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These notes concern the book
E. M. Stein and R. Shakarchi, Fourier analysis, an introduction, Princeton University
Press, 2003.
Here I will rephrase some definitions and therorems from the book more generally, by using
spaces of Lebesgue integrable functions. Unless otherwise stated, our function spaces are
taken over C: they will contain complex-valued functions.

Function spaces

We will use the following notations (different from the usage in the book).

• C2π is the space of 2π-periodic continuous functions on R with norm
‖f‖∞ := sup{|f(x)| | x ∈ R} = max{|f(x)| | x ∈ [−π, π]}.

• Ck
2π is the space of k times continuously differentiable 2π-periodic functions on R.

• C∞
2π is the space of arbitrarily often continuously differentiable 2π-periodic functions

on R.

• L∞2π is the space of measurable 2π-periodic functions on R which are bounded outside
a set of measure zero. The norm is ‖f‖∞ := ess sup{|f(x)| | x ∈ R} = inf{a ≥ 0 |
{x ∈ R | |f(x)| > a} has measure 0}.

• Lp
2π (1 ≤ p < ∞) is the space of measurable 2π-periodic functions on R for which

‖f‖p :=
( 1

2π

∫ π

−π
|f(x)|p dx

)1/p
< ∞.

More precisely, the elements of the Lp spaces are equivalence classes of functions, where f
and g are equivalent if they coincide outside a set of measure zero (see Appendix, Theorem
1.7).

In each function class the functions may also be considered while restricted to an
interval [a, a + 2π] (usually [−π, π]). The restriction map will be bijective if we take into
account that: (i) on Ck

2π we have f(a) = f(a + 2π) and f (j)(a) = f j)(a + 2π) for all
appropriate derivatives; and (ii) the integral of an integrable 2π-periodic function is the
same on any interval of length 2π.

The spaces C2π and Lp
2π (1 ≤ p ≤ ∞) are Banach spaces w.r.t. their given norms. The

space L2
2π is moreover a Hilbert space with inner product

〈f, g〉 :=
1
2π

∫ π

−π
f(x) g(x) dx.
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We have inclusions and corresponding norm inequalities (use Hölder’s inequality) as fol-
lows:

C2π ⊂ L∞2π ⊂ Lq
2π ⊂ Lp

2π ⊂ L1
2π, ‖f‖∞ ≥ ‖f‖q ≥ ‖f‖p ≥ ‖f‖1 (1 < p < q < ∞).

C2π is dense in Lp
2π if 1 ≤ p < ∞, but is is not dense in L∞2π. If 1 ≤ p < q ≤ ∞ then Lq

2π

is dense in Lp
2π.

Let Trig2π be the space of trigonometric polynomials, i.e., the space spanned by the
functions x 7→ einx (n ∈ Z). Then Trig2π is dense in C2π (see Corollary 2.5.4), and hence
also in Lp

2π (1 ≤ p < ∞).
Let R2π be the space of Riemann integrable functions on [−π, π] (extended to a 2π-

periodic function on R whenever this is convenient). Then f ∈ R2π iff f ∈ L∞2π and f is
a.e. continuous.

Let l∞(Z) the space of bounded functions on Z with norm ‖g‖∞ := supn∈Z |g(n)|. Let
c0(Z) be its subspace of functions g on Z for which lim|n|→∞ g(n) = 0, with the same norm
‖ . ‖∞. These are Banach spaces.

Let lp(Z) (1 < p < ∞) be the space of functions g on Z such that

‖g‖p :=
(∑

n∈Z
|g|p

)1/p
< ∞.

These are Banach spaces, and l2(Z) is moreover a Hilbert space with inner product

〈g,h〉 :=
∑
n∈Z

g(n) h(n).

The embeddings of spaces and the norm inequalities are here in converse direction as for
the function spaces on [−π, π]:

l1(Z) ⊂ lp(Z) ⊂ lq(Z) ⊂ c0(Z) ⊂ l∞(Z), ‖g‖1 ≥ ‖g‖p ≥ ‖g‖q ≥ ‖g‖∞ (1 < p < q < ∞).

All embeddings are dense, except for the last one: c0(Z) is a non-dense closed subspace of
l∞(Z).

Fourier coefficients and the Riemann-Lebesgue lemma

For f ∈ L1
2π write its Fourier coefficients as

f̂(n) :=
1
2π

∫ π

−π
f(x) e−inx dx (n ∈ Z).

