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1 Some extensions to Chaps. 2 and 3 of the book Fourier
analysis, an introduction by E. M. Stein and R. Shakarchi

Remark 1. (Alternative method for Exercise 16 in Ch.2)
We use the Chebyshev polynomials (of the first kind)

Tn(cos θ) := cos(nθ) (θ ∈ R, n ∈ Z≥0).

The above definition determines Tn(x) uniquely for x ∈ [−1, 1]. We also see that Tn(x) is
a polynomial of degree n in x because

cos θ cos nθ = 1
2 cos(n + 1)θ + 1

2 cos(n− 1)θ,

hence
Tn+1(x) = 2xTn(x)− Tn−1(x) (n ∈ Z>0),

while T0(x) = 1. Now the claim follows by induction w.r.t. n.
Now we prove the Weierstrass approximation theorem for f ∈ C([a, b]). Without loss of

generality we may assume that [a, b] = [−1, 1]. Put g(θ) := f(cos θ). Then g is continuous,
even and 2π-periodic on R. Hence ĝ(n) = ĝ(−n) and

σN (g)(θ) = ĝ(0) + 2
N−1∑
n=1

N − n

N
ĝ(n) cos nθ.

Then σN (g) → g uniformly, certainly on [0, π], as N →∞ (see Ch.2, Theorem 5.2). Put

fN−1(x) := ĝ(0) + 2
N−1∑
n=1

N − n

N
ĝ(n) Tn(x).

Then fN−1(cos θ) = σN (g)(θ) and fN−1(x) is a polynomial of degree ≤ N − 1 in x. Then
fN−1 → f , uniformly on [−1, 1], as N →∞.

Remark 2. (Extension of Exercise 12 in Ch.2)
(b) Let (cn)∞n=1 be a sequence of real numbers, put sn :=

∑n
k=1 ck and σn := n−1

∑n
k=1 sk.

Show that limn→∞ sn = ∞ implies that limn→∞ σn = ∞. So a series diverging to +∞ is
not Cesàro summable.
(c) Show (by the same method as on p.84, Ch.3) that

∞∑
n=2

1
n log n

= ∞.
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(d) Show that the trigonometric series∑
|n|≥2

1
|n| log |n|

einx

cannot be the Fourier series of a 2π-periodic continuous function.
Hint Otherwise the series would be Cesàro summable for all x, certainly for x = 0.
(e) Conclude that cn = o(|n|−1) as |n| → ∞ is not a sufficient condition in order that∑

n∈Z cn einx is the Fourier series of a 2π-periodic continuous function.

Remark 3. (Extension of Exercise 18 in Ch.3)
For a sequence (cn)n∈Z there is a hierarchy of its behaviour as |n| → ∞ given by cn =
O(|n|−α) or cn = o(n−α) (α ∈ R). Then cn = o(|n|−α) =⇒ cn = O(|n|−α) and, with
α > β, cn = O(|n|−α) =⇒ cn = o(|n|−β), but the converses of these implications are not
valid.

Now let f be an arbitrary 2π-periodic function on R, integrable over bounded intervals.
Replace f by a (unique) 2π-periodic continuous function if the difference h of f with that
function has

∫ π
−π |h(x)| dx = 0. Then there are the following implications, and these

implications are sharpest for the estimate for f̂(n) in the above hierarchy:

f is continuous =⇒ f̂(n) = o(1);

f is continuous ⇐= f̂(n) = O(|n|−1−ε) for some ε > 0;

f is continuously differentiable =⇒ f̂(n) = o(|n|−1);

f is continuously differentiable ⇐= f̂(n) = O(|n|−2−ε) for some ε > 0;

f is Ck =⇒ f̂(n) = o(|n|−k);

f is Ck ⇐= f̂(n) = O(|n|−k−1−ε) for some ε > 0;

f is C∞ ⇐⇒ f̂(n) = O(|n|−k) for all k > 0.

Theorem 4 (Extension of Ch.3, Theorem 2.1).
Let f be an integrable function on the circle which has a jump discontinuity at θ0 in
the sense that the two limits

f(θ+
0 ) := lim

h↓0
f(θ0 + h), f(θ−0 ) := lim

h↑0
f(θ0 + h)

exist, and which is right and left differentiable at θ0 in the sense that the two limits

f ′(θ+
0 ) := lim

h↓0

f(θ0 + h)− f(θ+
0 )

h
, f ′(θ−0 ) := lim

h↑0

f(θ0 + h)− f(θ−0 )
h

exist. Then SN (f)(θ0) → 1
2

(
f(θ+

0 ) + f(θ−0 )
)

as N tends to infinity.

