About the book by E. M. Stein \& R. Shakarchi, Fourier analysis, an introduction

notes by T. H. Koornwinder, thk@science.uva.nl
last modified: March 21, 2006
These notes concern the book
E. M. Stein and R. Shakarchi, Fourier analysis, an introduction, Princeton University Press, 2003.
Here I will rephrase some definitions and therorems from the book more generally, by using spaces of Lebesgue integrable functions. Unless otherwise stated, our function spaces are taken over \mathbb{C} : they will contain complex-valued functions.

Function spaces

We will use the following notations (different from the usage in the book).

- $C_{2 \pi}$ is the space of 2π-periodic continuous functions on \mathbb{R} with norm $\|f\|_{\infty}:=\sup \{|f(x)| \mid x \in \mathbb{R}\}=\max \{|f(x)| \mid x \in[-\pi, \pi]\}$.
- $C_{2 \pi}^{k}$ is the space of k times continuously differentiable 2π-periodic functions on \mathbb{R}.
- $C_{2 \pi}^{\infty}$ is the space of arbitrarily often continuously differentiable 2π-periodic functions on \mathbb{R}.
- $L_{2 \pi}^{\infty}$ is the space of measurable 2π-periodic functions on \mathbb{R} which are bounded outside a set of measure zero. The norm is $\|f\|_{\infty}:=\operatorname{ess} \sup \{|f(x)| \mid x \in \mathbb{R}\}=\inf \{a \geq 0 \mid$ $\{x \in \mathbb{R}||f(x)|>a\}$ has measure 0$\}$.
- $L_{2 \pi}^{p}(1 \leq p<\infty)$ is the space of measurable 2π-periodic functions on \mathbb{R} for which

$$
\|f\|_{p}:=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{p} d x\right)^{1 / p}<\infty .
$$

More precisely, the elements of the L^{p} spaces are equivalence classes of functions, where f and g are equivalent if they coincide outside a set of measure zero (see Appendix, Theorem 1.7).

In each function class the functions may also be considered while restricted to an interval $[a, a+2 \pi]$ (usually $[-\pi, \pi]$). The restriction map will be bijective if we take into account that: (i) on $C_{2 \pi}^{k}$ we have $f(a)=f(a+2 \pi)$ and $\left.f^{(j)}(a)=f^{j}\right)(a+2 \pi)$ for all appropriate derivatives; and (ii) the integral of an integrable 2π-periodic function is the same on any interval of length 2π.

The spaces $C_{2 \pi}$ and $L_{2 \pi}^{p}(1 \leq p \leq \infty)$ are Banach spaces w.r.t. their given norms. The space $L_{2 \pi}^{2}$ is moreover a Hilbert space with inner product

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x .
$$

We have inclusions and corresponding norm inequalities (use Hölder's inequality) as follows:

$$
C_{2 \pi} \subset L_{2 \pi}^{\infty} \subset L_{2 \pi}^{q} \subset L_{2 \pi}^{p} \subset L_{2 \pi}^{1}, \quad\|f\|_{\infty} \geq\|f\|_{q} \geq\|f\|_{p} \geq\|f\|_{1} \quad(1<p<q<\infty)
$$

$C_{2 \pi}$ is dense in $L_{2 \pi}^{p}$ if $1 \leq p<\infty$, but is is not dense in $L_{2 \pi}^{\infty}$. If $1 \leq p<q \leq \infty$ then $L_{2 \pi}^{q}$ is dense in $L_{2 \pi}^{p}$.

Let $\operatorname{Trig}_{2 \pi}$ be the space of trigonometric polynomials, i.e., the space spanned by the functions $x \mapsto e^{i n x}(n \in \mathbb{Z})$. Then $\operatorname{Trig}_{2 \pi}$ is dense in $C_{2 \pi}$ (see Corollary 2.5.4), and hence also in $L_{2 \pi}^{p}(1 \leq p<\infty)$.

