's triple product formula. Note that $\Theta(z \mid \tau)$ is equal to the classical theta function $\theta_3(z \mid \tau) = \theta_3(z,q)$ with $q = e^{i\pi\tau}$, so $q \in \mathbb{C}$, |q| < 1. See A. Erdélyi, *Higher transcendental functions, Vol. 2*, formula 13.19 (8). With the notation $(a;q)_{\infty} := \prod_{k=0}^{\infty} (1 - aq^k)$ we have *Jacobi's triple product formula*

$$\theta_3(z,q) = (q^2;q^2)_{\infty} \left(-q e^{2\pi i z};q^2\right)_{\infty} \left(-q e^{-2\pi i z};q^2\right)_{\infty},$$

see A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (16).