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Approximations of the derivative f ′(x) (δ ↓ 0)

1. f (x + δ)− f (x)

δ
→ f ′(x) and f (x + δ)− f (x − δ)

2δ
→ f ′(x).

2. Take g(y) = ay + b such that∑N
j=−N |f (x + δj)− g (x + δj)|2 is minimal. Then

a =
3

2N(N + 1
2)(N + 1)δ

N∑
j=−N

f (x + δj) j → f ′(x)

3. Take g(y) = ay + b such that
∫ 1
−1

∣∣f (x + δt)− g(x + δt)
∣∣2 dt

is minimal. Then

a =
3
2δ

∫ 1

−1
f (x + δt)t dt → f ′(x).

Note: For N = 1 item 2 reduces to item 1b.
Note: For δ in item 2 replaced bt δ/N we can see that a in
item 2 tends to a in item 3 as N →∞.



Item 3 as limit of item 2 for N →∞

For N →∞ we have

1
N

N∑
j=−N

∣∣∣∣f (x +
δj
N

)
− g

(
x +

δj
N

)∣∣∣∣2 → ∫ 1

−1

∣∣f (x+δt)−g(x+δt)
∣∣2 dt

and

3
2δ

N2

(N + 1
2)(N + 1)

1
N

N∑
j=−N

f
(

x +
δj
N

)
j
N
→ 3

2δ

∫ 1

−1
f (x+δt)t dt



Graphs of f and g in the three cases



Transfer function
Suppose Dδf is an approximation of f ′(x). The transfer function
associated with Dδ is

Hδ(ω) := e−iωx Dδ(y 7→ eiωy ).

In the examples Hδ(ω) = iω h(δω). Preferably, |h| is close to 1
for small argument and close to 0 for larger argument (low pass
filter).
For the previous three cases the transfer function can be
computed to be:

1. Hδ(ω) = iω e
1
2 iωδ sin(1

2ωδ)
1
2ωδ

and Hδ(ω) = iω
sin(ωδ)

ωδ
.

2. Hδ(ω) = iω
3

2(2N + 1) sin2(δω/2) δω

×
(

sin(Nδω)

N
− sin((N + 1)δω)

N + 1

)
.

3. Hδ(ω) = iω
3
(

sin(ωδ)− ωδ cos(ωδ)
)

(ωδ)3 .



log-log plots of absolute values of transfer functions

For
3

2N(N + 1
2)(N + 1)

N∑
j=−N

f (x + j) j (N = 1,2,3,4 in

black, red, blue and orange, repectively.



Orthogonal polynomials

∫
R

pm(x) pn(x) dµ(x) = hn δm,n, pn(x) = kn xn + · · ·

Let f be given. Minimize
∫
R
∣∣f (x + δt)− g(t)

∣∣2 dµ(t) where g is
a polynomial of degree ≤ n. Then g is the projection in L2(µ)
of f on the polynomials of degree ≤ n :

g(s) =
n∑

j=0

pj(s)

hj

∫
R

f (x + δt) pj(t) dµ(t).

Then δ−n g(n)(0)→ f (n)(x) as δ ↓ 0. Indeed,

δ−n g(n)(0) =
p(n)

n (0)

hn δn

∫
R

f (x + δt) pn(t) dµ(t)

=
kn n!

hn δn

∫
R

f (x + δt) pn(t) dµ(t).

Now plug in the Taylor series for f (x + δt):



Taylor series

f (x + δt) =
n∑

j=0

f (j)(x)
(δt)j

j!
+ o

(
(δt)n)

Then

δ−n g(n)(0) =
kn n!

hn δn

∫
R

f (x + δt) pn(t) dµ(t)

=
kn n!

hn δn

n∑
j=0

δj f (j)(x)

j!

∫
R

pn(t) t j dµ(t) + o(1)

= f (n)(x)
kn

hn

∫
R

pn(t) tn dµ(t) + o(1)

= f (n)(x) + o(1).

At least, if µ has bounded support. Otherwise assume that f
has at most polynomial growth.