Let $\mathcal{R}_{2 \pi}$ be the space of Riemann integrable functions on $[-\pi, \pi]$ (extended to a 2π periodic function on \mathbb{R} whenever this is convenient). Then $f \in \mathcal{R}_{2 \pi}$ iff $f \in L_{2 \pi}^{\infty}$ and f is a.e. continuous.

Let $l^{\infty}(\mathbb{Z})$ the space of bounded functions on \mathbb{Z} with norm $\|g\|_{\infty}:=\sup _{n \in \mathbb{Z}}|g(n)|$. Let $c_{0}(\mathbb{Z})$ be its subspace of functions g on \mathbb{Z} for which $\lim _{|n| \rightarrow \infty} g(n)=0$, with the same norm $\|.\|_{\infty}$. These are Banach spaces.

Let $l^{p}(\mathbb{Z})(1<p<\infty)$ be the space of functions g on \mathbb{Z} such that

$$
\|g\|_{p}:=\left(\sum_{n \in \mathbb{Z}}|g|^{p}\right)^{1 / p}<\infty
$$

These are Banach spaces, and $l^{2}(\mathbb{Z})$ is moreover a Hilbert space with inner product

$$
\langle g, h\rangle:=\sum_{n \in \mathbb{Z}} g(n) \overline{h(n)}
$$

The embeddings of spaces and the norm inequalities are here in converse direction as for the function spaces on $[-\pi, \pi]$:
$l^{1}(\mathbb{Z}) \subset l^{p}(\mathbb{Z}) \subset l^{q}(\mathbb{Z}) \subset c_{0}(\mathbb{Z}) \subset l^{\infty}(\mathbb{Z}), \quad\|g\|_{1} \geq\|g\|_{p} \geq\|g\|_{q} \geq\|g\|_{\infty} \quad(1<p<q<\infty)$.
All embeddings are dense, except for the last one: $c_{0}(\mathbb{Z})$ is a non-dense closed subspace of $l^{\infty}(\mathbb{Z})$.

Fourier coefficients and the Riemann-Lebesgue lemma

For $f \in L_{2 \pi}^{1}$ write its Fourier coefficients as

$$
\widehat{f}(n):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \quad(n \in \mathbb{Z})
$$

If $f \in L_{2 \pi}^{1}$ then

$$
\|\widehat{f}\|_{\infty} \leq\|f\|_{1} \quad \text { and } \quad \lim _{|n| \rightarrow \infty} \widehat{f}(n)=0
$$

Then $f \mapsto \widehat{f}: L_{2 \pi}^{1} \rightarrow c_{0}(\mathbb{Z})$ is continuous, but not surjective. The statement $\lim _{|n| \rightarrow \infty} \widehat{f}(n)=$ 0 is the Riemann-Lebesgue lemma, This was stated for $f \in \mathcal{R}_{2 \pi}$ in Theorem 3.1.4, as a corollary of Theorem 1.3. But the result extends to $L_{2 \pi}^{1}$ by an argument which uses that $\mathcal{R}_{2 \pi}$ (or already $C_{2 \pi}$ or $\operatorname{Trig}_{2 \pi}$) is dense in $L_{2 \pi}^{1}$.

More generally than Theorem 1.3 we can state:
The map $f \mapsto \widehat{f}$ is a Hilbert space isomorphism from $L_{2 \pi}^{2}$ onto $l^{2}(\mathbb{Z})$.

Re: Theorem 2.2.1

This can be formulated more generally as:
If $f \in L_{2 \pi}^{1}$ and $\widehat{f}=0$ then $f\left(x_{0}\right)=0$ whenever f is continuous at x_{0}.

