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These notes concern the book

E. M. Stein and R. Shakarchi, Fourier analysis, an introduction, Princeton University
Press, 2003.

Here I will rephrase some definitions and therorems from the book more generally, by using
spaces of Lebesgue integrable functions. Unless otherwise stated, our function spaces are
taken over C: they will contain complex-valued functions.

Function spaces

We will use the following notations (different from the usage in the book).

e (5 is the space of 2m-periodic continuous functions on R with norm

[flloo = sup{|f(2)| | © € R} = max{[f ()| | = € [-,7]}.

Ck s the space of k times continuously differentiable 27-periodic functions on R.

C52 is the space of arbitrarily often continuously differentiable 27-periodic functions
on R.

5o is the space of measurable 27-periodic functions on R which are bounded outside
a set of measure zero. The norm is || f|le := ess sup{|f(z)| | z € R} = inf{a > 0 |
{r € R||f(x)| > a} has measure 0}.

L5 (1 < p < o0) is the space of measurable 2r-periodic functions on R for which

= (5 [ 5@ as)” < .
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More precisely, the elements of the LP spaces are equivalence classes of functions, where f
and g are equivalent if they coincide outside a set of measure zero (see Appendix, Theorem
1.7).

In each function class the functions may also be considered while restricted to an
interval [a,a + 27] (usually [—m,7]). The restriction map will be bijective if we take into
account that: (i) on C§¥_ we have f(a) = f(a + 27) and fU)(a) = f7)(a + 2n) for all
appropriate derivatives; and (ii) the integral of an integrable 2m-periodic function is the
same on any interval of length 27.

The spaces Co,; and ng (1 < p < o) are Banach spaces w.r.t. their given norms. The
space L2 is moreover a Hilbert space with inner product

o) = [ F@) 9@ da.
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We have inclusions and corresponding norm inequalities (use Holder’s inequality) as fol-
lows:

Cor C L3y C LS C L C Lyry [ fllsec 2 Iflla 2 Iflp 2 Il (1 <p<q<oo)

Cay is dense in LE_if 1 < p < oo, but is is not dense in L. If 1 < p < ¢ < oo then L
is dense in L _.

Let Trig,,. be the space of trigonometric polynomials, i.e., the space spanned by the
functions z +— e (n € Z). Then Trig,, is dense in Ca, (see Corollary 2.5.4), and hence
also in LE_ (1 < p < o0).

Let Rar be the space of Riemann integrable functions on [—m, 7| (extended to a 27-
periodic function on R whenever this is convenient). Then f € Ro, iff f € L3 and f is
a.e. continuous.

Let [°°(Z) the space of bounded functions on Z with norm ||g||« := sup,ez |g(n)|. Let
co(Z) be its subspace of functions g on Z for which lim,|_ g(n) = 0, with the same norm
Il . [[co- These are Banach spaces.

Let IP(Z) (1 < p < 00) be the space of functions g on Z such that

lolly = (X lo)"" < oc.

nez

These are Banach spaces, and [?(Z) is moreover a Hilbert space with inner product

(g.h) == g(n)h(n).

ne”

The embeddings of spaces and the norm inequalities are here in converse direction as for
the function spaces on [—7, 7]:

1NZ) CP(2) C1(Z) C co(2) C1°(Z), gl > gl > llgllg > llglle (1 <p < g < o0).

All embeddings are dense, except for the last one: ¢o(Z) is a non-dense closed subspace of
1°(Z).

Fourier coefficients and the Riemann-Lebesgue lemma

For f € L}_ write its Fourier coefficients as

f(n) : L[ f(z)e ™ dx (neZ).

~ o o

If f € L) then
[flloo < Iflh and  lim f(n) = 0.
[n]—o0
Then f — f: L, — co(Z) is continuous, but not surjective. The statement limj,|_ f(n) =
0 is the Riemann-Lebesgue lemma, This was stated for f € Ro, in Theorem 3.1.4, as a
corollary of Theorem 1.3. But the result extends to L) _ by an argument which uses that
Rar (or already Cor or Trig,, ) is dense in L3 _.
More generally than Theorem 1.3 we can state:

The map [ — f is a Hilbert space isomorphism from L3, onto I*(Z).



Re: Theorem 2.2.1

This can be formulated more generally as:
If f€ Li_ and f =0 then f(z¢) = 0 whenever f is continuous at z.