Similarly with Peano derivatives

Suppose that for certain ck

f (y) =
n∑

k=0

ck

k !
(y − x)k + o(|y − x |)n) as y → x .

Then cn is called the n-th Peano derivative at x . This was
introduced by Peano in 1891.

Then the same approximation result holds, with f (n)(x)
replaced by cn.



Typical cases of orthogonal polynomials
I µ absolutely continuous: dµ(x) = w(x) dx .

For instance Jacobi polynomials pn(x) = P(α,β)
n (x) with

α, β > −1 and∫ 1

−1
P(α,β)

n (x) P(α,β)
m (x) (1− x)α(1− x)β dx = 0 (n 6= m).

In particular Legendre polynomials Pn(x) = P(0,0)
n (x)

(constant weight function on [−1,1]).
I µ discrete: ∑

x∈X

pn(x) pm(x) w(x) = 0 (n 6= m)

with X a discrete subset of R.
In particular, X may be finite: X = {x0, x1, . . . , xN}. Then
only pn for n = 0,1, . . . ,N.



Special cases
I
∫
R g(t) dµ(t) =

∫ 1
−1 g(t) dt .

Then pn(t) := Pn(t) (Legendre polynomial).

f (n)(x) =
(2n + 1)!

2n+1n!
lim
δ↓0

1
δn

∫ 1

−1
f (x + δt) Pn(t) dt .

I
∫
R g(t) dµ(t) = N−1∑N

j=−N g(j/N).

Then pn(t) = Qn(−N t + N; 0,0,2N)

(special symmetric renormalized Hahn polynomials).

f (n)(x) =
(2n + 1)!

2n+1 n!

(2N)n+1

(2N + 1)n+1
lim
δ↓0

1
δn

× 1
N

N∑
j=−N

f (x + δj/N) Qn
(
N(1− j/N); 0,0,2N

)
.

For n = 1 we have p1(t) = t in both cases.



Connection with the continuous wavelet transform
The continuous wavelet transform Φg is defined by

(Φg f )(a,b) := |a|−1/2
∫
R

f (t) g
(
a−1(t − b)

)
dt .

Here a,b ∈ R, a 6= 0, andt the wavelet g is a nonzero function
in (L1 ∩ L2)(R) such that

∫
R g(t) dt = 0.

Now, fix n > 0, let dµ(t) = w(t) dt with t 7→ tkw(t) in
(L1 ∩ L2)(R) for k ≤ n. Then we have a wavelet

g(t) := pn(t) w(t).

Then ∫
R

f (x + tδ) pn(t) w(t) dt = δ−1/2 (Φg f )(δ, x).

and
kn n!

hn δ
n− 1

2

(Φg f )(δ, x) → f (n)(x).



History
1. Cioranescu (1938) for dµ(x) = w(x) dx . Not picked up .

2. Haslam-Jones (1953): Suppose the n-th Peano derivative
cn of f at x exists. Let J be a finite interval and let ν be a
signed measure on J such that

∫
J tk dν(t) = 0 for k < n

and 6= 0 for k = n. (For instance dν(t) = pn(t) dµ(t).) Then

cn = lim
δ↓0

n!

δn

∫
J f (x + δt) dν(t)∫

J tn dν(t)
. Not picked up.

3. Lanczos (1956):

3
2δ

N2

(N + 1
2)(N + 1)

1
N

N∑
j=−N

f
(

x +
δj
N

)
j
N
→ f ′(x)

and for N →∞:
3
2δ

∫ 1

−1
f (x + δt)t dt → f ′(x).

A lot of follow-up: Lanczos derivative.



4. Savitzky & Golay (1964)

For low values of n they find the polynomial g of degree ≤ n
such that

∑N
j=−N

∣∣f (x + δj/N)− g(j/N)
∣∣2 is minimal. Then, for

m ≤ n, δ−mg(m)(0) approximates f m)(x).

The authors were interested in spectroscopy. Their publication
in the journal Analytical Chemistry had thousands of citations.
The connection with orthogonal polynomials was later given by
Meer & Weiss (1992).