Re: §2.3 Convolutions

In connection with Proposition 2.3 .1 we have (special cases of Young's inequality):

- $L_{2 \pi}^{1} * L_{2 \pi}^{p} \subset L_{2 \pi}^{p}, \quad\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p} \quad(1 \leq p \leq \infty) ;$
- $L_{2 \pi}^{p} * L_{2 \pi}^{q} \subset C_{2 \pi}, \quad\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q} \quad\left(1<p<\infty, p^{-1}+q^{-1}=1\right)$;
- $L_{2 \pi}^{1} * C_{2 \pi} \subset C_{2 \pi}, \quad\|f * g\|_{\infty} \leq\|f\|_{1}\|g\|_{\infty}$.

Re: §2.4 Good kernels

More generally we can call $\left\{K_{n}\right\}_{n=1}^{\infty}$ a family of good kernels if $K_{n} \in L_{2 \pi}^{1}$ for all n such that:
a) $\widehat{K_{n}}(0)=1$ for all n;
b) there exists $M>0$ such that $\left\|K_{n}\right\|_{1} \leq M$ for all n;
c) for every $\delta \in(0, \pi)$ we have $\left\|K_{n}\left(\chi_{[-\pi,-\delta]}+\chi_{[\delta, \pi]}\right)\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.
(Here χ_{E} is the characteristic function of a set E.)
For a given family of good kernels as above we can now formulate Theorem 4.1 as follows:
Let $f \in L_{2 \pi}^{\infty}$. Then $\lim _{n \rightarrow \infty}\left(f * K_{n}\right)(x)=f(x)$ whenever f is continuous at x. If f is continuous everywhere, then this limit is uniform.

If we replace in c) of the definition of good kernel the L^{1}-norm by the L^{p}-norm and if we replace in the reformulation of Theorem 4.1 the assumption $f \in L_{2 \pi}^{\infty}$ by $f \in L_{2 \pi}^{q}$ $\left(p^{-1}+q^{-1}=1\right.$ and $\left.1 \leq p \leq \infty\right)$ then the Theorem remains valid. For the Fejér and the Poisson kernel we can make these changes for all p, in particular for $p=\infty$.

Theorem 4.1, in all its reformulated versions, has as an immediate Corollary:
Let $f \in L_{2 \pi}^{r}(1 \leq r<\infty)$. Then $\lim _{n \rightarrow \infty} f * K_{n}=f$ in $L_{2 \pi}^{r}$.
Prove it first for $f \in C_{2 \pi}$ and then use density of $C_{2 \pi}$ in $L_{2 \pi}^{r}$.
From this it follows that the map $f \mapsto \widehat{f}: L_{2 \pi}^{r} \rightarrow c_{0}(\mathbb{Z})$ is injective for $1 \leq r<\infty$, in particular for $r=1$ (we knew it already for $r=2$).

Re: §3.2.1 A local result

Theorem 3.2.1 can be formulated more generally as follows:
Let $f \in L_{2 \pi}^{1}, x_{0} \in \mathbb{R}$. Suppose that there are $\delta, M>0$ such that $\left|f(x)-f\left(x_{0}\right)\right| \leq M\left|x-x_{0}\right|$ if $\left|x-x_{0}\right|<\delta$. Then $\lim _{N \rightarrow \infty}\left(S_{N}[f]\right)\left(x_{0}\right)=f\left(x_{0}\right)$.

Theorem 3.2.2 can be formulated more generally as follows:
Let $f, g \in L_{2 \pi}^{1}, x_{0} \in \mathbb{R}$, and suppose that $f(x)=g(x)$ for x in some neigbourhood of x_{0}.

Then either $\left(S_{N}[f]\right)\left(x_{0}\right)$ and $\left(S_{N}[g]\right)\left(x_{0}\right)$ both converge as $N \rightarrow \infty$, while tending to the same limit, or both diverge as $N \rightarrow \infty$.

Re: Exercise 3.13, Fourier coefficients of C^{∞}-function

Exercise 3.13 can be formulated more generally as follows:
The map $f \mapsto \widehat{f}$ is a bijection from $C_{2 \pi}^{\infty}$ onto the space of rapidly decreasing functions g on \mathbb{Z}, i.e., g such that for all $k>0$ we have $g(n)=O\left(|n|^{-k}\right)$ as $|n| \rightarrow \infty$.