If f ∈ L1
2π then

‖f̂‖∞ ≤ ‖f‖1 and lim
|n|→∞

f̂(n) = 0.

Then f 7→ f̂ : L1
2π → c0(Z) is continuous, but not surjective. The statement lim|n|→∞ f̂(n) =

0 is the Riemann-Lebesgue lemma, This was stated for f ∈ R2π in Theorem 3.1.4, as a
corollary of Theorem 1.3. But the result extends to L1

2π by an argument which uses that
R2π (or already C2π or Trig2π ) is dense in L1

2π.
More generally than Theorem 1.3 we can state:

The map f 7→ f̂ is a Hilbert space isomorphism from L2
2π onto l2(Z).

2



Re: Theorem 2.2.1

This can be formulated more generally as:
If f ∈ L1

2π and f̂ = 0 then f(x0) = 0 whenever f is continuous at x0.

Re: §2.3 Convolutions

In connection with Proposition 2.3.1 we have (special cases of Young’s inequality):

• L1
2π ∗ Lp

2π ⊂ Lp
2π, ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p (1 ≤ p ≤ ∞);

• Lp
2π ∗ Lq

2π ⊂ C2π, ‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖q (1 < p < ∞, p−1 + q−1 = 1);

• L1
2π ∗ C2π ⊂ C2π, ‖f ∗ g‖∞ ≤ ‖f‖1 ‖g‖∞.

Re: §2.4 Good kernels

More generally we can call {Kn}∞n=1 a family of good kernels if Kn ∈ L1
2π for all n such

that:

a) K̂n(0) = 1 for all n;

b) there exists M > 0 such that ‖Kn‖1 ≤ M for all n;

c) for every δ ∈ (0, π) we have ‖Kn(χ[−π,−δ] + χ[δ,π])‖1 → 0 as n →∞.
(Here χE is the characteristic function of a set E.)

For a given family of good kernels as above we can now formulate Theorem 4.1 as follows:

Let f ∈ L∞2π. Then limn→∞(f ∗ Kn)(x) = f(x) whenever f is continuous at x. If f is
continuous everywhere, then this limit is uniform.

If we replace in c) of the definition of good kernel the L1-norm by the Lp-norm and
if we replace in the reformulation of Theorem 4.1 the assumption f ∈ L∞2π by f ∈ Lq

2π

(p−1 + q−1 = 1 and 1 ≤ p ≤ ∞) then the Theorem remains valid. For the Fejér and the
Poisson kernel we can make these changes for all p, in particular for p = ∞.

Theorem 4.1, in all its reformulated versions, has as an immediate Corollary:

Let f ∈ Lr
2π (1 ≤ r < ∞). Then limn→∞ f ∗Kn = f in Lr

2π.

Prove it first for f ∈ C2π and then use density of C2π in Lr
2π.

From this it follows that the map f 7→ f̂ : Lr
2π → c0(Z) is injective for 1 ≤ r < ∞, in

particular for r = 1 (we knew it already for r = 2).

Re: §3.2.1 A local result

Theorem 3.2.1 can be formulated more generally as follows:

Let f ∈ L1
2π, x0 ∈ R. Suppose that there are δ,M > 0 such that |f(x)−f(x0)| ≤ M |x−x0|

if |x− x0| < δ. Then limN→∞(SN [f ])(x0) = f(x0).

Theorem 3.2.2 can be formulated more generally as follows:

Let f, g ∈ L1
2π, x0 ∈ R, and suppose that f(x) = g(x) for x in some neigbourhood of x0.
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Then either (SN [f ])(x0) and (SN [g])(x0) both converge as N → ∞, while tending to the
same limit, or both diverge as N →∞.

Re: Exercise 3.13, Fourier coefficients of C∞-function

Exercise 3.13 can be formulated more generally as follows:
The map f 7→ f̂ is a bijection from C∞

2π onto the space of rapidly decreasing functions g
on Z, i.e., g such that for all k > 0 we have g(n) = O(|n|−k) as |n| → ∞.

Re: §3.2.2 A continuous function with diverging Fourier series

Lemma 3.2.3 can be applied more generally to Fourier series, not just to the Fourier series
(4) in §3.2.2:

If f ∈ L∞2π and f̂(n) = O(|n|−1) as |n| → ∞ then ‖SN [f ]‖∞ = O(1) as N →∞.