This work suggests a multi-term extension of our general
approximation theorem of the n-th derivative.



A multi-term variant

Let g still be the orthogonal projection in L2(µ) of t 7→ f (x + δt)
on the space of polynomials of degree ≤ n. So

g(s) =
n∑

j=0

pj(s)

hj

∫
R

f (x + δt) pj(t) dµ(t).

But now let m ≤ n and consider δ−m g(m)(0) as a possible
approximation of f (m)(x). Indeed one can show that

δ−m g(m)(0) =
1
δm

n∑
j=m

1
hj

(∫
R

f (x + δt) pj(t) dµ(t)
)

p(m)
j (0)

= f (m)(x) + o(δn−m).

For fixed m the approximation becomes better as n gets bigger.
Write Dm

δ f := δ−m g(m)(0).



Transfer function for the multi-term variant

Moreover assume that µ is an even measure and that n −m is
odd. The transfer function is Hδ(ω) := e−iωx Dm

δ (y 7→ eiωy ).
Then, for some bounded function G:

Hδ(ω) = (iω)m
(

1−
|p(m)

n+1(0)|
|kn+1| (n + 1)!

(δω)n−m+1+(δω)n−m+3 G(δω)
)
.

|Hδ(ω)| stays close to ωm for a while and then falls off. For fixed
m the falling off starts at higher ω as n gets bigger.

So bigger n means better approximation but more perturbation
by noise. A best suitable n has to be found depending on the
particular problem.



Transfer function in Legendre case for m = 1 and
n = 1,3 (log-log plot)



The multi-term variant for m = 0: smoothing

f (x) is aproximated by

n∑
j=0

pj(0)

hj

∫
R

f (x + δt) pj(t) dµ(t) =

∫
R

f (x + δt) Kn(t ,0) dµ(t),

where

Kn(t , s) =
n∑

j=0

pj(t) pj(s)

hj
=

kn

kn+1hn

pn+1(t)pn(s)− pn(t)pn+1(s)

t − s

is the Christoffel-Darboux kernel.

Smoothing (earlier called graduation) has old nineteenth
century roots, most in the finite discrete case. It was for
instance important in actuarial sciences. We will change
notation.



Smoothing in the finite discrete case
Let ρ be a function defined on {−N,−N + 1, . . . ,N} such that
ρ(−x) = ρ(x). We go from an input function f to an output
function g by convolution with ρ:

g(y) =
N∑

x=−N

f (y − x) ρ(x).

In particular, take for some n < N

ρ(x) = K2n(x ,0) w(x) =
n∑

j=0

p2jx p2j(0)

h2j
w(x),

where the pk are orthogonal polynomials on
{−N,−N + 1, . . . ,N} with respect to even weights w(x).
Then the smoothing reproduces the polynomials of degree
≤ 2n + 1, but not all of degree 2n + 2. Such smoothing is called
exact for degree 2n + 1.



The characteristic function
For smoothing by convolution with ρ the characteristic function
is given by

φ(ω) :=
N∑

x=−N

ρ(x) e−ixω.

The smoothing is exact for degree 2n + 1 iff
φ(ω) = 1− aω2n+2 + · · · for some a 6= 0.
Define ρm by

mN∑
x=−mN

f (y−x) ρm(x) :=
N∑

x1,...,xm=−N

f (y−x1−. . .−xm)ρ(x1) . . . ρ(xm).

De Forest (1878): When can asymptotic behaviour of ρm(x) for
m→∞ be described?
Schoenberg (1948): Iff |φ(ω)| < 1 for 0 < ω < 2π.
Then the smoothing is called stable. Then a above is positive.



Greville’s work

Greville (1966) established stability for ρ(x) corresponding to
the weights of certain special symmetrized Hahn polynomials:

wα(x) =

(
α + N + x

N + x

)(
α + N − x

N − x

)
(x = −N,−N + 1, . . . ,N − 1,N)

for α = 0,1,2, . . . .
He also took the limit for α→∞. Then

w(x) =

(
2N

N + x

)
(x = −N,−N + 1, . . . ,N − 1,N),

the weights of special symmetrized Krawtchouk polynomials.