Re: $\S 3.2 .2$ A continuous function with diverging Fourier series

Lemma 3.2.3 can be applied more generally to Fourier series, not just to the Fourier series (4) in $\S 3.2 .2$:

If $f \in L_{2 \pi}^{\infty}$ and $\widehat{f}(n)=O\left(|n|^{-1}\right)$ as $|n| \rightarrow \infty$ then $\left\|S_{N}[f]\right\|_{\infty}=O(1)$ as $N \rightarrow \infty$.

Re: Exercises 3.19, 3.20, The Gibbs phenomenon

We can write

$$
D_{N}(x)=\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \left(\frac{1}{2} x\right)}=\frac{2 \sin (N x)}{x}+\theta(x) \sin (N x)+\cos (N x) \quad(0<|x|<2 \pi)
$$

where

$$
\theta(x):=\cot \left(\frac{1}{2} x\right)-2 x^{-1}
$$

Put $\theta(0):=0$. Then θ is an odd, differentiable and strictly decreasing function on $(-2 \pi, 2 \pi)$ with $\theta^{\prime}(0)=-\frac{1}{6}, \theta(\pm \pi)=\mp 2 \pi^{-1}$ and $\max _{\pi \leq x \leq \pi}|\theta(x)|=2 \pi^{-1}$. Thus

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{\sin (n x)}{n} & =\frac{1}{2} \int_{0}^{x}\left(D_{N}(t)-1\right) d t=\int_{0}^{x} \frac{\sin (N t)}{t} d t+\frac{1}{2} \int_{0}^{x} \theta(t) \sin (N t) d t+\frac{\sin (N x)}{2 N}-\frac{1}{2} x \\
& =\int_{0}^{N x} \frac{\sin s}{s} d s-\frac{\theta(x) \cos (N x)}{2 N}+\frac{1}{2 N} \int_{0}^{x} \theta^{\prime}(t) \cos (N t) d t+\frac{\sin (N x)}{2 N}-\frac{1}{2} x \\
& =\int_{0}^{N x} \frac{\sin s}{s} d s-\frac{1}{2} x+O\left(N^{-1}\right)=O(1) \quad \text { as } N \rightarrow \infty, \text { uniformly for } x \in[-\pi, \pi]
\end{aligned}
$$

This answers Exercise 3.19. For Exercise 3.20 we can write (f the sawtooth function):
$\left(S_{N}[f]\right)(x)-f(x)=\int_{0}^{N x} \frac{\sin s}{s} d s-\frac{1}{2} \pi+O\left(N^{-1}\right) \quad$ as $N \rightarrow \infty$, uniformly for $x \in(0, \pi]$.
Now use that the function $y \mapsto \int_{0}^{y} \frac{\sin s}{s} d s$ is nonnegative on $[0, \infty)$ and increasing on $[0, \pi]$, that it attains its absolute maximum (approximately $1.18 \pi / 2$) for $y=\pi$, and that it tends to $\pi / 2$ as $y \rightarrow \infty$.

Re: $\S 4.3$ A continuous but nowhere differentiable function

Lemma 4.3.2 can be formulated more generally as follows:
For the Fejér kernel F_{N} we have:
$\left|F_{N}^{\prime}(x)\right|=O\left(N^{2}\right)$ as $N \rightarrow \infty$, uniformly for $x \in[-\pi, \pi] ;$
$\left|x^{2} F_{N}^{\prime}(x)\right|=O(1)$ as $N \rightarrow \infty$, uniformly for $x \in[-\pi, \pi]$.
If $g \in L_{2 \pi}^{\infty}$ and if g is differentiable at x_{0} then $\left(\sigma_{N}[g]\right)^{\prime}\left(x_{0}\right)=O(\log N)$ as $N \rightarrow \infty$.

