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Plan of the course

1 The Askey and q-Askey scheme
2 Zhedanov’s algebra
3 Double affine Hecke algebra in the rank one case
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General orthogonal polynomials

Definition
Let {pn(x)}n=0,1,... be a system of real-valued polynomials
pn(x) of degree n in x . Let µ be a positive Borel measure on R
such that

∫
R |x |

n dµ(x) <∞ for all n. Then {pn(x)} is called a
system of orthogonal polynomials (OP’s) if∫

R
pn(x) xk dµ(x) = 0 (k = 0,1, . . . ,n − 1). (1)

Theorem
Any system of orthogonal polynomials (with p−1(x) := 0,
p0(x) := 1) satisfies a recurrence relation of the form

x pn(x) = Anpn+1(x) + Bnpn(x) + Cnpn−1(x). (2)

Conversely, if {pn(x)} satisfies (2) with CnAn−1 > 0 then there
exists a positive Borel measure µ on R such that (1) holds.
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General orthogonal polynomials (continued)

Notation
Write pn(x) = kn xn + · · · .
Write hn :=

∫
R pn(x)2 dµ(x). Then∫

R
pn(x) pm(x) dµ(x) = hn δn,m.

Remarks
The orthogonality measure µ is not necessarily uniquely
determined (up to constant factor) by the recurrence
relation (2). But if there exists an orthogonality measure µ
with compact support then we have certainly uniqueness.
Let M be a linear operator acting on sequences
u = {un}n=0,1,... by (M(u))n := Anun+1 + Bnun + Cnun−1.
Then, if {pn(x)} satisfies the recurrence relation (2), then
for each x the sequence {pn(x)} is an eigenfunction of M
with eigenvalue x .
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Bispectrality

We speak about bispectrality if we have a linear operator Lx
acting on functions in the variable x and a linear operator Mξ

acting on functions in the variable ξ such that there exists a
function φ(x , ξ) in the two variables x , ξ for which

Lx(φ(x , ξ)) = σ(ξ)φ(x , ξ), (3)

Mξ(φ(x , ξ)) = τ(x)φ(x , ξ). (4)

where σ(ξ) and τ(x) are suitable eigenvalues.

In the case of OP’s the variable ξ becomes the discrete
variable n and we have in general only equation (4). We are
interested in OP’s which also satisfy (3).

Structure equation implied by (3) and (4):

[Lx , τ(x)] (φ(x , ξ)) = [Mξ, σ(ξ)] (φ(x , ξ)).

Here [A,B] := AB − BA (commutator).
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Classical orthogonal polynomials

These are essentially the only OP’s which are eigenfunctions of
a second order differential operator (Bochner’s theorem).

Hermite polynomials Hn(x), Hn(x) = 2nxn + · · · ,
dµ(x) := e−x2

dx ,
(

1
2

d2

dx2 − x d
dx

)
Hn(x) = −nHn(x).

Laguerre polynomials Lαn (x), Lαn (0) = (α+ 1)n/n! , where
(a)n := a(a + 1) . . . (a + n − 1) (Pochhammer symbol).
dµ(x) := χ(0,∞)(x) xα e−x dx (α > −1),(

x d2

dx2 + (α+ 1− x) d
dx

)
Lαn (x) = −n Lαn (x).

Jacobi polynomials P(α,β)
n (x), P(α,β)

n (1) = (α+ 1)n/n! ,
dµ(x) := χ(−1,1)(x) (1− x)α(1 + x)β dx (α, β > −1),(

(1− x2) d2

dx2 + (β − α− (α+ β + 2)x) d
dx

)
P(α,β)

n (x)

= −n(n + α+ β + 1)P(α,β)
n (x).
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Structure relation for OP’s satisfying an eigenvalue
equation

Let {pn(x)} be a system of OP’s such that there is a linear
operator L acting on polynomials in x for which the pn are
eigenfunctions with eigenvalues λn. Write (Xf )(x) := x f (x).
Then, from

Lpn = λnpn,

Xpn = Anpn+1 + Bnpn + Cnpn−1,

we have the structure relation

[L,X ] pn = An(λn+1 − λn) pn+1 − Cn(λn − λn−1)pn−1.

Remark Since L and X are symmetric operators with respect
to the inner product 〈f ,g〉 :=

∫
R f (x) g(x) dµ(x),

the structure operator [L,X ] is anti-symmetric with respect to
this inner product.
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Structure relation for the classical OP’s

Hermite polynomials:( d
dx
− x

)
Hn(x) = −1

2Hn+1(x) + nHn−1(x).

Laguerre polynomials:(
2x

d
dx

+α+1−x
)

Lαn (x) = (n+1)Lαn+1(x)−(n+α)Lαn−1(x).

Jacobi polynomials:(
2(1− x2)

d
dx

+ β − α− (α+ β + 2)x
)

P(α,β)
n (x) =

− 2(n + 1)(n + α+ β + 1)

2n + α+ β + 1
P(α,β)

n+1 (x)+
2(n + α)(n + β)

2n + α+ β + 1
P(α,β)

n−1 (x).