Re: Exercises 3.19, 3.20, The Gibbs phenomenon

We can write

DN (x) =
sin((N + 1

2)x)
sin(1

2x)
=

2 sin(Nx)
x

+ θ(x) sin(Nx) + cos(Nx) (0 < |x| < 2π),

where
θ(x) := cot(1

2x)− 2x−1.

Put θ(0) := 0. Then θ is an odd, differentiable and strictly decreasing function on
(−2π, 2π) with θ′(0) = −1

6 , θ(±π) = ∓2π−1 and maxπ≤x≤π |θ(x)| = 2π−1. Thus

N∑
n=1

sin(nx)
n

= 1
2

∫ x

0
(DN (t)− 1) dt =

∫ x

0

sin(Nt)
t

dt + 1
2

∫ x

0
θ(t) sin(Nt) dt +

sin(Nx)
2N

− 1
2x

=
∫ Nx

0

sin s

s
ds− θ(x) cos(Nx)

2N
+

1
2N

∫ x

0
θ′(t) cos(Nt) dt +

sin(Nx)
2N

− 1
2x.

=
∫ Nx

0

sin s

s
ds− 1

2x + O(N−1) = O(1) as N →∞, uniformly for x ∈ [−π, π].

This answers Exercise 3.19. For Exercise 3.20 we can write (f the sawtooth function):

(SN [f ])(x)− f(x) =
∫ Nx

0

sin s

s
ds− 1

2π + O(N−1) as N →∞, uniformly for x ∈ (0, π].

Now use that the function y 7→
∫ y
0

sin s
s ds is nonnegative on [0,∞) and increasing on [0, π],

that it attains its absolute maximum (approximately 1.18 π/2) for y = π, and that it tends
to π/2 as y →∞.
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Re: §4.3 A continuous but nowhere differentiable function

Lemma 4.3.2 can be formulated more generally as follows:
For the Fejér kernel FN we have:

|F ′
N (x)| = O(N2) as N →∞, uniformly for x ∈ [−π, π];

|x2F ′
N (x)| = O(1) as N →∞, uniformly for x ∈ [−π, π].

If g ∈ L∞2π and if g is differentiable at x0 then (σN [g])′(x0) = O(log N) as N →∞.

Re: §5.1.2 Definition of the Fourier transform

More generally, the Fourier transform

f̂(ξ) :=
∫ ∞

−∞
f(x) e−2πixξ dx

is well defined if f ∈ L1(R). In fact, f̂ is then continuous on R and f̂(ξ) = o(1) as
|ξ| → ∞. These statements generalize Exercise 5.5(a). The first statement follows because
f̂(ξ) → f̂(ξ0) as ξ → ξ0 by dominated convergence. As for the second statement (Riemann-
Lebesgue lemma for the Fourier transform on R), prove it first if f is a characteristic
function χ[a,b] and next use density of the step functions in L1(R). Thus f 7→ f̂ is a
bounded linear map of L1(R) into C0(R) (the space of continuous functions on R which
tend to 0 at ±∞):

‖f̂‖∞ ≤ ‖f‖1.

Re: §5.1.4 The Fourier transform on S

Proposition 5.1.2 remains valid for f ∈ L1(R). For part (iv) we have to add the addi-
tional condition that f ′(x) exists almost everywhere, that f ′ ∈ L1(R), and that f(x) =∫ x
−∞ f ′(y) dy. For part (v) we have to add that x 7→ xf(x) is in L1(R). Part of the con-

clusion in (v) is then that f̂ is differentiable.

Proof of Theorem 5.1.4 We can also prove this by complex analysis: if f(x) = e−πx2
then

f̂(ξ) = e−πξ2

∫ ∞

−∞
e−π(x+iξ)2 dx

= e−πξ2

∫ ∞

−∞
e−πx2

dx = e−πξ2
,

where we used in the second equality Cauchy’s theorem and estimates on
∫

e−πz2
dz over

contours −∞,−M,−M + iξ,−∞+ iξ and ∞,M,M + iξ,∞+ iξ.

Good kernels More generally than is written in the book after Corollary 5.1.5 we can
define a family {Kδ}δ>0 as a family of good kernels if Kδ ∈ L1(R) and (i), (ii), (iii) are
satisfied.
We call K a very good kernel if moreover:
(iv) For every η > 0 we have sup|x|≥η |Kδ(x)| → 0 as δ ↓ 0.
For instance, Kδ given by Corollary 5.1.5 is a very good kernel.
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Convolution Formula (5.7), i.e.,

(f ∗ g)(x) :=
∫ ∞

−∞
f(x− t) g(t) dt,

defines more generally (f ∗g)(x) for almost all x if f ∈ L1(R) and g ∈ Lp(R) (1 ≤ p ≤ ∞).
Then f ∗ g ∈ Lp(R) and we have norm estimates

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p,

in particular,
‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1 and ‖f ∗ g‖∞ ≤ ‖f‖1 ‖g‖∞.