Re: §5.1.2 Definition of the Fourier transform

More generally, the Fourier transform

$$
\widehat{f}(\xi):=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x
$$

is well defined if $f \in L^{1}(\mathbb{R})$. In fact, \widehat{f} is then continuous on \mathbb{R} and $\widehat{f}(\xi)=o(1)$ as $|\xi| \rightarrow \infty$. These statements generalize Exercise 5.5(a). The first statement follows because $\widehat{f}(\xi) \rightarrow \widehat{f}\left(\xi_{0}\right)$ as $\xi \rightarrow \xi_{0}$ by dominated convergence. As for the second statement (RiemannLebesgue lemma for the Fourier transform on \mathbb{R}), prove it first if f is a characteristic function $\chi_{[a, b]}$ and next use density of the step functions in $L^{1}(\mathbb{R})$. Thus $f \mapsto \widehat{f}$ is a bounded linear map of $L^{1}(\mathbb{R})$ into $C_{0}(\mathbb{R})$ (the space of continuous functions on \mathbb{R} which tend to 0 at $\pm \infty)$:

$$
\|\widehat{f}\|_{\infty} \leq\|f\|_{1}
$$

Re: §5.1.4 The Fourier transform on \mathcal{S}

Proposition 5.1.2 remains valid for $f \in L^{1}(\mathbb{R})$. For part (iv) we have to add the additional condition that $f^{\prime}(x)$ exists almost everywhere, that $f^{\prime} \in L^{1}(\mathbb{R})$, and that $f(x)=$ $\int_{-\infty}^{x} f^{\prime}(y) d y$. For part (v) we have to add that $x \mapsto x f(x)$ is in $L^{1}(\mathbb{R})$. Part of the conclusion in (v) is then that \widehat{f} is differentiable.

Proof of Theorem 5.1.4 We can also prove this by complex analysis: if $f(x)=e^{-\pi x^{2}}$ then

$$
\begin{aligned}
\widehat{f}(\xi) & =e^{-\pi \xi^{2}} \int_{-\infty}^{\infty} e^{-\pi(x+i \xi)^{2}} d x \\
& =e^{-\pi \xi^{2}} \int_{-\infty}^{\infty} e^{-\pi x^{2}} d x=e^{-\pi \xi^{2}}
\end{aligned}
$$

where we used in the second equality Cauchy's theorem and estimates on $\int e^{-\pi z^{2}} d z$ over contours $-\infty,-M,-M+i \xi,-\infty+i \xi$ and $\infty, M, M+i \xi, \infty+i \xi$.

Good kernels More generally than is written in the book after Corollary 5.1.5 we can define a family $\left\{K_{\delta}\right\}_{\delta>0}$ as a family of good kernels if $K_{\delta} \in L^{1}(\mathbb{R})$ and (i), (ii), (iii) are satisfied.
We call K a very good kernel if moreover:
(iv) For every $\eta>0$ we have $\sup _{|x| \geq \eta}\left|K_{\delta}(x)\right| \rightarrow 0$ as $\delta \downarrow 0$.

For instance, K_{δ} given by Corollary 5.1.5 is a very good kernel.

Convolution Formula (5.7), i.e.,

$$
(f * g)(x):=\int_{-\infty}^{\infty} f(x-t) g(t) d t
$$

defines more generally $(f * g)(x)$ for almost all x if $f \in L^{1}(\mathbb{R})$ and $g \in L^{p}(\mathbb{R})(1 \leq p \leq \infty)$. Then $f * g \in L^{p}(\mathbb{R})$ and we have norm estimates

$$
\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}
$$

in particular,

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1} \quad \text { and } \quad\|f * g\|_{\infty} \leq\|f\|_{1}\|g\|_{\infty} .
$$

Corollary 5.1.7 This can be formulated more generally as follows.
Let $\left\{K_{\delta}\right\}$ be a family of good kernels. If $f \in L^{\infty}(\mathbb{R})$ and f is continuous at x_{0} then $\left(f * K_{\delta}\right)\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $\delta \downarrow 0$.
If $\left\{K_{\delta}\right\}$ is a family of very good kernels, if $f \in L^{1}(\mathbb{R})$ and f is continuous at x_{0}, then $\left(f * K_{\delta}\right)\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $\delta \downarrow 0$.
In both cases, if f is moreover uniformly continuous on \mathbb{R} then $f * K_{\delta} \rightarrow f$ uniformly on \mathbb{R} as $\delta \downarrow 0$.