However, he did not explicitly use orthogonal polynomials.



The symmetric Krawtchouk case
On the one hand

φ(ω) =
N∑

x=−N

e−ixω K2n(x ,0) w(x) = 1− aω2n+2 + · · ·

= 1− (sin2 ω/2)n+1 P(cos2 ω/2)

for some polynomial P of degree N − n − 1.
On the other hand

φ(k)(π) =
N∑

x=−N

(−ix)k (−1)x K2n(x ,0) w(x) = 0 if k < 2N − 2n

(use that p2N(x) = (−1)N+x ). Hence

φ(ω) = (cos2 ω/2)N−n Q(sin2 ω/2)

for some polynomial Q of degree n.



The symmetric Krawtchouk case (continued)
Thus P of degree N − n − 1 and Q of degree n are related by

1 = zn+1 P(1− z) + (1− z)N−n Q(z).

Q(z) = power series of (1− z)−N+n in z truncated after term of zn

=
n∑

k=0

(N − n)k

k !
zk , so Q(sin2 ω/2) > 0 so φ(ω) > 0 (0 ≤ ω < π).

P(1− z)

= power series of z−n−1 in 1− z truncated after term of (1− z)N−n−1

=
N−n−1∑

k=0

(n + 1)k

k !
(1− z)k .

Hence

1 = zn+1
N−n−1∑

k=0

(n + 1)k

k !
(1− z)k + (1− z)N−n

n∑
k=0

(N − n)k

k !
zk .

(identity with two incomplete binomial series)



The identity with two incomplete binomial series

1 = zn
m−1∑
k=0

(
n + k − 1

k

)
(1−z)k +(1−z)m

n−1∑
k=0

(
m + k − 1

k

)
zk .

History, variations and extensions considered in Schlosser & K
(2008), triggered by the occurrence of the identity in an
unpublished manuscript (2007) by P. de Jong.
We then traced back the identity to Chaundy & Bullard (1960).
Their proof:

1 = zn
m−1∑
k=0

(
m + n − 1

k

)
zm−k−1(1− z)k

+ (1− z)m
n−1∑
`=0

(
m + n − 1

`

)
z`(1− z)n−`−1

= znPm,n(1− z) + (1− z)mPn,m(z).

Now reason as before (Q follows already by symmetry from P).



Earlier occurrences of the identity: Hering (1868)

A. G. Hering, Summation der n ersten Glieder der binomischen
Reihe mittelst der Theorie der hypergeometrischen Reihen,
Programm der Realschule in Chemnitz, 1868; JFM 01.0089.04.



Earlier occurrences of the identity: de Moivre (1738)
A. de Moivre, The doctrine of chances, London, second ed.,
1738.

The series with n terms of figurate numbers of order p is:

n−1∑
k=0

(
p + k − 1

k

)
xk .



Earlier occurrences of the identity: de Montmart
(1713)

Pierre Renard de Montmort, Essay d’analyse sur les jeux de
hasard, 2nd edition, 1713



idem, translated
Pierre Renard de Montmort, Essay d’analyse sur les jeux de
hasard, 2nd edition, 1713, translated.



The problem of points

This comes from a game of chance with two players Pierre and
Paul who have chances p and 1− p, respectively, of winning
each round. The player who has first won a certain number of
rounds will collect the entire prize. Suppose that the game is
prematurely interrupted when Pierre has to win still n rounds
and Paul m rounds. What is then a fair division of the stake?
First solution: Suppose m + n − 1 rounds are still played.
Pierre:

∑m−1
k=0

(m+n−1
k

)
pm+n−k−1(1− p)k

Paul:
∑n−1

`=0
(m+n−1

`

)
p`(1− p)m+n−`−1

Second solution: Suppose they still play until there is a winner
(at most m + n − 1 rounds).
Pierre: p

∑m−1
k=0

(n+k−1
k

)
pn−1(1− p)k

Paul: (1− p)
∑n−1

k=0
(m+k−1

k

)
pk (1− p)m−1
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