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These notes concentrate on the paradigm of spherical functions on Riemannian symmetric spaces.
This paradigm has led to the notion of special functions associated with root systems. The first
sections deal with older work on the interaction between spherical functions on rank one symmetric
spaces and special functions (q=1) in one variable. The (spectacular) developments in the higher
rank case and the q c.q. quantum case are summarized in two charts: one for q = 1 and one
for the q-case. See also the related lectures by W. Miller and C. Dunkl during this program (at
http://www.ima.umn.edu/digital-age/).

1. Spherical harmonics

In Higher Transcendental functions the only material about the connection between special func-
tions and group theory occurs in the (excellent) chapter on spherical harmonics. I summarize below
some of the definitions and results (not exactly following HTF).
Sd−1 unit sphere in Rd.
Orthogonal group O(d) acts on Rd and acts transitively on Sd−1.
Subgroup O(d− 1) := {T ∈ O(d) | Te1 = e1} (e1, . . . , ed standard basis of Rd).
Inner product on L2(Sd−1):

〈f1, f2〉 :=
1
ωd

∫
Sd−1

f1(ξ) f2(ξ) dω(ξ),

where dω(ξ) is the surface element on Sd−1 and ωd is the total area of Sd−1.
(Tf)(ξ) := f(T−1ξ) (T ∈ O(d)).
〈Tf1, T f2〉 = 〈f1, f2〉 (T ∈ O(d)).

Definition Hn = {spherical harmonics of degree n on Sd−1}
:= {restrictions to Sd−1 of harmonic homogeneous polynomials of degree n on Rd}.

Theorem L2(Sd−1) =
⊕∞

n=0Hn, orthogonal direct sum;
is the unique orthogonal decomposition of L2(Sd−1) into irreducible subspaces with respect to O(d).

The O(d − 1)-invariants in Hn form 1-dimensional subspace spanned by ξ 7→ C
1
2d−1
n (〈ξ, e1〉)

(Gegenbauer polynomial).

Nn := dimHn = (2n+ d− 2)
(n+ d− 3)!
(d− 2)!n!

.

First stage of addition formula

Let f1, f2, . . . , fN be orthonormal basis of Hn. Then:

C
1
2d−1
n (〈ξ, η〉)

C
1
2d−1
n (1)

=
1
Nn

Nn∑
k=1

fk(ξ) fk(η).



–2–

Second stage of addition formula
Write ξ ∈ Sd−1 as ξ = cos θ e1 + sin θ ξ′,
where 0 ≤ θ ≤ π, ξ′ ∈ Sd−2 := {ξ ∈ Sd−1 | 〈ξ, e1〉 = 0}.
Then Hn =

⊕n
j=0Hn,j , the unique decomposition of Hn into irreducible subspaces with respect

to O(d− 1).
Hn,j consists of the functions

cos θ e1 + sin θ ξ′ 7→ C
1
2d−1+j
n−j (cos θ) (sin θ)j g(ξ′) (g ∈ Hj(Sd−2)).

For each j take an orthonormal basis {fj,k} of Hn,j . Then

C
1
2d−1
n (〈ξ, η〉)

C
1
2d−1
n (1)

=
1
Nn

n∑
j=0

dimHn,j∑
k=1

fj,k(ξ) fj,k(η).

Third stage of the addition formula
Take ξ = cos θ1 e1+sin θ1 ξ′, η = cos θ2 e1+sin θ2 η′, and apply the first stage of the addition formula,
with d replaced by d − 1, to the inner sum in the second stage of the addition formula. Finally
put 〈ξ′, η′〉 = cosφ. Then we get for certain constants cn,j (which can be computed explicitly) the
addition formula for Gegenbauer polynomials:

C
1
2d−1
n (cos θ1 cos θ2 + sin θ1 sin θ2 cosφ)

=
n∑
j=0

cn,j C
1
2d−1+j
n−j (cos θ1) (sin θ1)j C

1
2d−1+j
n−j (cos θ2) (sin θ2)j C

1
2d−

3
2

j (cosφ).