Re: §5.1.5 The Fourier inversion

Proposition 1.8 holds more generally for $f, g \in L^{1}(\mathbb{R})$. For the proof use Fubini's theorem.
Proof of Theorem 1.9 (Fourier inversion) We can prove more generally:
If $f, \widehat{f}, g, \widehat{g} \in L^{1}(\mathbb{R})$ and if moreover f, g are continuous and bounded on \mathbb{R} (for instance if $f, g \in \mathcal{S}(\mathbb{R})$), then

$$
g(0) \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi=f(x) \int_{-\infty}^{\infty} \widehat{g}(y) d y .
$$

This can be proved first for $x=0$, by using dominated convergence as $\delta \downarrow 0$ in

$$
\int_{-\infty}^{\infty} \widehat{f}(\xi) g(\delta \xi) d \xi=\int_{-\infty}^{\infty} f(x) \delta^{-1} \widehat{g}\left(\delta^{-1} x\right) d x=\int_{-\infty}^{\infty} f(\delta y) \widehat{g}(y) d y .
$$

Then we obtain

$$
g(0) \int_{-\infty}^{\infty} \widehat{f}(\xi) d \xi=f(0) \int_{-\infty}^{\infty} \widehat{g}(y) d y .
$$

Finally, put $f(x):=h(x+a)$, so $\widehat{f}(\xi)=e^{2 \pi i a \xi} \widehat{h}(\xi)$, in order to get the result for $x:=a$.
So the inversion formula of the Fourier transform for general f as above can be formulated in terms of a special g as above with $g(0) \neq 0$ as follows:

$$
\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi=C f(x) \quad \text { with } \quad C=\frac{1}{g(0)} \int_{-\infty}^{\infty} \widehat{g}(y) d y .
$$

We already know (see Theorem 5.1.4) $g(x):=e^{-\pi x^{2}}$ with $\widehat{g}=g$ and $g(0) \neq 0$ (in fact $g(0)=1)$. So $C=\widehat{g}(0) / g(0)=g(0) / g(0)=1$.

Re: §5.1.6 The Plancherel formula

In the proof of Proposition 5.1 .11 it is sketched how to see that $f, g \in \mathcal{S}(\mathbb{R})$ implies $f * g \in \mathcal{S}(\mathbb{R})$. The inequality $\sup _{x}|x|^{l}|g(x-y)| \leq A_{l}(1+|y|)^{l}$ is used. The hint for the proof of this inequality distinguishes two cases. For the case $|x| \geq 2|y|$ note that then $|x| \leq|x-y|+|y| \leq|x-y|+|x|-|y| \leq 2|x-y|$. This inequality can also be proved by an application of the binomial formula:

$$
\left.|x|^{l} g(x-y)\left|\leq \sum_{j=0}^{l}\binom{l}{j}\right| y\right|^{l-j}|x-y|^{j}|g(x-y)| \leq A_{l} \sum_{j=0}^{l}\binom{l}{j}|y|^{l-j}=A_{l}(1+|y|)^{l}
$$

where $A_{l}:=\sup \left\{|x|^{j}|g(x)| \mid x \in \mathbb{R}, j=0,1, \ldots, l\right\}$.
Yet another proof that $f * g$ decreases faster than any inverse power if f and g do so, runs as follows.

