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The audio coding scheme MPEG 1 Layer-3, which was standardized in 1993 and which is
popularly known as MP3, has had an enormous impact for facilitating electronic distribution
of music over the internet. Although various other more efficient coding schemes have been
developed and implemented since then, the mp3 file format is still the only format for compressed
audio files which is available on all platforms.

A lot of mathematics is being used in the MP3 coding. Various popularizing papers have
appeared on this. However, it is not easy to get access to the precise formulation of the coding
scheme and the precise mathematics behind it. Reasons for this are, on the one hand that the
algorithm was developed by a community of signal analysts and computer scientists who use
a terminology not familiar to mathematicians, on the other hand that this was developed in a
commercial world, where access is far from free.

The MPEG 1 audio coding scheme [1] has started with Layer-1 and was soon extended to
Layer-2, and next Layer-3. The higher Layers brought further compression while keeping a
reasonable sound quality, among others by implementing the so-called psycho-acoustical model
together with a better frequency resolution. Already in Layer-1, and preserved in the higher
Layers, there is a splitting of the input signal into 32 subbands of equal frequency width. Re-
construction from the signals in these 32 subbands to the full signal is not completely exact,
but by a very clever subband encoding/decoding scheme it is almost exact. The most detailed
mathematical description of this scheme can be found in lecture notes by Schniter [4], available
online but not formally published. Another reference is Pan [2]. See also the Remark at the end
of this note.

The subband encoding/decoding scheme uses a prototype low-pass filter given by a list of
513 coefficients C[i] (i = 0, 1, . . . , 512) for the analysis filter (see [1, Annex C, Table C.1]), which
are between −0.04 and 0.04 and which are given with 9 decimals. Similarly, for the synthesis
filter there is a list (see [1, Annex B, Table B.3]) of 513 coefficients D[i] (i = 0, 1, . . . , 512), for
which it turns out that D[i] = 32C[i]. There is more redundancy in the two tables because it
turns out that C[i] = −C[512 − i] if 64 is not a divisor of i, and C[i] = C[512 − i] otherwise.
Furthermore, C[0] = C[512] = 0.

∗This is a slightly adapted version of my contribution to Liber Amicorum Piet Hemker, CWI, Amsterdam,
November 17, 2006.
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Define hl+32k := 1
2(−1)bk/2cC[l + 32k] (l = 0, 1, . . . , 31, k = 0, 1, . . . , 15). Then hi = h512−i

and the ListPlot of the hi (see Figure 1) is smooth. The algorithm uses the non-smooth C[i]
instead of the hi for efficiency, in order to minimize the number of multiplications.

Figure 1: ListPlot for the filter coefficients hi

The question I want to discuss in this note is how the coefficients hi, in so many decimals,
were obtained. Is there possibly a formula or algorithm yielding these coefficients? The official
document [1] does not reveal the recipe being used1. However, see the Remark at the end of
this note.

In order to get some idea about a possible answer to my question, let us first discuss the
qualitative properties which the hi should satisfy in order make possible the splitting of the
signal into subbands with little frequency overlap, and allowing also almost exact reconstruction
of the signal. Let φ(ξ) be the cosine polynomial which is essentially the Fourier transform of
the hi:

φ(ξ) := h256 + 2
255∑
n=1

h256−n cos(nξ).

This is 2π-periodic and even, so we only need to draw the graph of φ on [0, π], which we will
consider separately on [0, π/32] and on [π/32, π], see Figures 2 and 3. The ideal Fourier transform
is given by the block function in red in Figure 2: the function equal to 1 on [−π/64, π/64] and
equal to 0 outside this interval. This is not attainable with only finitely many filter coefficients.
However, as shown by Figure 3, φ(ξ) almost vanishes for ξ outside the interval [−π/32, π/32].
This will cause that the subbands have some frequency overlap, but only if they are neighbouring.
The clever subband encoding/decoding scheme is able to handle this during reconstruction.

1Schniter [4, p.16] writes: “Unfortunately, the standards do not describe how this filter was designed”
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Figure 2: The Fourier transform φ(ξ) of the hi on [0, π/32]

Figure 3: The Fourier transform φ(ξ) of the hi on [π/32, π]

For optimal filter properties we should have the normalization

1
2π

∫ π

−π
φ(ξ)2 dξ =

511∑
n=1

h2
n = h · h ≈ 1

64
, (1)

while

1
2π

∫ 2π−π/32

π/32
φ(ξ)2 dξ =

31
32

511∑
n=1

h2
n −

∑
n6=m

hnhm
sin((n−m)π/32)

(n−m)π
= h · h−Kh · h ≈ 0, (2)

where Kmn :=
sin((n−m)π/32)