This extends analytically to real d > 2.
For d = 3 (replace C0

j (cosφ) by cos(jφ)) we get the addition formula for Legendre polynomials.

2. Relationship to representation theory

Let G be a compact group, K a compact subgroup, π an irreducible (finite dimensional) unitary
representation of G on a complex vector space V (with hermitian inner product), and assume that
the dimension of the space of K-invariants in V is one.
Let e1, . . . , ed be an orthonormal basis of V with e1 K-invariant. Let x, y ∈ G.
πij(x) := 〈π(x)ej , ei〉 (matrix element of π).
φπ(x) := π11(x) = 〈π(x)e1, e1〉 spherical function, is K-biinvariant).

φπ(y−1x) =
∑d
j=1 πj1(x)πj1(y) (first stage of addition formula for φπ).

φπ(x)φπ(y) =
∫
K
φπ(xky) dk (product formula for φπ).

Suppose that there is a compact subgroup M of K and a subset A+ of G such that:
(a) Each irreducible representation of K occurring in π contains the trivial representation of M

precisely once.
(b) am = ma (a ∈ A+, m ∈M) and G = KA+K.
Then there is an orthonormal basis of V given by
f1, f21, . . . , f2d2 , . . . . . . , fj1, . . . , fjdj , . . . . . . , fe1, . . . , fede ,
with f1 K-invariant, and where for each j the vectors fj1, . . . , fjdj span a subspace of V which is
invariant and irreducible with respect to K, and where fj1 is M -invariant for each j.
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Then ψj(k) := πj1;j1(k) (k ∈ K) is a spherical function for K with respect to M

and πjr;1(a) = 0 (a ∈ A+) if r 6= 1.

Then we get from the first stage of the addition formula the second stage and next the third stage
of the addition formula for φπ:

φπ(a−1
2 ka1) =

e∑
j=1

πj1,1(a1)πj1;1(a2)ψj(k) (k ∈ K, a1, a2 ∈ A+).

3. Gelfand pairs and symmetric pairs

Let G be a locally compact group and K a compact subgroup.

(G,K) is called a Gelfand pair if each irreducible (possibly infinite dimensional) unitary represen-
tation of G contains the trivial represenation of K at most once.

If π is an irreducible unitary representation of G on a Hilbert space H(π) and if eπ ∈ H(π) is a
K-fixed unit vector then

φπ(x) := 〈π(x)eπ, eπ〉 (x ∈ G)

is called a spherical function on G with respect to K and the spherical functions are precisely the
nonzero continuous solutions φ of

φ(x)φ(y) =
∫
K

φ(xky) dk (x, y ∈ G)

which are moreover positive definite functions on G.

Definition A symmetric space is a Riemannian manifold X such that for all p ∈ X there is an
isometry of X which leaves p fixed and which reverts the geodesics through p.

Choose ξ0 ∈ X. Then X = G/K with G the connected component of the group of isometries of
X and K the stabilizer of ξ0 in G. Then G and K are Lie groups, the pair (G,K) is called a
symmetric pair and this pair is in particular a Gelfand pair.

There is a connected abelian Lie subgroup A of G such that

G = KAK (Cartan decomposition).

dim(A) is called the rank of (G,K). The abelian group A parametrizes the K-orbits in G/K (up
to the action of a finite subgroup: the Weyl group or, in the compact case, an extension of the
Weyl group).

There are three types of irreducible symmetric spaces:

(a) of non-compact type (e.g. SL(2,R)/SO(2), SO0(d, 1)/S(O(d)×O(1)));

(b) of compact type (e.g. SU(2)/SO(2), SO(d+ 1)/SO(d));

(c) of Euclidean type (the spaces (SO(d) ◦ Rd)/SO(d)).

In cases (a) and (b) the Lie-group G is semisimple. Moreover there is a duality between cases (a)
and (b), where the dual pairs have the form G/K and U/K with the same K and with G and U
non-compact respectively compact forms of the same complex semisimple Lie group.
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The compact symmetric spaces of rank 1 (equivalently the compact 2-point homogeneous metric
spaces) have Jacobi polynomials as spherical functions:

ξ 7→ P
(α,β)
n (cos(d(ξ, ξ0))

P
(α,β)
n (1)

.