See also Exercise 17 in Chapter 2, which formulates similar theorems for the Abel
means and the Cesàro means.

Theorem 5 (Extension of Ch.3, Theorem 2.2).
Suppose f and g are two integrable functions defined on the circle, and for some θ0 there
exists an open interval I containing θ0 such that f(θ) = g(θ) for all θ ∈ I. Then either
SN (f)(θ0) and SN (g)(θ0) both converge as N → ∞, while tending to the same limit, or
both diverge as N →∞.
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Remark 6. (Extension of Exercise 12 in Ch.3)
Observe that

DN (x) =
sin((N + 1

2)x)
sin(1

2x)

=
sin(Nx) cos(1

2x) + cos(Nx) sin(1
2x)

sin(1
2x)

= sin(Nx) cot(1
2x) + cos(Nx)

=
2 sin(Nx)

x
+ cos(Nx) +

(
cot(1

2x)− 2x−1
)
sin(Nx).

Put
φ(x) := cot(1

2x)− 2x−1 (0 < |x| < 2π), (1)

and put φ(0) := 0. Then

DN (x) =
2 sin(Nx)

x
+ cos(Nx) + φ(x) sin(Nx). (2)

It can be proved, as an exercise, that:

a) φ is continuous on (−2π, 2π);

b) φ′(0) = −1
6 ;

c) φ is C1 on (−2π, 2π) and strictly decreasing;

d) φ(π) = −2π−1, φ(−π) = 2π−1, max|x|≤π |φ(x)| = 2π−1.

Integration of (2) yields for 0 < x ≤ 2π:

1
2

∫ x

0
DN (t) dt =

∫ x

0

sin(Nt)
t

dt +
sin(Nx)

2N
+ 1

2

∫ x

0
φ(t) sin(Nt) dt

=
∫ Nx

0

sin s

s
ds +

sin(Nx)
2N

− φ(x) cos(Nx)
2N

+
1

2N

∫ x

0
φ′(t) cos(Nt) dt.

Hence, if 0 < a < π then

1
2

∫ x

0
DN (t) dt =

∫ Nx

0

sin s

s
ds +O(N−1), uniformly as N →∞ for 0 < x ≤ a. (3)

In particular,

1
2π = 1

2

∫ π

0
DN (t) dt =

∫ Nπ

0

sin s

s
ds +O(N−1) =

∫ ∞

0

sin s

s
ds. (4)

Remark 7. (Concerning Exercise 20 in Ch.3)
Let f be the sawtooth function, for which the Fourier series was computed in Ch.2, Exer-
cise 8:

f(x) ∼
∑
n6=0

(2in)−1 einx.
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Then (see Ch.3, Exercise 20)

SN (f)(x) =
∑

0<|n|≤N

(2in)−1 einx = 1
2

∫ x

0

(∑
0<|n|≤N einx

)
dx = 1

2

∫ x

0
DN (t) dt− 1

2x.

Now let 0 < a < π, use (3) and observe that f(x) = 1
2π − 1

2x on (0, 2π). Thus

SN (f)(x)− f(x) =
∫ Nx

0

sin s

s
ds− 1

2π +O(N−1), uniformly as N →∞ for 0 < x ≤ a.

(5)
Define the function Si (integral sine) (see also (4)) by

Si(y) :=
∫ y

0

sin t

t
dt (y ≥ 0), Si(∞) := lim

y→∞
Si(y) = 1

2π. (6)

Then Si is increasing on intervals (2kπ, (2k + 1)π) (k ∈ Z≥0) and Si is decreasing on
intervals ((2k + 1)π, (2k + 2)π) (k ∈ Z≥0), and

Si(π) > Si(3π) > Si(5π) > . . . > Si(∞) = 1
2π > . . . > Si(4π) > Si(2π) > Si(0) = 0.

Thus Si is positive on (0,∞) and it attains its absolute maximum on [0,∞) at π. A
numerical computation yields that∫ π

0

sin t

t
dt = Si(π) ≈ 1.18 Si(∞) = 1.18 π/2.

We obtain from (5) that

max
0<x≤π

(
SN (f)(x)− f(x)

)
= SN (f)(π/N)− f(π/N) +O(N−1)

= Si(π)− Si(∞) +O(N−1) ≈ 0.09 π as N →∞. (7)

This is the Gibbs phenomenon: for large N the partial Fourier sum of the sawtooth function
f fastly increases from 0 at x = 0 to approximately 1.18 f(0+) = 1.18 π/2 at x = π/N ,
and it oscillates for x > π/N around f with decreasing local maxima and minima for
SN (f)− f . See the Mathematica notebook gibbs.nb for pictures.