$$
\begin{aligned}
& |(f * g)(x)| \leq \int_{-\infty}^{\infty}|f(y)||g(x-y)| d y=\int_{-\infty}^{\infty}\left|f\left(\frac{1}{2} x+y\right)\right|\left|g\left(\frac{1}{2} x-y\right)\right| d y \\
& \leq C \int_{-\infty}^{\infty} \frac{1}{\left(1+\left(\frac{1}{2} x+y\right)^{2}\right)^{l}\left(1+\left(\frac{1}{2} x-y\right)^{2}\right)^{l}} d y \leq C \int_{-\infty}^{\infty} \frac{1}{\left(1+\frac{1}{2} x^{2}+2 y^{2}\right)^{l}} d y \\
& \quad \leq \frac{C}{\left(1+\frac{1}{2} x^{2}\right)^{l-1}} \int_{-\infty}^{\infty} \frac{d y}{1+2 y^{2}}
\end{aligned}
$$

Re: §5.1.7 Extension to functions of moderate decrease

There is a further extension of the Fourier transform, the Fourier inversion formula and the Plancherel formula to $L^{2}(\mathbb{R})$. In fact, since $\mathcal{F}: f \rightarrow \widehat{f}$ is a unitary transformation on $\mathcal{S}(\mathbb{R})$ (Theorem 5.1.12) and since \mathcal{S} is dense in $L^{2}(\mathbb{R}), \mathcal{F}$ extends uniquely to a unitary transformation $\mathcal{F}_{2}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$. So, if $f \in L^{2}(\mathbb{R}),\left(f_{n}\right)$ is a sequence in $\mathcal{S}(\mathbb{R})$ and $f=\lim _{n \rightarrow \infty} f_{n}$ in $L^{2}(\mathbb{R})$, then $\mathcal{F}_{2} f:=\lim _{n \rightarrow \infty} \mathcal{F}\left(f_{n}\right)$ in $L^{2}(\mathbb{R})$, independent of the choice of the sequence $\left(f_{n}\right)$. On the other hand, for $f \in L^{1}(\mathbb{R}), \mathcal{F}(f)$ can be defined as

$$
\mathcal{F}(\xi)=\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x
$$

So on $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ we have two definitions \mathcal{F} and \mathcal{F}_{2} of the Fourier transform. We will show that they agree.

Let $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. Take $\varepsilon>0$. Then there exists $M>1$ such that $\left\|f \chi_{[-M, M]}-f\right\|_{1}<\varepsilon$ and $\left\|f \chi_{[-M, M]}-f\right\|_{2}<\varepsilon$. Then there exists $g \in \mathcal{S}(\mathbb{R})$ with support within $[-2 M, 2 M]$ such that $\left\|g-f \chi_{[-M, M]}\right\|_{2}<(2 M)^{-\frac{1}{2}} \varepsilon<\varepsilon$. Hence $\left\|g-f \chi_{[-M, M]}\right\|_{1}<\varepsilon$. Hence $\|f-g\|_{1}<2 \varepsilon$ and $\|f-g\|_{2}<2 \varepsilon$. Hence $\|\mathcal{F} f-\mathcal{F} g\|_{\infty}<2 \varepsilon$ and $\left\|\mathcal{F}_{2} f-\mathcal{F} g\right\|_{2}=$ $\left\|\mathcal{F}_{2} f-\mathcal{F}_{2} g\right\|_{2}=\|f-g\|_{2}<2 \varepsilon$. Since $\varepsilon>0$ was taken arbitrarily, there is a sequence $\left(g_{n}\right)$ in $\mathcal{S}(\mathbb{R})$ such that $\left\|\mathcal{F} f-\mathcal{F} g_{n}\right\|_{\infty} \rightarrow 0$ and $\left\|\mathcal{F}_{2} f-\mathcal{F} g_{n}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. Since a converging sequence in $L^{2}(\mathbb{R})$ has an almost everywhere converging subsequence, we see, by replacing $\left(g_{n}\right)$ by a suitable subsequence again written as $\left(g_{n}\right)$, that $\left\|\mathcal{F} f-\mathcal{F} g_{n}\right\|_{\infty} \rightarrow 0$ and $\mathcal{F}_{2} f-\mathcal{F} g_{n} \rightarrow 0$ almost everywhere as $n \rightarrow \infty$. Thus $\mathcal{F} f=\mathcal{F}_{2} f$ almost everywhere.