(n−m)π
if m 6= n, and = 1

32 if m = n.
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The explicit hn yield for (1) and (2), respectively:

h · h− 1
64

= 7.2× 10−9, h · h−Kh · h = 2.9× 10−12. (3)

There is another condition necessary for almost perfect reconstruction:

63∑
k=0

φ(ξ + kπ/32)2 ≈ 1 for all ξ. (4)

This implies (1). Furthermore, because of the symmetry and the almost vanishing of φ outside
[−π/32, π/32], (4) is equivalent to the condition

φ(ξ)2 + φ(π/32− ξ)2 ≈ 1 if ξ ∈ [0, π/32]. (5)

In terms of the hn condition (4) is equivalent to

511−32l∑
m=32l+1

hm−32l hm+32l ≈ 1
64δl,0 (l = 0, 1, . . . , 7), (6)

where the case l = 0 is condition (1). For the explicit hn and for l = 1, 2, . . . , 7 the left-hand
side of (6) respectively takes the values

6.7×10−8, −1.8×10−8, 7.6×19−8, −9.6×10−9, −6.4×10−7, 2.9×10−8, 1.9×10−9.
(7)

For a direct computation of the coefficients hn satisfying conditions (2) and (6) I propose to
start with (2). Let us try to solve this by looking for eigenvectors of the symmetric Toeplitz ma-
trix K which have eigenvalue approximately 1 and which are even (i.e, invariant under reversion
of the coordinates). Numerically this is not an easy exercise. A computation in Mathematica
suggests that K has 9 eigenvalues equal to 1 up to 6 decimals and 487 eigenvalues equal to 0 up
to 6 decimals. The other 15 eigenvalues are between 10−6 and 1 − 10−6. By a lucky accident
there is an explicit symmetric tridiagonal matrix T commuting with K, given by

Tj+1,j = Tj,j+1 = 1
2j(511− j), Tj,j = (256− j)2 cos(π/32), (8)

see Slepian [5, §2.2]. Eigenvectors of K will also be eigenvectors of T . Slepian calls these
eigenvectors discrete prolate spheroidal sequences. Mathematica readily produces an explicit
orthormal system of eigenvectors of T which are either even or odd. This yields an othonormal
system of 5 even eigenvectors of T , say v(1), v(2), v(3), v(4), v(5), which are eigenvectors of K with
eigenvalue approximately 1.

Now we look for a linear combination v =
∑5

j=1 cjv
(j) which minimizes

7∑
l=0

(
511−32l∑

m=32l+1

vm−32l vm+32l − 1
64δl,0

)2

.
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We can find this in Mathematica by using the procedure FindMinimum, where we take as starting
values (c1, c2, c3, c4, c5) = (1,−1, 1, 0, 0). The vector v thus obtained has marvellous properties,
very similar to the properties of h. Figures 1 and 2 are exactly the same for v and its Fourier
transform (which we will call ψ) as for h and φ. Figure 3 even becomes better for ψ than for φ:
|ψ(ξ)| ≤ 10−7 for ξ ∈ [π/32, π]. The values for (3) with h being replaced by v become

v · v − 1
64

= −5.4× 10−11, v · v −Kv · v = 5.4× 10−14.

For l = 1, 2, . . . , 7 the left-hand side of (6) with h being replaced by v takes the respective values
(compare (7)):

−7.0×10−11, −4.2×10−10, 1.2×19−8, −2.7×10−8, −9.1×10−7, 6.3×10−8, 1.4×10−9.

The l2 distance between h and v is 7.5× 10−4.
Altogether, it turns out that there is a rather quick way to find explicit filter coefficients in

sufficient precision which are certainly as good as the filter coefficients given in [1]. But what is
different for the hn compared to the vn is that the vector h, expanded in terms of the eigenbasis of
K, has also nonvanishing terms with eigenvectors of K corresponding to eigenvalues significantly
smaller than 1.

Let me conclude with a few observations which, for the moment, are still miracles for me:

1. Why are φ and ψ almost equal to 1 on [−π/128, π/128]?

2. Why can condition (4) or equivalently (5) be satisfied so well within the approximately 1
eigenspace of K, which is (restricting to the case of even eigenvectors) only 5-dimensional?

3. Why does the vector w with w256 := h256 and

wn :=
sin((n− 256)h256)

π(n− 256)
exp(−h2

256(n− 256)2) (n 6= 256)

give a very good approximation to h or v, however with Fourier transform behaving con-
siderably worse than φ or ψ?

Remark After I finshed the earlier version (November 2006) of this note, I learnt that L. van
de Kerkhof 2 (Philips, Eindhoven) has generated the filter coefficients as listed in [1]. He kindly
wrote me that the standard in [1] was based on requirements described for instance in Rothweiler
[3], and that an iterative gradient method was used for optimalizing the filter coefficients.
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