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Approximations of the derivative f'(x) (5 ] 0)
f(x +9) — f(x) f(x +0) — f(x —9)
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2. Take g(y) = ay + b such that

— f(x) and — f(x).

Sy If (X +0)) — g (x + &) is minimal. Then

3 N . . /
" 2N(N + 3)(N + 1)) j:ZNf(XH/)/ — f(x)

3. Take g(y) = ay + b such that fL [f(x + 6t) — g(x + 6t)\2 at
is minimal. Then

1
a:3/ f(x +ot)tdt — f(x).
25 |,

Note: For N = 1 item 2 reduces to item 1b.

Note: For ¢ in item 2 replaced bt 6/N we can see that ain
item 2 tends to ainitem 3 as N — cc.



ltem 3 as limit of item 2 for N — o~

For N — oo we have

of of
f<x+N> —g<x+N>

1N
N2
j

=N

2 1
— / \f(x+5t)—g(x+5t)\2 at
1

and

3 N2 1 s\ j 3 [
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Graphs of f and g in the three cases
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Transfer function
Suppose D;sf is an approximation of f'(x). The transfer function
associated with D; is

Hs(w) := e~ Ds(y — €“Y).

In the examples Hs;(w) = iw h(dw). Preferably, |h| is close to 1
for small argument and close to 0 for larger argument (low pass
filter).

For the previous three cases the transfer function can be
computed to be:

17,5 Sin(3wd) . sin(wd)
3

2 ) = e N 1) Sin (5 2) 6

sin(Ndw)  sin((N + 1)dw)
8 ( N N +1 )
3(sin(wd) — wé cos(wd))
(wd)3 '

3. Hs(w) = iw




log-log plots of absolute values of transfer functions
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Orthogonal polynomials

/Rpm(X)Pn(X)dH(X):hn5m,nv Pn(X) = kX" + - -

Let f be given. Minimize [ |f(x + 6t) — g(t‘)\2 du(t) where g is
a polynomial of degree < n. Then g is the projection in L2()
of f on the polynomials of degree < n:

n

o) = Y242 [ tox a0 ducr

J=0

Then =" g(M(0) — f(”)(x) as ¢ | 0. Indeed,

57" g"(0) = ,,n 5n 2 [ o 6t)paft) dut)

_W /Rf(x+5t)pn(t)du(f)-

Now plug in the Taylor series for f(x + dt):



Taylor series

fx +6t) = Z () (il)’ +o((1)")
Then

kn n!
hpon

 kan! 50 0)(x) y
o =0yl CLLTORER)

= () /IR Pa(t) " du(1) + o(1)
_ f(”)(x) +0o(1).

5" g"(0) =

/R F(X + 6t) pu(t) du(t)

At least, if 1 has bounded support. Otherwise assume that f
has at most polynomial growth.



Similarly with Peano derivatives

Suppose that for certain ¢,

n

) =Y = x)+olly = X)) asy - x
k=0

Then ¢, is called the n-th Peano derivative at x. This was
introduced by Peano in 1891.

Then the same approximation result holds, with f(")(x)
replaced by cy.



Typical cases of orthogonal polynomials

» 1 absolutely continuous: dy(x) = w(x) dx.
For instance Jacobi polynomials pa(x) = P (x) with
a,B > —1and

/ " P () PED () (1= x)*(1 = )P dk =0 (n# m).
—1

In particular Legendre polynomials Pn(x) = P%(x)
(constant weight function on [—1, 1]).
»  discrete:

> Pa(X) Pm(x) w(x) =0 (n+# m)

xeX

with X a discrete subset of R.
In particular, X may be finite: X = {xo, X1,...,Xn}. Then
only p,forn=0,1,...,N.



Special cases

> [ 9(t)du(t) = [T, g(t) .
Then pp(t) := Pn(t) (Legendre polynomial).

(2n+ 1)
2n+1nl (uo on

> Ja9( =N N gl/N).
Then p,,( ) = Qn(—Nt+ N;0,0,2N)
(special symmetric renormalized Hahn polynomials).