Corollary 5.1.7 This can be formulated more generally as follows.
Let {Kδ} be a family of good kernels. If f ∈ L∞(R) and f is continuous at x0 then
(f ∗Kδ)(x0) → f(x0) as δ ↓ 0.
If {Kδ} is a family of very good kernels, if f ∈ L1(R) and f is continuous at x0, then
(f ∗Kδ)(x0) → f(x0) as δ ↓ 0.
In both cases, if f is moreover uniformly continuous on R then f ∗Kδ → f uniformly on
R as δ ↓ 0.

Re: §5.1.5 The Fourier inversion

Proposition 1.8 holds more generally for f, g ∈ L1(R). For the proof use Fubini’s theorem.

Proof of Theorem 1.9 (Fourier inversion) We can prove more generally:
If f, f̂ , g, ĝ ∈ L1(R) and if moreover f, g are continuous and bounded on R (for instance
if f, g ∈ S(R)), then

g(0)
∫ ∞

−∞
f̂(ξ) e2πixξ dξ = f(x)

∫ ∞

−∞
ĝ(y) dy.

This can be proved first for x = 0, by using dominated convergence as δ ↓ 0 in∫ ∞

−∞
f̂(ξ) g(δξ) dξ =

∫ ∞

−∞
f(x) δ−1ĝ(δ−1x) dx =

∫ ∞

−∞
f(δy) ĝ(y) dy.

Then we obtain
g(0)

∫ ∞

−∞
f̂(ξ) dξ = f(0)

∫ ∞

−∞
ĝ(y) dy.

Finally, put f(x) := h(x + a), so f̂(ξ) = e2πiaξĥ(ξ), in order to get the result for x := a.

So the inversion formula of the Fourier transform for general f as above can be formu-
lated in terms of a special g as above with g(0) 6= 0 as follows:∫ ∞

−∞
f̂(ξ) e2πixξ dξ = C f(x) with C =

1
g(0)

∫ ∞

−∞
ĝ(y) dy.

We already know (see Theorem 5.1.4) g(x) := e−πx2
with ĝ = g and g(0) 6= 0 (in fact

g(0) = 1). So C = ĝ(0)/g(0) = g(0)/g(0) = 1.

6



Re: §5.1.6 The Plancherel formula

In the proof of Proposition 5.1.11 it is sketched how to see that f, g ∈ S(R) implies
f ∗ g ∈ S(R). The inequality supx |x|l |g(x − y)| ≤ Al(1 + |y|)l is used. The hint for the
proof of this inequality distinguishes two cases. For the case |x| ≥ 2|y| note that then
|x| ≤ |x − y| + |y| ≤ |x − y| + |x| − |y| ≤ 2|x − y|. This inequality can also be proved by
an application of the binomial formula:

|x|l g(x− y)| ≤
l∑

j=0

(
l

j

)
|y|l−j |x− y|j |g(x− y)| ≤ Al

l∑
j=0

(
l

j

)
|y|l−j = Al(1 + |y|)l,

where Al := sup{|x|j |g(x)| | x ∈ R, j = 0, 1, . . . , l}.
Yet another proof that f ∗ g decreases faster than any inverse power if f and g do so,

runs as follows.

|(f ∗ g)(x)| ≤
∫ ∞

−∞
|f(y)| |g(x− y)| dy =

∫ ∞

−∞
|f(1

2x + y)| |g(1
2x− y)| dy

≤ C

∫ ∞

−∞

1
(1 + (1

2x + y)2)l (1 + (1
2x− y)2)l

dy ≤ C

∫ ∞

−∞

1
(1 + 1

2x2 + 2y2)l
dy

≤ C

(1 + 1
2x2)l−1

∫ ∞

−∞

dy

1 + 2y2
.

