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Jacobi theta functions

C. G. J. Jacobi (1829),
Fundamenta Nova Theoriae Functionum Ellipticarum

Jacobi Weierstrass  Whittaker Watson [WW]
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Jacobi theta functions (cntd.)

Letg=¢e" (0<|q| <1, Im7>0).
Modified theta function (as in Gasper & Rahman):

oo

0(w;q) = (w,q/W; q)oc = (q_;) 3 (—1)kgekDwk,
TV k= o

0w q) = —w0(w; q) = 0(qw; q).
Jacobi theta functions 6, (a = 1,2, 3,4), or 9, in [WW].
0a(2) = 0a(z,q) = 0a(z | 7) = Va(7Z, q).
2 (Z) ::iq1/4(q2; q2)oo e—?TiZ 9(627riz; q2)’
92(2) ::q1/4(q2; q2) —7riZ 0(_ 27riZ. q2) — 0, (Z—|- %),
93(2) ::(qZ; qZ)OO 9( 27rlz Z qk 27rlkz

k=—o0
04(2) :=(0%: §°)o0 0(q €277 G7) = b3(2 + 3).
01(z) is 0odd; 02(2), 05(2), 04(z) are even.
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Fundamental theta identities: Weierstrass’ formula

Weierstrass’ fundamental theta identity is the three-term identity

O(xy,x/y,uv,u/v;q?) — 0(xv,x/v,uy, u/y; ¢°)
=uy '0(yv,y/v, xu, x/u; ¢°),

see Gasper & Rahman, (11.4.3). It was first obtained by
Weierstrass in terms of the function ¢(z), see references to
Weierstrass (1882) and Schwarz (1893) in arXiv:1401.5368,
and [WW, p.451, Ex.5 and p.473, §21.43]. Some authors call it
the Riemann identity, but it can’t be found in Riemann’s works.

For a quick proof divide the left-hand side by the right-hand side
and consider the resulting expression as a meromorphic
function F(x) of x (the other variables generically fixed).
Observe that the numerator vanishes at all (generically simple)
zeros of the denominator. Thus F is entire analytic. It is also
bounded (use that F(g°x) = F(x)). By Liouville’s theorem F is
constant, which is 1 because F(v) = 1.
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Fundamental theta identities: Jacobi’s formulas

Jacobi’s fundamental formulas [WW, §21.22] involve sums of
products of four theta functions of the form

[a] := Oa(W)0a(x)0a(y)0a(2), [a]" := Oa(W')0a(x)0a(y')0a(Z),
where

2w =-w+x+y+z, 2X=w-x+y+2z
2y =
Then (the first one implies the others):
2[1]= [+ -[8'+ Ml 2[2]=[]+[2+ €3] —[4]
28] = -1+ 2 +[3]' + [4], 2[4]=[1]"—[2'+ [3]' +[4]".
These are easily seen to be equivalent with:
(M+R =01+, [M+Bl=[+I[4], []+[4]=[1]+I[4],
(1-R=M'-6 [M-Bl=0I-[@- [-M[4=I[2-I[3"
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Fundamental theta identities: their equivalence

W(x,y,u,v;q):=0(xy,x/y,uv,u/v;q?) — 0(xv,x/v,uy,uly; g°)
—uy '0(yv,y/v, xu, x/u; ¢°),
J(x,y,u,v;q) :=20(xy,x/y,uv,u/v;q*) — 0(xv,x/v,uy,u/y; %)
—0(—xv, —x/v,—uy,~u/y;q%) — g 'xub(axv,qx/v, quy,qu/y; G°)
+q ' xub(—qxv,—qx/v, —quy, —qu/y; ¢°).

Then

W(x,y,u,v;q) + W(-x,y,—u,v;q) — xyW(ax,qy,u, v;q)

= xyW(—=agx,qy,—u,v;q) = J(x,y,u,v;q),
J(x,y,u,v;q) —uy 'J(x,u,y,v;q) = 2W(x,y,u,v;q).

Hence the two identities W = 0 and J = 0 are equivalent.
See also K, arxiv:1401.5368.
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Relations between squares of theta functions

[11—[4]1=[2]' - [38]". Put (x,y,u,v) :=(y,y,2,2).
Then (x',y', U, v') = (y,y,z,z). Hence

03(y)03(2) — 03 (y)03(2) + 05(y)05(2) — 03(y)03(2) = O,
05(y)07(2) + 03(y)03(2) — 63 (y)65(2) — 05(y)b3(2) = O,
(61(y) + 03()) 63 (2) + (95(}/)93(}/) - 912(}/)95(}/))95(2)

By the first equation the functions 62,63, 9%, 02 span a linear
space of dimension at most 2, hence equal to 2. In fact,

03(3)07(2) = —03(3)05(2) + 05(3)03(2),
03(0)05(2) = 03(0)03(2) — 04(0)03(2).
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Some theta addition formulas

O(xy,x/y,uv,u/v; q?) — 0(xv,x/v,uy,uly; q?)
= uy‘19(yv, y/V’ Xu, X/U; q2)’
By the substitution (x, u,v,y) — (q%y, q‘%z, q%, —q%) we get
0(yz, q_y/Z, —1 , —q. q2) = Q(y, qy,—Z,—qz, q2)+9(*yv —qy,Z,qz, q2)
Hence
01(y + 2)04(y — 2)62(0)03(0)
= 01(¥)04(y)02(2)03(2) + 02(y)03(y)01(2)04(2),
O2(y + 2)03(y — 2)02(0)03(0)
= 02(y)03(y)02(2)03(2) — 01(y)04(y)01(2)04(2).
Hence 62(2)03(2)(01(y + 2)0a(y — 2) — 01(y — 2)0a(y + 2))
— 01(2)04(2) (02(y + 2)03(y — 2) + 02(y — 2)03(y + 2)) = 0.
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Variety associated with a set of relations

| follow the approach in S. P. Smith & J. T. Stafford, Regularity
in the four dimensional Sklyanin algebra, Compositio Math. 83
(1992), 259-289, Section 2.