£ (x) = / F(x + 6t) Po(t) di.

@n+1)  (@N)™' 4

(M (x) =
)= 2 BN+ 1)y M 5

N
x% " f(x+ 6]/N) Qn(N(1 = j/N);0,0,2N).
=N

For n =1 we have p;(t) = t in both cases.



Connection with the continuous wavelet transform
The continuous wavelet transform ®4 is defined by

(®1)(a,b) := |a| /2 /Rf(t)g(a1(t—b)) dt.

Here a,b € R, a # 0, andt the wavelet g is a nonzero function
in (L' N L2)(R) such that [;, g(t) dt = 0.

Now, fix n > 0, let du(t) = w(t) dt with t — tXw(t) in

(L' N L2)(R) for k < n. Then we have a wavelet

g(t) == pn(t) w(t).

Then

/ F(x + 15) pn(t) w(t) dt = 5172 (047)(5, x).
R

and
_knn!

(M (x
e L (@gN)(6,x) — FD(x).



History

1. Cioranescu (1938) for du(x) = w(x) dx. Not picked up .

2. Haslam-Jones (1953): Suppose the n-th Peano derivative
¢y of f at x exists. Let J be a finite interval and let v be a
signed measure on J such that [ tdv(t)=0fork < n
and # 0 for k = n. (For instance dv(t) = pn(t) du(t).) Then

_nl [, f(x+dt) du(t)
310 07 [t du(D)

Not picked up.

3. Lanczos (1956):

3 N2 1 & 5\ j

— — filx+2] 5 — flx

20 (N+;)(N+1)Nj;v < N> N ()
1

and for N — oc: 235/ f(x + st)tat — F(x).
—1

A lot of follow-up: Lanczos derivative.



4. Savitzky & Golay (1964)

For low values of n they find the polynomial g of degree < n
such that Zj’i_,\, |[f(x + 6j/N) — g(j/N)]2 is minimal. Then, for
m < n, 5~Mg(M(0) approximates f™(x).

The authors were interested in spectroscopy. Their publication
in the journal Analytical Chemistry had thousands of citations.

The connection with orthogonal polynomials was later given by
Meer & Weiss (1992).

This work suggests a multi-term extension of our general
approximation theorem of the n-th derivative.



A multi-term variant

Let g still be the orthogonal projection in L?(y) of t — f(x + dt)
on the space of polynomials of degree < n. So

o) = Y242 [ o anp(n ducr

j=0

But now let m < n and consider 6~ g{™(0) as a possible
approximation of f(™(x). Indeed one can show that

1

57 gM(0) = 55 3 (L O+ a0 du(t) ) 57 (0)
d /

X) + 0(5”"“).

For fixed m the approximation becomes better as n gets bigger.
Write D'f := 6~ g(m)(0).



Transfer function for the multi-term variant

Moreover assume that . is an even measure and that n — miis
odd. The transfer function is Hs(w) := e="* DJ"(y — eY).
Then, for some bounded function G:

(m)
P - (0w)" T (0w) " G(ow) )

Hs(w) = (iw)m(1 —m

|Hs(w)| stays close to w for a while and then falls off. For fixed
m the falling off starts at higher w as n gets bigger.

So bigger n means better approximation but more perturbation
by noise. A best suitable n has to be found depending on the
particular problem.



Transfer function in Legendre case for m =1 and
n= 1,3 (log-log plot)
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The multi-term variant for m = 0: smoothing

f(x) is aproximated by

n

/fx+5t)p,()du /fx+6t)Kn(t 0) du(t),
j=0

where

Kn(t,5) = pf(’)hff(s) SN SO EARC

is the Christoffel-Darboux kernel.

Smoothing (earlier called graduation) has old nineteenth
century roots, most in the finite discrete case. It was for
instance important in actuarial sciences. We will change
notation.