Thus we are entitled to use the notation $\mathcal{F} f=\widehat{f}$ unambiguously for $f \in L^{1}(\mathbb{R}) \cup L^{2}(\mathbb{R})$.

Let $f \in L^{2}(\mathbb{R})$. Since $f \chi_{[-n, n]} \rightarrow f$ in $L^{2}(\mathbb{R})$ as $n \rightarrow \infty$, we have $\mathcal{F}\left(f \chi_{[-n, n]}\right) \rightarrow \mathcal{F}(f)$ in $L^{2}(\mathbb{R})$ as $n \rightarrow \infty$. Thus \widehat{f} is the function in $L^{2}(\mathbb{R})$ which is almost everywhere determined by

$$
\int_{-\infty}^{\infty}\left|\widehat{f}(\xi)-\int_{-n}^{n} f(x) e^{-2 \pi i x \xi} d x\right|^{2} d \xi \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

The inverse Fourier transform on $L^{2}(\mathbb{R})$ can be treated in a similar way. For $f \in L^{2}(\mathbb{R})$ we get:

$$
\int_{-\infty}^{\infty}\left|\widehat{f}(x)-\int_{-n}^{n} f(\xi) e^{2 \pi i x \xi} d \xi\right|^{2} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Re: §5.3.1 Theta and zeta functions

Theorem 5.3.1 applied to

$$
\Theta(z \mid \tau):=\sum_{n=-\infty}^{\infty} e^{i \pi n^{2} \tau} e^{2 \pi i n z} \quad(\operatorname{Im}(\tau)>0, z \in \mathbb{C})
$$

gives

$$
\Theta(z \mid \tau)=(-i \tau)^{-\frac{1}{2}} e^{-i \pi z^{2} / \tau} \Theta\left(z / \tau \mid-\tau^{-1}\right) .
$$

For this we need that the Fourier transform of $f(x):=e^{i \pi \tau x^{2}}$ is equal to $\widehat{f}(\xi)=(-i \tau)^{-\frac{1}{2}} e^{-i \pi \xi^{2} / \tau}$ if $\operatorname{Im}(\tau)>0$. This can be reduced to the known case $i \tau<0$ by deforming the contour defining the Fourier integral, where Cauchy's theorem and suitable estimates have to be used.

We see from the above two formulas that $\Theta(z \mid \tau)$ is complex analytic in z with period 1 and that $e^{i \pi z^{2} / \tau} \Theta(z \mid \tau)$ is complex analytic in z with period τ. The quotient

$$
\frac{\Theta(z \mid \tau)}{\Theta\left(\left.z+\frac{1}{2} \right\rvert\, \tau\right)}=e^{i \pi /(4 \tau)} e^{i \pi z / \tau} \frac{\Theta\left(z / \tau \mid-\tau^{-1}\right)}{\Theta\left(\left.\left(z+\frac{1}{2}\right) / \tau \right\rvert\,-\tau^{-1}\right)}
$$

has periods 1 and 2τ, but it will have poles. It is essentially an elliptic function.
These poles are more visible from Jacobi's triple product formula. Note that $\Theta(z \mid \tau)$ is equal to the classical theta function $\theta_{3}(z \mid \tau)=\theta_{3}(z, q)$ with $q=e^{i \pi \tau}$, so $q \in \mathbb{C}$, $|q|<1$. See A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (8). With the notation $(a ; q)_{\infty}:=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)$ we have Jacobi's triple product formula

$$
\theta_{3}(z, q)=\left(q^{2} ; q^{2}\right)_{\infty}\left(-q e^{2 \pi i z} ; q^{2}\right)_{\infty}\left(-q e^{-2 \pi i z} ; q^{2}\right)_{\infty}
$$

see A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (16).