Let X, ..., X, be noncommuting variables.
Associate with a word X, ... X, a monomial x;, 1 ...X;, m in the

commuting variables xo 1,. .., Xn1,. .-, Xo,m; - - - » Xn,m-
Associate with a set of homogeneous relations of degree m
Z ¢ Xy X,=0  (j=1,....r).

a subset I' of (P"(C))™ defined by the equations

Z Ch(j,)...,imX/HJ <+ Ximm = 0 G=1....n.

i17~-~7im
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Sklyanin algebra

a, 8,~ means cyclic permutation of 1,2, 3.

Definition
Let Jyo, Jo3, J31 be complex constants, not equal to 0 or +1,
such that

Ji2 + Jo3 + Jz31 + Ji2 23 J31 = 0.

The Sklyanin algebra is the algebra S generated by
So, S1, So, S3 with the six relations

S()Sa — SaSO — iJgV(SgSV + S,YS@) =0,

SoSa + SaSo + i(S,BS'y = S’YSB) =0.

The associated subset I' of P2 x P := P3(C) x P3(C) is defined
by the six equations

XoYo — Xa¥o — 1 Jay(XsYy + Xy ¥5) = 0,
XoYo + XaYo + i(Xsyy — X,¥5) = 0.
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Elliptic curve associated with Sklyanin algebra

Let 71, m be the projections of P2 x P2 on the first respectively
second factor of the direct product. Put I'; := 7;(I") C P3.

Theorem

@ 7: T = Tyandn: [ — s are bijective maps.
e r‘l = EU{(1705070)}U{(0715070)}U{(0705170)}
U {(0,0,0,1)}, where
E={xeP?| g =0, g =0},
g1 = —X2 + X2+ X2 + X2,
go = (1 -+ J12)X12 =+ (1 -+ J12J23)X22 + (1 — J23)X32.
@ ' =, andthusTy — I — > can be considered as a

bijective map o: 'y — [2. It fixes the four points and leaves
E invariant.

© E is a smooth elliptic curve.
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Elliptic curve associated with Sklyanin algebra

Part of the proof of the above Theorem involves writing the six
equations

XoYa — XaYo — I Jay(XgYy + Xy¥5) = 0,
XoYa + XaYo + i(Xgyy — Xyy5) = 0.

as Ay = 0, where Ais a 6 x 4 matrix with entries wich are
homogeneous of degree 1 in xg, X1, X2, X3. Then compute all
4 x 4 minors of A and observe that they are all equal to
polynomials which are in the ideal generated by g; and g».

Of course, the computation can be done in Mathematica or
Maple.
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Parametrizing the elliptic curve

Fix n € C such that n is not of order 4 in C/(Z + 7Z). Write the
structure constants as

_02(n)63(n) IO N, 03(1)02(n)

_ e — 05(n)65(n) 05 (03 (n)
02(m)B(n)’ 02 () 02 () FB(n)

The map z — (xo, X1, X2, X3) given by
Xo = 01(n)03(22), X1 = —i62(n)04(22),
X2 = 03(n)01(22), X3 = 0a(n)02(22),
sends C/(Z + 77) bijectively to E C P3.

Part of the proof is to verify: g1 = —xg + X2 + x2 + x2 = 0 and

2 2
B 92 = (OB EB) g+ (01 0)+450) o
2

2

+ (063 (n) — 63(n)03(n)) =2~ = 0 (use (1) and (2)).

2
05(n)
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Parametrizing the elliptic curve

The mapo: E — E is given by o(x(2)) := x(z +n).

Part of the proof consists of checking that the six equations

XoYo — XaYo — I Jay(XgYy + Xy¥5) = 0,
XoYa + XaYo + i(Xgyy — Xyy5) = 0.

hold for
Xo = 61(n)03(22), Xy = —162(n)04(22),
Xo = 03(n)01(22), X3 = 04(n)02(22),
Yo=01(n)03(2z +2n),  y1 = —i02(n)0a(2z + 2n),
Yo =03(n)01(2z +2n),  ys = 04(n)02(2z + 2n),

with

Jip = 0%(n)6% (n) s — 05(n)6% (n) oy = — 03()6% (n) .
05(n)05(n) 03(m)05(n)° 0% (m)05(n)
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Parametrizing the elliptic curve

For instance,
Xoy3 + Xayo + i(X1Y2 — X1)2) = 0
turns down to

02(( )03((n) (61(22 + 2n)04(22) — 61(22)04(22 + 217))
01((n)04((n) (02(2z + 2n)03(22) + 02(22)03(22 + 21)) = 0,

which is addition formula (3).
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Connection with representations of Sklyanin algebra

The result in the above proof is equivalent to stating that
(Sif)(z) := xi(2)f(z + n) with the x; as above gives a
representation of S on the space of meromorphic functions.
Indeed,

(Si(Sf))(2) = xi(2)x(z + n)f(z + 2n).
For a representation we need that for each relation

3
Z C,'jS,'Sj =0
i,j=0
we have
3

Z cixi(z)x[(z+n)f(z+2n) = 0.

i,j=0
In fact, in my previous notes (part 1), | already sketched the
proof that we then have a representation. There, in formula (4),
omit the term with f(z — n) and take ¢ = 0. We then still have a

representation on the space of meromorphic functions.
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