Smoothing in the finite discrete case

Let p be a function defined on {—N,—N + 1,..., N} such that
p(—x) = p(x). We go from an input function f to an output
function g by convolution with p:

N
ay) = > fy—x)p(x).
x=—N

In particular, take for some n < N

n

p(6) = Kon(x,0) w(x) = 3 ”"‘fx,f;(o) w(x).
j=0

where the py are orthogonal polynomials on
{—=N,—N+1,..., N} with respect to even weights w(x).
Then the smoothing reproduces the polynomials of degree

< 2n+ 1, but not all of degree 2n + 2. Such smoothing is called
exact for degree 2n + 1.



The characteristic function

For smoothing by convolution with p the characteristic function

is given by
N

d(w) = Z p(x) e~

x=—N

The smoothing is exact for degree 2n + 1 iff
p(w) =1—aw?™2 ... for some a # 0.

Define pm by

mN N

Yo fy-X)pm(x) = D> fy—xi—...=Xm)p(x1) ... p(Xm).
x=—mN X1yeees Xm=—N

De Forest (1878): When can asymptotic behaviour of ppy(x) for
m — oo be described?

Schoenberg (1948): Iff |¢(w)| < 1 for 0 < w < 27.

Then the smoothing is called stable. Then a above is positive.



Greville’s work

Greville (1966) established stability for p(x) corresponding to
the weights of certain special symmetrized Hahn polynomials:

Wo (X) = a+N+x\ (a+N-x
e N + x N — x
(x=—=-N,—-N+1,....,N—1,N)
fora=0,1,2,....

He also took the limit for o — oco. Then

w(x) = <N24IrVX> (x==-N,—-N+1,....N—1_N),

the weights of special symmetrized Krawtchouk polynomials.

However, he did not explicitly use orthogonal polynomials.



The symmetric Krawtchouk case
On the one hand

N
¢(w) = Z e—/xw K2n(X, 0) W(X) =1 aw2n+2 4+ ...
x=—N
=1 — (sin®w/2)"" P(cos® w/2)

for some polynomial P of degree N — n — 1.
On the other hand

N
() = D (=ix) (1) Kan(x,0) w(x) =0 if k <2N—2n
x=—N
(use that poy(x) = (—1)N*¥). Hence
P(w) = (cos®w/2)N=" Q(sin?w/2)

for some polynomial Q of degree n.



The symmetric Krawtchouk case (continued)
Thus P of degree N — n— 1 and Q of degree n are related by

1=2"""P1-2)+(1-2)N""Q(2).
Q(z) = power series of (1 — z)~N+7in z truncated after term of z"
n

=3 WMk ko Qsin?u/2) > 050 6(w) > 0 (0 < w < 7).

k!
k=0
P(1—2)
= power series of z~"~" in 1 — z truncated after term of (1 — z)N-"-1
N—n—1
n+ 1)k
=) R o (1=2)
k=0 '
Hence
1 n+1 & (n+ 1k 1 kK (1 Nen s~ (N = Nk i
=z kzo (=2 +(1-2) koTz.

(identity with two incomplete binomial series)



The identity with two incomplete binomial series

1 —znmi (’”l’i”) (1—z)k+(1—z)’"§<m+:_1)zk.

k=0 k=0

History, variations and extensions considered in Schlosser & K
(2008), triggered by the occurrence of the identity in an
unpublished manuscript (2007) by P. de Jong.

We then traced back the identity to Chaundy & Bullard (1960).

Their proof: 1
m_
1:znz<m+:_1>zm_k‘1(1—z)k
k=0
men—1
1— m - €1_ n—~—1
s-ary (M)A -2)

£=0

Now reason as before (Q follows already by symmetry from P).



Earlier occurrences of the identity: Hering (1868)

A. G. Hering, Summation der n ersten Glieder der binomischen
Reihe mittelst der Theorie der hypergeometrischen Reihen,
Programm der Realschule in Chemnitz, 1868; JFM 01.0089.04.

Durch Substitution dieser Werthe in die obige Gleichung erhalten

wir ans 3) des vorigen §:

Qe " =(—aym—(—g=e(-1—2 1



Earlier occurrences of the identity: de Moivre (1738)

A. de Moivre, The doctrine of chances, London, second ed.,
1738.

But as there is a partictilar cl ncy for:the Sums of a finite num--
ber of Terms: in thofe Series fe Coefficients are figurate- num--
bers beginning at Unity; I fhall ‘fet down the CGanon for thofe Sums.