Remark 8. (Extension of Exercise 14 in Ch.3)
Let f be a 2π-periodic C1-function. The absolute convergence of the Fourier series of
f (to be proved in this exercise), together with the pointwise convergence of Sn(f) to f
(Theorem 2.1 in Ch.3), implies the uniform convergence of Sn(f) to f . Prove this uniform
convergence also in a different way, by a slight adaptation of the proof of Theorem 2.1 in
Ch.3.

These conclusions about absolute and uniform convergence remain valid if f is con-
tinuous and the derivative of f is only piecewise continuous. A piecewise continuous
derivative means that f on any finite interval is continuously differentiable outside finitely
many points x1, . . . , xn, and that at xi the right derivative f ′(x+

i ) and left derivative f ′(x−i )
exist, and that limx↓xi

f ′(x) = f ′(x+
i ) and limx↑xi

f ′(x) = f ′(x−i ).
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Now let g be a 2π periodic function which is C1 outside x0 + 2πZ, and which behaves
near x = x0 such that the four limits

g(x+
0 ) := lim

h↓0
g(x0 + h), g(x−0 ) := lim

h↑0
g(x0 + h),

g′(x+
0 ) := lim

h↓0

g(x0 + h)− g(x+
0 )

h
, g′(x−0 ) := lim

h↑0

g(x0 + h)− g(x−0 )
h

exist. For convenience assume that x0 = 0 and that g(x+
0 ) > g(x−0 ). Let f be the sawtooth

function. Then p(x) := g(x)−π−1(g(0+)−g(0−))f(x) is a 2π-periodic continuous function
with a derivative which is continuous except for a possible jump at 0 (and at integer
multiples of 2π). Hence, in combination with the results for Exercise 20 in Ch.3 above,
we see the Gibbs phenomenon for g:

lim
N→∞

(
max

0<x≤π

(
SN (g)(x)− g(x)

))
= lim

N→∞
(SN (g)(π/N)− g(π/N))

= lim
N→∞

π−1(g(0+)− g(0−))(Si(π)− Si(∞)) ≈ 0.09 (g(0+)− g(0−)).

The case of finitely many jumps in g can be handled in a similar way.

2 The isoperimetric inequality

Below we write

‖f‖2 :=
(

1
2π

∫ 2π

0
|f(x)|2 dx

) 1
2

.

Theorem 9. The area A of a region in the plane which is enclosed by a closed non-
selfintersecting C1-curve of length L satisfies A ≤ L2/(4π). Equality holds iff the curve is
a circle.

Proof Without loss of generality we may assume that L = 2π, and that the curve is
positively oriented and parametrized by its arc length. We may also identify the plane
with C. Then the curve has the form t 7→ f(t) with f a 2π-periodic C1-function and
with |f ′(t)| = 1 for all t. Furthermore we may assume without loss of generality that
f̂(0) = (2π)−1

∫ 2π
0 f(t) dt = 0. Then we have to show that A ≤ π with equality iff

f(t) = ei(t+t0) for some t0 ∈ R. Now we have

A
(1)
= 1

2 Im
∫ 2π

0
f ′(t) f(t) dt = π Im 〈f ′, f〉 ≤ π |〈f ′, f〉|

(2)

≤ π ‖f ′‖2 ‖f‖2

(3)
= π ‖f‖2

(4)
= π ‖f − f̂(0)‖2

(5)

≤ π ‖f ′‖2
(6)
= π. (8)

Equality (1) follows from Vrst 1. Inequality (2) is the Cauchy-Schwarz inequality. Equal-
ities (3) and (6) use that ‖f ′‖2 = 1 by the assumption |f ′(t)| = 1. Equality (4) uses the
assumption f̂(0) = 0. Equality (5) follows from Vrst 2. The proof of the last part of the
theorem is in Vrst 3.
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Exercises

Vrst 1. Let t 7→ f(t) be a positively oriented closed non-selfintersecting C1-curve in C.
Show that the area of the enclosed region equals 1

2 Im
∫ 2π
0 f ′(t) f(t) dt.

Vrst 2. Let f be a 2π-periodic C1-function. Show that ‖f − f̂(0)‖2 ≤ ‖f ′‖2 with equality
iff f̂(n) = 0 for n 6= −1, 0, 1.

Vrst 3. Show that equality everywhere in formula (8) implies that f(t) = ei(t+t0) for some
t0 ∈ R.
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