Re: §2.3 Convolutions

In connection with Proposition 2.3.1 we have (special cases of Young’s inequality):

o Ly + L5 CLE, [If+glp < Iflllglly (1 <p<o0);
o LhxLi CCor, |If*glloe <Iflpllally (1 <p<oo,p™t+qgt=1)

® Lyn#Cor C Can, | % glloc < [1fl11 lglloo-

Re: §2.4 Good kernels

More generally we can call {K,,}2°, a family of good kernels if K, € L3 _ for all n such
that:

a) I/(:L(O) =1 for all n;
b) there exists M > 0 such that ||K,|; < M for all n;

c) for every § € (0, m) we have || Ky (X[—r,—s] + X[5,])[[1 — 0 as n — ooc.
(Here x g is the characteristic function of a set E.)

For a given family of good kernels as above we can now formulate Theorem 4.1 as follows:

Let f € LY. Then lim,_.oo(f * Ky)(x) = f(x) whenever f is continuous at z. If f is
continuous everywhere, then this limit is uniform.

If we replace in c) of the definition of good kernel the L!'-norm by the LP-norm and
if we replace in the reformulation of Theorem 4.1 the assumption f € L3S by f € L
(p~' 4+ ¢! =1and 1 <p < o) then the Theorem remains valid. For the Fejér and the
Poisson kernel we can make these changes for all p, in particular for p = oc.

Theorem 4.1, in all its reformulated versions, has as an immediate Corollary:
Let fe Ly (1 <r <oo). Thenlim, .o f* K, = f in Lj_.
Prove it first for f € Cor and then use density of Cor in L .

From this it follows that the map f — f: L5 — co(Z) is injective for 1 < r < oo, in
particular for r = 1 (we knew it already for r = 2).

Re: §3.2.1 A local result

Theorem 3.2.1 can be formulated more generally as follows:

Let f € Li_, 2o € R. Suppose that there are §, M > 0 such that | f(x) — f(x0)] < M |z — 0|
if |x — xo| < 8. Then limy_o0(Sn[f])(z0) = f(x0).

Theorem 3.2.2 can be formulated more generally as follows:

Let f,g € LY _, 2o € R, and suppose that f(z) = g(x) for x in some neigbourhood of .



Then either (Sny[f])(zo) and (Sn|g])(xo) both converge as N — oo, while tending to the
same limit, or both diverge as N — oo.
Re: Exercise 3.13, Fourier coefficients of C*°-function

Exercise 3.13 can be formulated more generally as follows:

The map f — f is a bijection from CS3; onto the space of rapidly decreasing functions g
on 7, i.e., g such that for all k > 0 we have g(n) = O(|n|~%) as |n| — co.
Re: §3.2.2 A continuous function with diverging Fourier series

Lemma 3.2.3 can be applied more generally to Fourier series, not just to the Fourier series
(4) in §3.2.2:

If f € LS and f(n) = O(|n|™1) as |n| — oo then ||Sn[f]lle = O(1) as N — cc.

Re: Exercises 3.19, 3.20, The Gibbs phenomenon
We can write

sin((N + 3)z) _ 2sin(Nx)

sin(3x) B x

Dy(x) = + 0(z) sin(Nz) + cos(Nx) (0 < |z| < 2m),

where
0(x) := cot(3z) — 2271,

Put 6(0) := 0. Then 6 is an odd, differentiable and strictly decreasing function on
(=2, 2m) with 6'(0) = —1, 6(£m) = F2r ! and maxy<,<, |0(z)| = 2r~!. Thus

N . x T sin r sin(Nz
Yo sintnn) _ ;/0 (D (t) — l)dt—/o (tNt) dt+;/0 0(t) sin(Nt) dt + Q(N) — gu

n
n=1

sin(Nz)
“oN 2T

Ne gin s 0(x) cos(Nx) T [,
/0 s d5_2N+2N/0 9(75) COS(Nt)dt"‘

NT gin s 1 1
= / ——ds — 52+ O(N"") =0(1) as N — oo, uniformly for 2 € [—m,7].
0 S

This answers Exercise 3.19. For Exercise 3.20 we can write (f the sawtooth function):

sin s

; ds — im+ O(N71') as N — oo, uniformly for z € (0,7].

Nz
(SwUD@) - flz) = /0

Now use that the function y — foy S‘% ds is nonnegative on [0, c0) and increasing on [0, 7],
that it attains its absolute maximum (approximately 1.18 7/2) for y = 7, and that it tends
to /2 as y — oc.