Let n denote the number of Terms whofe Sum. is to be found,.
and p the rank or order which :hoﬁ: ﬁgujatc numbers obtain; lhen.

she Sym will - bc ‘
I--:r‘ - " L Sl
BT Y N
womtt w2 x” . . a+1 n+¢ -3 &C—
1. 2.3.1—x\3 - 1. 2. 4 :‘:ﬂ

which is to be continued till the papnber of Terms bc =p

The series with n terms of figurate numbers of order p is:

e e

g



Earlier occurrences of the identity: de Montmart
(1713)

Pierre Renard de Montmort, Essay d’analyse sur les jeux de
hasard, 2nd edition, 1713

AvuTrRzr FORMULE

191. L'A N ALY S E m'a encore fourni une autre formule,
Suppofant les mémes dénominations que cideflus, je
1 X aP5e p X #Ph* pp1xable

srouvele fort de Pierre P g TV e~ P

A1 paraxXafdl . pperr.pdns. peiey . s Pb
P LbRf— + &c. Erde
I.2. X84 I.2.3. 444
1x % gxbls" q.941é8
mémele fogu:dePa,ul....."_._”q-‘__rrh_l R TiT
‘I-f"'b_f""‘q" 4. g1 441 g4 bat

YT 12,5, 48000 ¢

-+ &c.



idem, translated

Pierre Renard de Montmort, Essay d’analyse sur les jeux de
hasard, 2nd edition, 1713, translated.

If we suppose that the number of chances that Pierre has to win each point, or if we
wish that his strength be to that of Paul as a to b, we will have likewise the lot of Pierre
by multiplying the terms of this series which are the coefficients of the power m, by the
powers of a & of b which correspond to them (ar. 27); thus the preceding series becomes

a’fubll_i_:rna!u lb+m m. 1 = be'f—m m—21 {u 2 m—§b 4 B llzm 2.m—3 am— -lb +&ec.

which it is ncccxsary lo continue to the number of terms cxprcxscd by ¢, & to divide
by (a + b)™. The formula which designates the lot of Paul is 1 x b™a” + mb™~la

o m 1ym— 2[.”.1 4 m. 'ml 1. ru 2[: m—i ! 4 mem— L.m— 2 mfil; T — 4ﬂ4+&l. continued to

the numbcr ol' terms expresscd by », & dnldcd by (rr + by™.

ANOTHER FORMULA.

191. The Analysis has again furnished me another formula. Supposing the same de-
nominations as above, I find the lot of Pierre = 1(:";‘3"; + &% f’H + f’g’t}:,}“, L &
"f’ﬂ"’,ﬁf{;f‘f?“ 4 ptlpiBoidxats’ | g And likewise of Paul = Lxbtal | axbtal
SEASHE, | RS it pte g,

The formula which expresses the lot of Pierre will have as many terms as there are units

in g, & that which expresses the lot of Paul as many terms as there are units in p.




The problem of points

This comes from a game of chance with two players Pierre and
Paul who have chances p and 1 — p, respectively, of winning
each round. The player who has first won a certain number of
rounds will collect the entire prize. Suppose that the game is
prematurely interrupted when Pierre has to win still n rounds
and Paul m rounds. What is then a fair division of the stake?
First solution: Suppose m+ n — 1 rounds are still played.

Pierre: ma (M pman—k=1 (4 p)k
Paul: 27;3 (m+g—1)p£(1 _p)m+nf£—1

Second solution: Suppose they still play until there is a winner
(at most m+ n— 1 rounds).

Pierre: p >0 (KN p"1(1 - p)*
Paul: (1 -p) ko (M5 PF(1 =)™



Further reading
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Chaundy and Bullard. I, Indag. Math. (N.S.) 19 (2008),
239-261; arXiv:0712.2125v3.