Here ξ ∈ X and d is the Riemannian distance on X, where d is normalized such that the maximal
distance between two points on X equals π.

For these spaces we have G = KAK with A ' T (the circle group).

Let M := {k ∈ K | ∀a ∈ A ka = ak}.
Then, for all these rank one spaces, (K,M) is a Gelfand pair (but generally not a symmetric pair).

The following table gives the classification and relevant data for the compact rank one symmetric
spaces.

G K M α β

SO(d) SO(d− 1) SO(d− 2) 1
2d−

3
2

1
2d−

3
2

SO(d) S(O(d− 1)×O(1)) ' O(d− 1) O(d− 2) 1
2d−

3
2 − 1

2

SU(d) S(U(d− 1)× U(1)) ' U(d− 1) U(d− 2) d− 2 0

Sp(d) Sp(d− 1)× Sp(1) (Sp(d− 1)× Sp(1))∗ 2d− 3 1

F4 Spin(9) Spin(7) 7 3

4. Addition formula on the unit sphere in a complex vector space

In view of the previous results it seems now an easy task to work out explicitly the addition formula
for Jacobi polynomials for (α, β) as listed in the table above. In particular we can try the case of
the complex projective space SU(d)/U(d− 1). However, remark that functions on SU(d)/U(d− 1)
can be identified with U(1)-invariant functions on U(d)/U(d−1), which is the sphere S2d−1) in Cd,
and which is a Gelfand pair, also occurring as K/M for G = SU(d+ 1). Thus it looks both easier
(in view of analogy with the case of classical spherical harmonics) and more general to treat the
case of spherical harmonics on the sphere U(d)/U(d− 1).

S2d−1 unit sphere in Cd.
Unitary group U(d) acts on Cd and acts transitively on S2d−1.

Subgroup U(d− 1) := {T ∈ U(d) | Te1 = e1} (e1, . . . , ed standard basis of Cd).

Definition

Hm,n := {homogeneous polynomials of degree m in z1, . . . , zd, of degree n in z1, . . . , zd,

annihilated by ∂2

∂z1 ∂z1
+ · · ·+ ∂2

∂zd ∂zd
, restricted to S2d−1}.

Theorem L2(S2d−1) =
⊕∞

m,n=0Hm,n, orthogonal direct sum;
is the unique orthogonal decomposition of L2(S2d−1) into irreducible subspaces with respect to
U(d).
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The U(d − 1)-invariants in Hm,n form 1-dimensional subspace spanned by disk polynomials ξ 7→
Rd−2
m,n(〈ξ, e1〉), which are expressed in terms of Jacobi polynomials as follows.

Rαm,n(re
iθ) :=

P
(α,|m−n|)
min(m,n) (2r2 − 1)

P
(α,|m−n|)
min(m,n) (1)

r|m−n| ei(m−n)θ.

These are orthogonal on the unit disk with respect to the measure (1− x2 − y2)α dx dy.

Addition formula for disk polynomials (R. L. Sapiro, 1968)

Rαm,n(cos θ1 eiφ1 cos θ2 eiφ2 + sin θ1 sin θ2 r eiψ) =
m∑
k=0

n∑
l=0

cαm,n,k,l

× (sin θ1)k+lRα+k+l
m−k,n−l(cos θ1 eiφ1) (sin θ2)k+lRα+k+l

m−k,n−l(cos θ2 eiφ2)Rα−1
k,l (r eiψ).

The above result was independently obtained by the author in 1972. By easy manipulations
(differentiation and analytic continuation) this formula yields:

Addition formula for Jacobi polynomials (Koornwinder (1972))

P (α,β)
n (2 cos2 θ1 cos2 θ2 + 2 sin2 θ1 sin2 θ2 r

2 + sin 2θ1 sin 2θ2 r cosφ− 1)

=
n∑
k=0

k∑
l=0

c
(α,β)
n,k,l (sin θ1)

k+l (cos θ1)k−l P
(α+k+l,β+k−l)
n−k (cos 2θ1)

×(sin θ2)k+l (cos θ2)k−l P
(α+k+l,β+k−l)
n−k (cos 2θ2)

×P (α−β−1,β+k−l)
l (2r2 − 1) rk−l P (β− 1

2 ,β−
1
2 )

k−l (cosψ)

.