Combine with 3-term recurrence relation. Then get the form
π(x) p′n(x) = anpn+1(x) + bnpn(x) + cnpn−1(x) for a polynomial
π(x). Al-Salam & Chihara (1972) characterized the classical
OP’s as OP’s with such a structure relation.
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Algebra generated by L and X for the classical OP’s

Let {pn(x)} be a system of classical OP’s and let L be the
second order differential operator for which they are
eigenfunctions. Then L and X will generate an associative
algebra with identity of linear operators. Certainly the structure
operator S := [L,X ] will belong to this algebra. Are there further
relations in the algebra? Let us try the commutators of S with L
and X .
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Algebra generated by L and X for the classical OP’s
(continued)

Hermite:

[L,X ] = S, [X ,S] = −1, [S,L] = −X .
Laguerre:

[L,X ] = S, [X ,S] = −2X , [S,L] = −2L− X + α+ 1.
Jacobi:

[L,X ] = S, [X ,S] = 2X 2 − 2,

[S,L] = 2(XL + LX )− (α+ β)(α+ β + 2)X + β2 − α2.
Lie algebras and representations involved:

Hermite: Heisenberg Lie algebra and its standard
representation on a space of suitable functions on R.
Laguerre: the Lie algebra sl(2,R) and its discrete series
representation in a suitable model.
Jacobi: quadratic terms; no (finite dimensional) Lie
algebra.
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The scheme of classical OP’s

lim
β→∞

P(α,β)
n (1− 2β−1x) = Lαn (x).

lim
α→∞

α−
1
2 nP(α,α)

n (α−
1
2 x) = Hn(x)/(2nn!).

lim
α→∞

α−
1
2 nLαn

(
(2α)

1
2 x + α

)
= (−1)nHn(x)/(2

1
2 nn!).

Jacobi
�

�
�	

?

Laguerre

@
@
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Hermite
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Discrete OP’s

A system {pn(x)}∞n=0 of OP’s is called discrete if the
orthogonality measure µ has discrete support {xk}∞k=0. Then∫

R
f (x) dµ(x) =

∞∑
k=0

f (xk ) wk

for certain positive weights wk .

We will also admit finite systems {pn}n=0,1,...,N of OP’s, where
the orthogonality measure µ has finite support {xk}k=0,1,...,N .
Then ∫

R
f (x) dµ(x) =

N∑
k=0

f (xk ) wk

for certain positive weights wk .
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The Askey scheme

Extend the scheme of classical OP’s with the following classes:
OP’s of Hahn class are OP’s which are eigenfunctions of a
second order difference operator L of one of the forms

(Lf )(x) := anf (x − 1) + bnf (x) + cnf (x + 1) (discrete),
(Lf )(x) := anf (x − i) + bnf (x) + cnf (x + i) (continuous).

These are the Hahn, continuous Hahn, Meixner-Pollaczek,
Meixner, Krawtchouk and Charlier polynomials.
OP’s of quadratic lattice class are OP’s which are
eigenfunctions of a second order difference operator L of
one of the forms

(Lf )(y2) := anf
(
(y − 1)2)+ bnf (y2) + cnf

(
(y + 1)2) (discr.),

(Lf )(y2) := anf
(
(y − i)2)+ bnf (y2) + cnf

(
(y + i)2) (cont.).

These are the Wilson, Racah, dual Hahn and continuous
dual Hahn polynomials.
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Askey scheme
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Hypergeometric functions

All OP’s in the Askey scheme are hypergeometric functions.
The general hypergeometric function is defined by:

r Fs

(
a1, . . . ,ar

b1, . . . ,bs
; z
)

:=
∞∑

k=0

(a1)k . . . (ar )k

(b1)k . . . (bs)k

zk

k !
.

where (a)k := a(a + 1) . . . (a + k − 1) (Pochhammer symbol).
If a1 = −n (n = 0,1,2, . . .) then the series terminates after the
term with k = n. A hypergeometric function becomes undefined
(singular) if one of the bottom parameters is a non-positive
integer, say bs = −N, but the function remains well-defined if
a1 = −n with n = 0,1, . . . ,N, because the series then
terminates before the term with k = N.
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Example: Hahn polynomials

Hahn polynomials are given by

Qn(x ;α, β,N) := 3F2

(
−n,n + α+ β + 1,−x

α+ 1,−N
; 1
)

(n = 0,1, . . . ,N).

They have a limit to Jacobi polynomials by

Qn(Nx ;α, β,N) = 3F2

(
−n,n + α+ β + 1,−Nx

α+ 1,−N
; 1
)

N→∞−→ 2F1

(
−n,n + α+ β + 1

α+ 1
; x
)

=
P(α,β)

n (1− 2x)

P(α,β)
n (1)

.
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q-Pochhammer symbol

Let 0 < q < 1. Define the q-Pochhammer symbol by

(a; q)k := (1− a)(1− aq) . . . (1− aqk−1).

Also for k =∞:

(a; q)∞ = (1− a)(1− aq)(1− aq2) . . . (convergent).