Re: §4.3 A continuous but nowhere differentiable function

Lemma 4.3.2 can be formulated more generally as follows:
For the Fejér kernel Fy we have:
|F(z)] = O(N?) as N — oo, uniformly for x € [—m,7);
|22 F};(z)] = O(1) as N — oo, uniformly for x € [—m, 7.
If g € LSS and if g is differentiable at x¢ then (on(g]) (x0) = O(log N) as N — oc.

Re: §5.1.2 Definition of the Fourier transform

More generally, the Fourier transform
o= [ swertan
— o

is well defined if f € L'(R). In fact, f is then continuous on R and f({) = o(1) as
€| — oo. These statements generalize Exercise 5.5(a). The first statement follows because

~

f(&) — f(&) as & — &y by dominated convergence. As for the second statement (Riemann-
Lebesgue lemma for the Fourier transform on R), prove it first if f is a characteristic
function x([,5 and next use density of the step functions in L'(R). Thus f + f is a
bounded linear map of L'(R) into Cy(R) (the space of continuous functions on R which
tend to 0 at f00):

1 oo < [I£1]1-

Re: §5.1.4 The Fourier transform on §

Proposition 5.1.2 remains valid for f € L(R). For part (iv) we have to add the addi-
tional condition that f/(z) exists almost everywhere, that f/ € L'(R), and that f(z) =
[ ['(y)dy. For part (v) we have to add that z — =z f(z) is in L'(R). Part of the con-

clusion in (v) is then that f is differentiable.

Proof of Theorem 5.1.4 We can also prove this by complex analysis: if f(z) = e~™ then
Fle) = € / e gy

2 > 2 2
= / e dy = e,
—00

where we used in the second equality Cauchy’s theorem and estimates on [ e dz over
contours —oo, — M, —M + i€, —oo + i£ and oo, M, M + i&, 0o + €.

Good kernels More generally than is written in the book after Corollary 5.1.5 we can
define a family {Ks}s=0 as a family of good kernels if Ks € L'(R) and (i), (ii), (iii) are
satisfied.

We call K a very good kernel if moreover:

(iv) For every n > 0 we have supj>, |[Ks(z)| — 0 as § | 0.
For instance, K; given by Corollary 5.1.5 is a very good kernel.



Convolution Formula (5.7), i.e.,
(Feg)@)i= [ fla-tg)at

defines more generally (f * g)(z) for almost all z if f € L}(R) and g € LP(R) (1 < p < o0).
Then f * g € LP(R) and we have norm estimates

L7 glly < 11 llgllp,

in particular,
1f gl < [Ifllellgll  and [[f * glloo < [[f]l1[[9]loo-

Corollary 5.1.7 'This can be formulated more generally as follows.
Let {Ks} be a family of good kernels. If f € L*®(R) and f is continuous at zqy then

(f * Ks)(xo) — f(zo) as 0 | 0.
If {Ks} is a family of very good kernels, if f € L'(R) and f is continuous at xq, then

(f * Ks)(xo) — f(x0) as d | 0.

In both cases, if f is moreover uniformly continuous on R then fx Ks — f uniformly on

R asd | 0.

Re: §5.1.5 The Fourier inversion

Proposition 1.8 holds more generally for f, g € L'(R). For the proof use Fubini’s theorem.

Proof of Theorem 1.9 (Fourier inversion) We can prove more generally:
If f,]/c\,g,/g\ € LY(R) and if moreover f,g are continuous and bounded on R (for instance
if f,9 € S(R)), then

oo

90) [ " fe) it de = f(a) | awa.

—00

This can be proved first for x = 0, by using dominated convergence as § | 0 in

/ " 7 gtoe) de = / )66 ) du = / " 1(69)3y) dy.

Then we obtain
9(y) dy.

90) [ Z e s = 10 |

o
oo
Finally, put f(z) := h(z + a), so f({) = eQ“iagﬁ@), in order to get the result for z := a.

So the inversion formula of the Fourier transform for general f as above can be formu-
lated in terms of a special g as above with g(0) # 0 as follows:

% ey 2wzt g _ . R T AN
| Foertac=c @) win 0= [ g

We already know (see Theorem 5.1.4) g(z) e™™" with § = g and g(0) # 0 (in fact
)

4(0) = 1). So C = §(0)/9(0) = g(0)/g(0) = 1.



Re: §5.1.6 The Plancherel formula

In the proof of Proposition 5.1.11 it is sketched how to see that f,g € S(R) implies
f*g € S(R). The inequality sup, |z|’[g(z — y)| < A;(1 + |y|)! is used. The hint for the
proof of this inequality distinguishes two cases. For the case |z| > 2|y| note that then
lz] < |z —y|+ |y| < |z —y|+ |z| — |y| < 2|z — y|. This inequality can also be proved by
an application of the binomial formula:

2l g — ) Ei%()'y'”'” ot =l < 4SS ()it = i+ o)

7=0

where A; := sup{|z})’ |g(z)| |z €R, 7 =0,1,...,}.
Yet another proof that f * g decreases faster than any inverse power if f and g do so,
runs as follows.