5. Positivity results

Let α ≥ β ≥ −1
2 . Then

P
(α,β)
n (x)

P
(α,β)
n (1)

P
(α,β)
n (y)

P
(α,β)
n (1)

=
∫ 1

−1

P
(α,β)
n (z)

P
(α,β)
n (1)

dµx,y(z) (x, y ∈ [−1, 1])

with positive measure µx,y. Furthermore,

P (α,β)
m (x)P (α,β)

n (x) =
m+n∑

l=|m−n|

am,n(l)P
(α,β)
l (x) with am,n(l) ≥ 0.

Both these results of Gasper are implied by the addition formula for Jacobi polynomials (the first
already by the product formula).

Morally, an addition formula for an orthogonal system of special functions encodes all information
for nice harmonic analysis in terms of this system (similar to harmonic analysis for K-biinvariant
functions on G in case of a Gelfand pair (G,K)).
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6. Spherical functions on non-compact symmetric spaces of rank one

Let α ≥ β ≥ −1
2 and let ρ := α+ β + 1. Jacobi functions are defined by

φ
(α,β)
λ (t) :=2F1

[ 1
2 (ρ+ iλ), 1

2 (ρ− iλ)
α+ 1

;− sinh2 t

]
=cα,β(λ)O(e(iλ−ρ)t) + cα,β(−λ)O(e(−iλ−ρ)t) as t→∞.

Then we have a generalized Fourier transform pair
f̂(λ) =

∫ ∞

0

f(t)φ(α,β)
λ (t) (sinh t)2α+1 (cosh t)2β+1 dt,

f(t) = const.
∫ ∞

0

f̂(λ)φ(α,β)
λ (t)

dλ

|cα,β(λ)|2
.

The Jacobi function transform f 7→ f̂ can be factorized as f̂ = (F ◦ Aα,β)(f), where Aα,β is the
generalized Abel transform and F is the classical Fourier-cosine transform. The generalized Abel
transform can be written as the composition of two Weyl-type fractional integral transforms.

All these results can be obtained in a meaningful group theoretical context on a rank one
symmetric space of the non-compact type if (α, β) is as listed above.

See for various aspects of and approaches to the above results H. Weyl, Mehler-Fok, Harish-
Chandra, Helgason, Flensted-Jensen, Koornwinder.

7. Spherical functions on finite groups and on p-adic groups

There are significant examples of Gelfand pairs (G,K) with G a finite group. For instance, G is
the symmetric group or it is defined in terms of symmetric groups or G is a classical group over
a finite field (a Chevalley group). For such Gelfand pairs Krawtchouk and Hahn polynomials and
their q-analogues can be obtained as spherical functions, and addition formulas can be derived for
them. See D. Stanton and Dunkl.

One can also obtain Gelfand pairs with G a semisimple group over the field of p-adic numbers.
For G = SL(2) the space G/K can be simply described as a homogeneous tree. In that case
the spherical functions are functions n 7→ pn(x), where pn is a special Bernstein-Szegö polynomial,
namely the q = 0 limit of a q-ultraspherical polynomial. The degree n of pn(x) has an interpretation
as the graph distance between a fixed point and an arbitrary point on the homogeneous tree.

8. From K-biinvariant analysis on G to W -invariant analysis on Rl

Let (G,K) be a symmetric pair of the noncompact type. Then G is a noncompact semisimple Lie
group, K is a maximal compact subgroup, and G = KAK with A ' Rl an abelian subgroup.
Let M ′ be the normalizer of A in K and M the centralizer of A in K, i.e.,

M ′ := {k ∈ K | kAk−1 = A}, M := {k ∈ K | ∀a ∈ A kak−1 = a}.