Put

(a1, . . . ,ar ; q)k := (a1; q)k . . . (ar ; q)k .

The q-Pochhammer symbol is a q-analogue of the
Pochhammer symbol:

(qa; q)k

(1− q)k =
1− qa

1− q
1− qa+1

1− q
. . .

1− qa+k−1

1− q
q→1−→ a(a + 1) . . . (a + k − 1) = (a)k .
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q-Hypergeometric series

Define the q-hypergeometric series by

rφs

(
a1, . . . ,ar

b1, . . . ,bs
; q, z

)
:=

∞∑
k=0

(a1; q)k . . . (ar ; q)k
(
(−1)k q

1
2 k(k−1)

)s−r+1 zk

(b1; q)k . . . , (bs; q)k (q; q)k
.

If a1 = q−n with n non-negative integer, then the series
terminates after the term with k = n.

The q-hypergeometric series is formally a q-analogue of
ordinary hypergeometric series:

lim
q↑1

rφs

(
qa1 , . . . ,qar

qb1 , . . . ,qbs
; q, (1− q)s−r+1z

)
= r Fs

(
a1, . . . ,ar

b1, . . . ,bs
; z
)
.
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The q-Askey scheme

Parallel to the Askey scheme there is a q-Askey scheme in
which the OP’s are expressed as terminating q-hypergeometric
series. There are limit relations within the q-Askey scheme, and
also from families in the q-Askey scheme to families in the
Askey scheme. The q-Askey scheme consists of two classes:

OP’s of q-Hahn class are OP’s which are eigenfunctions of
a second order q-difference operator L of the form

(Lf )(x) := anf (q−1x) + bnf (x) + cnf (qx).

OP’s of quadratic q-lattice class are OP’s which are
eigenfunctions of a second order q-difference operator L of
the form

(Lf )
(1

2(z + z−1)
)

:= anf [q−1z] + bnf [z] + cnf [qz],

where f [z] := f (1
2(z + z−1).
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Askey-Wilson polynomials

On the top level of the q-Askey scheme are the Askey-Wilson
polynomials:

Pn[z] = Pn[z; a,b, c,d | q] = Pn
(1

2(z + z−1); a,b, c,d | q
)

:=
(ab,ac,ad ; q)n

an(abcdqn−1; q)n
4φ3

(
q−n,qn−1abcd ,az,az−1

ab,ac,ad
; q,q

)
.

The right-hand side gives a symmetric Laurent polynomial in z:

Pn[z] =
∑n

k=−n ckzk = Pn[z−1] (ck = c−k , cn 6= 0).

Therefore it is an ordinary polynomial Pn
(1

2(z + z−1)
)

of degree
n in the variable x := 1

2(z + z−1). We have normalized Pn[z]
such that it is monic in z, i.e., cn = 1.
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Askey-Wilson polynomials: orthogonality

Askey-Wilson polynomials Pn[z] satisfy the orthogonality
relation

1
4πi

∮
C

Pn[z] Pm[z] w [z]
dz
z

= hn δn,m, where

w(z) :=
(z2, z−2; q)∞

(az,az−1,bz,bz−1, cz, cz−1,dz,dz−1; q)∞
,

h0 =
(abcd ; q)∞

(q,ab,ac,ad ,bc,bd , cd ; q)∞
,

hn

h0
=

(q,ab,ac,ad ,bc,bd , cd ; q)n

(abcd ; q)2n(qn−1abcd ; q)n
.

Here C is the unit circle traversed in positive direction with
deformations to separate the sequences of poles converging to
zero from the sequences of poles diverging to∞.
For suitable a,b, c,d this can be rewritten as an orthogonality
relation for the Pn(x) with respect to a positive measure µ
supported on [−1,1] (or on its union with a finite discrete set).
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Askey-Wilson polynomials as eigenfunctions of L

Askey-Wilson polynomials are OP’s of quadratic q-lattice class.
They are eigenfunctions of a second order q-difference
operator L:

(LPn)[z] := A[z] Pn[qz] + A[z−1] Pn[q−1z]− (A[z] + A[z−1]) Pn[z]

= (q−n − 1)(1− abcdqn−1)Pn[z],

where A[z] :=
(1− az)(1− bz)(1− cz)(1− dz)

(1− z2)(1− qz2)
.

With (Xf )[z]) := (Z + Z−1) f [z], we obtain for the structure
operator:

([L,X ]f )[z] := a[z] f [qz]− a[z−1] f [q−1z],

where a[z] :=
(q−1 − 1)(1− az)(1− bz)(1− cz)(1− dz)

z(1− z2)
.
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Generalized Bochner theorem

There is a generalized Bochner theorem which characterizes
the Askey-Wilson polynomials and their limit cases as the only
polynomial solutions pn(x) of a second order difference
equation of the form

A(s)Pn
(
x(s+1)

)
+B(s)Pn

(
x(s)

)
+C(s)Pn

(
x(s−1)

)
= λnPn

(
x(s)

)
.

See Grünbaum & Haine (1996), Ismail (2003), Vinet &
Zhedanov (2008).
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