[e.9]

[(f % g)(2)] S/OO If(y)llg(x—y)ldyZ/ Gz + )| |g(3z —y)| dy

—00

1 1
< c/ dy < c/ d
T ) T+ G+ y)) (1 + (B —y)2) i (14 22 +2y2)! Y
C < dy
< :
-1+ %xQ)l—l oo 14242

Re: §5.1.7 Extension to functions of moderate decrease

There is a further extension of the Fourier transform, the Fourier inversion formula and
the Plancherel formula to L?(R). In fact, since F: f — fis a unitary transformation on
S(R) (Theorem 5.1.12) and since S is dense in L?(R), F extends uniquely to a unitary
transformation Fj: L2(R) — L*(R). So, if f € L?(R), (f,) is a sequence in S(R) and
f =1lim, . fn in L2(R), then Fof := lim, oo F(f,) in L?(R), independent of the choice
of the sequence (f,). On the other hand, for f € LY(R), F(f) can be defined as

== [ raetan

So on L'(R) N L?(R) we have two definitions F and F, of the Fourier transform. We will
show that they agree.
Let f € LY(R) N L?(R). Take ¢ > 0. Then there exists M > 1 such that

I fx=aa) — flln < € and || fx[—ar,an — fll2 < €. Then there exists g € S(R) with support
within [—2M, 2M] such that ||g— fx—azagll2 < (2M)7%5 < e. Hence [|g—fx—amll <e.
Hence ||f — g|l1 < 2¢ and ||f — g|l2 < 2e. Hence || Ff — Fg|loo < 2¢ and ||Fof — Fg|2 =
| Faf — Fagllz = || f — gll2 < 2e. Since € > 0 was taken arbitrarily, there is a sequence
(gn) in S(R) such that ||Ff — Fgnlloo — 0 and || Fof — Fgnll2 — 0 as n — oo. Since a
converging sequence in L?(R) has an almost everywhere converging subsequence, we see,
by replacing (g,,) by a suitable subsequence again written as (g,), that ||Ff— Fgn|lcoc — 0
and Fof — Fgn, — 0 almost everywhere as n — oco. Thus Ff = Fof almost everywhere.

Thus we are entitled to use the notation Ff = ]?unambiguously for f € LY(R)UL?(R).



Let f € L3(R). Since fXj=npn — [ in L?(R) as n — oo, we have F(fX[=nm)) — F(f) in

L?(R) as n — oo. Thus f is the function in L?(R) which is almost everywhere determined

by

The inverse Fourier transform on L?(R) can be treated in a similar way. For f € L?(R)

we get:
o0
/.

Re: §5.3.1 Theta and zeta functions

2
d¢ — 0 asn— oo.

fo) - [ pwemtar

2
dr — 0 asn— oo.

~

f@) = | £ e*mE ¢

Theorem 5.3.1 applied to

O(z|71):= Z eimn’T 2minz (Im(7) >0, z€ C)

n=—oo

gives

Oz | 1) = (—it) 2 e ™ /T Q(z/r | —17L).

For this we need that the Fourier transform of f(x) := eim2” ig equal to f(£) = (—iT)_% e—ine?/T
if Im (7) > 0. This can be reduced to the known case i7 < 0 by deforming the contour
defining the Fourier integral, where Cauchy’s theorem and suitable estimates have to be
used.

We see from the above two formulas that ©(z | 7) is complex analytic in z with period
1 and that ¢"™**/7O(z | 7) is complex analytic in z with period 7. The quotient

O(z/r| -1
O((z+3)/7 -7

LLT) _ gim/lan)
@(Z + 5 ’ 7')

inz/T

has periods 1 and 27, but it will have poles. It is essentially an elliptic function.

These poles are more visible from Jacobi’s triple product formula. Note that ©(z | 7)
is equal to the classical theta function #3(z | 7) = 63(z,q) with ¢ = €™, so ¢ € C,
lg| < 1. See A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (8). With
the notation (a;q)es := [[feq(1 — ag®) we have Jacobi’s triple product formula

03(2,q) = (4% ¢*)oo (—2€*™%; ¢*) o0 (—qe ™2™ ¢*) o

see A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (16).