Re: §5.1.7 Extension to functions of moderate decrease

There is a further extension of the Fourier transform, the Fourier inversion formula and
the Plancherel formula to L2(R). In fact, since F : f → f̂ is a unitary transformation on
S(R) (Theorem 5.1.12) and since S is dense in L2(R), F extends uniquely to a unitary
transformation F2 : L2(R) → L2(R). So, if f ∈ L2(R), (fn) is a sequence in S(R) and
f = limn→∞ fn in L2(R), then F2f := limn→∞F(fn) in L2(R), independent of the choice
of the sequence (fn). On the other hand, for f ∈ L1(R), F(f) can be defined as

F(ξ) = f̂(ξ) =
∫ ∞

−∞
f(x) e−2πixξ dx.

So on L1(R) ∩ L2(R) we have two definitions F and F2 of the Fourier transform. We will
show that they agree.

Let f ∈ L1(R) ∩ L2(R). Take ε > 0. Then there exists M > 1 such that
‖fχ[−M,M ] − f‖1 < ε and ‖fχ[−M,M ] − f‖2 < ε. Then there exists g ∈ S(R) with support
within [−2M, 2M ] such that ‖g−fχ[−M,M ]‖2 < (2M)−

1
2 ε < ε. Hence ‖g−fχ[−M,M ]‖1 < ε.

Hence ‖f − g‖1 < 2ε and ‖f − g‖2 < 2ε. Hence ‖Ff − Fg‖∞ < 2ε and ‖F2f − Fg‖2 =
‖F2f − F2g‖2 = ‖f − g‖2 < 2ε. Since ε > 0 was taken arbitrarily, there is a sequence
(gn) in S(R) such that ‖Ff − Fgn‖∞ → 0 and ‖F2f − Fgn‖2 → 0 as n → ∞. Since a
converging sequence in L2(R) has an almost everywhere converging subsequence, we see,
by replacing (gn) by a suitable subsequence again written as (gn), that ‖Ff −Fgn‖∞ → 0
and F2f −Fgn → 0 almost everywhere as n →∞. Thus Ff = F2f almost everywhere.

Thus we are entitled to use the notation Ff = f̂ unambiguously for f ∈ L1(R)∪L2(R).
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Let f ∈ L2(R). Since fχ[−n,n] → f in L2(R) as n → ∞, we have F(fχ[−n,n]) → F(f) in
L2(R) as n →∞. Thus f̂ is the function in L2(R) which is almost everywhere determined
by ∫ ∞

−∞

∣∣∣∣f̂(ξ)−
∫ n

−n
f(x) e−2πixξ dx

∣∣∣∣2 dξ → 0 as n →∞.

The inverse Fourier transform on L2(R) can be treated in a similar way. For f ∈ L2(R)
we get: ∫ ∞

−∞

∣∣∣∣f̂(x)−
∫ n

−n
f(ξ) e2πixξ dξ

∣∣∣∣2 dx → 0 as n →∞.

Re: §5.3.1 Theta and zeta functions

Theorem 5.3.1 applied to

Θ(z | τ) :=
∞∑

n=−∞
eiπn2τ e2πinz (Im (τ) > 0, z ∈ C)

gives
Θ(z | τ) = (−iτ)−

1
2 e−iπz2/τ Θ(z/τ | −τ−1).

For this we need that the Fourier transform of f(x) := eiπτx2
is equal to f̂(ξ) = (−iτ)−

1
2 e−iπξ2/τ

if Im (τ) > 0. This can be reduced to the known case iτ < 0 by deforming the contour
defining the Fourier integral, where Cauchy’s theorem and suitable estimates have to be
used.

We see from the above two formulas that Θ(z | τ) is complex analytic in z with period
1 and that eiπz2/τΘ(z | τ) is complex analytic in z with period τ . The quotient

Θ(z | τ)
Θ(z + 1

2 | τ)
= eiπ/(4τ) eiπz/τ Θ(z/τ | −τ−1)

Θ((z + 1
2)/τ | −τ−1)

has periods 1 and 2τ , but it will have poles. It is essentially an elliptic function.
These poles are more visible from Jacobi’s triple product formula. Note that Θ(z | τ)

is equal to the classical theta function θ3(z | τ) = θ3(z, q) with q = eiπτ , so q ∈ C,
|q| < 1. See A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (8). With
the notation (a; q)∞ :=

∏∞
k=0(1− aqk) we have Jacobi’s triple product formula

θ3(z, q) = (q2; q2)∞ (−qe2πiz; q2)∞ (−qe−2πiz; q2)∞,

see A. Erdélyi, Higher transcendental functions, Vol. 2, formula 13.19 (16).
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