Then M is a normal subgroup of M ′ and the (finite) quotient group W := M ′/M is called the
Weyl group associated with the root system R for (G,K). The group W acts on A.

Example G = SL(3,R), K = SO(3), A = {diag(et1 , et2 , et3) | t1 + t2 + t3 = 0} ' R2. Then R
is a root system of type A2, this is a set of 6 vectors in R2 (the root vectors) of equal length, with
neighbours making angles π/3 with each other. The Weyl group W is isomorphic to the symmetric
group S3. A fundamental domain for the action of W on R2 is the so-called positive Weyl chamber,
a region bounded by two half lines from the origin, making an angle π/3 with each other. The two
half lines (the walls of the Weyl chamber) are each perpendicular to some root vector. The Weyl
group is generated by the reflections in the walls of the positive Weyl chamber.
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The mapping F 7→ f = F |A identifies the K-biinvariant functions F on G with the W -invariant
functions on A. Thus the harmonic analysis for K-biinvariant functions on G can be reformulated
as harmonic analysis for W -invariant functions on A. One of the data about the pair (G,K) which
is thus transfered to the pair (A,W ) is a multiplicity function, i.e., a W -invariant function on
the root system R assuming nonnegative integer values. In particular, the Casimir operator on
G (equivalently the Laplace-Beltrami operator on G/K) and the Haar measure on G give rise to
a second order differential operator respectively a positive measure on the positive Weyl chamber
(both explicit) which depend on this multiplicity function. The multiplicity functions induced from
symmetric pairs are quite special.

One can try to do the harmonic analysis for W -invariant functions on A more generally with
respect to an arbitrary multiplicity function, W -invariant and assuming nonnegative real values.
The same explicit expressions for the second order differential operator and for the measure can
then be used, but with the more general multiplicity function.

For G compact, similar things can be said, but now A ' T l is compact, a torus. Also, instead
of a positive Weyl chamber we have a so-called Weyl alcove within A on which our functions will
live. For instance, in our example above, if G is replaced by SU(3) then A is replaced by T2 and
the Weyl alcove becomes a region within T2 which is an equilateral triangle.

9. Special functions associated with root systems: two charts

On the next two pages I give the historical development of special functions associated with root
systems in two charts: first for the case q = 1 and next for the q-case. Of course, not all names,
influences and interrelations can be squeezed in a one-page chart. However, I welcome suggestions
about possible omissions. Eventually, I intend to add references to the names and results in these
charts.

Concerning the Macdonald polynomials I want to observe that Macdonald, in 1987 introduced
the An Macdonald polynomials in a quite different way as the Macdonald polynomials for general
root systems (including An). The An polynomials were defined in a combinatorial-algebraic way,
in the framework of symmetric functions of infinitely many variables, while the definition of the
Macdonald polynomials for general root systems has a more analytic flavour. (For An he proved
the equivalence of both definitions.) The approach to the An case has led to very deep results, for
which the analogues in other root systems remain open, because the analogue of the combinatorial-
algebraic definition is missing.

Before giving the charts, I mention some developments not covered by these charts:

Other developments for q = 1
1. Gelfand’s hypergeometric functions;
2. hypergeometric series associated with root systems (Biedenharn, Louck, Milne, Gustafson);
3. matrix-valued spherical functions (recent development by Grünbaum, Pacharoni, Tirao);
4. solutions of Painlevé equations (see Clarkson’s lecture).

Recent developments in the q-case
1. quantum dynamical Yang-Baxter equation, exchange construction, dynamical quantum groups

and related interpretations of q-special functions (Etingof & Varchenko, Etingof & Schiffmann,
Koelink & Rosengren, Koornwinder & Touhami);

2. elliptic quantum groups and elliptic hypergeometric functions (Frenkel & Turaev, Etingof &
Varchenko & Schiffmann, Spiridonov), see Spiridonov’s lecture;

3. spherical functions on non-compact quantum groups and non-terminating analogues of Mac-
donald polynomials (Stokman).
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