q-SPECIAL FUNCTIONS, A TUTORIAL

H. T. KOELINK AND T. H. KOORNWINDER

SUMMARY

This tutorial provides the necessary prerequisites on q-special functions for understanding the lectures by Koornwinder and Koelink at this conference (see the summaries in this Volume).

Fix a base q, for convenience 0 < q < 1. A q-shifted factorial $(a;q)_k$ is a product of k factors $1 - aq^j$ (j = 0, 1, ..., k - 1). The limit for $k \to \infty$ is a meaningful infinite product denoted by $(a;q)_{\infty}$. A q-hypergeometric series is a sum $\sum_{k=0}^{\infty} c_k$ such that $c_0 = 1$ and c_{k+1}/c_k is rational in q^k . Such a series is denoted by ${}_r\phi_s(a_1, \ldots, a_r; b_1, \ldots, b_s; q, z)$, which stands for a power series in z with coefficients given by quotients involving a.o. q-shifted factorials $(a_i;q)_k$ and $(b_j;q)_k$. After some rescaling this tends to a hypergeometric series ${}_rF_s(a_1, \ldots, a_r; b_1, \ldots, b_s; z)$ as $q \uparrow 1$. The q-binomial series ${}_1\phi_0(a;;q,z)$ can be evaluated as the quotient of two infinite q-products. By specialization or limit transition one gets an evaluation of ${}_1\phi_0(0;;q,z)$ and ${}_0\phi_0(;;q,z)$, which are q-exponential functions.

A *q*-integral $\int_0^1 f(t) d_q t$ is defined as the sum over k from 0 to ∞ of $f(q^k) (q^k - q^{k+1})$. The evaluation formula for the *q*-binomial series can equivalently be written as a *q*-analogue of the integral representation for the beta function.

The $_2\phi_1 q$ -hypergeometric series was introduced by Heine as a q-analogue of the Gaussian hypergeometric series $_2F_1$. Analogous to Euler's integral representation it has a q-integral representation. There are also q-analogues of the various transformation formulas and the summation formula (at z = 1) for the $_2F_1$.

Little q-Jacobi polynomials are orthogonal polynomials on the interval [0, 1] with respect to the q-beta measure. In particular, in the little q-Legendre case there is orthogonality measure $d_q x$ on [0, 1]. These polynomials are expressible as terminating $_2\phi_1$'s. They correspond to Jacobi polynomials of argument 1-2x(i.e., living on [0,1]). Corresponding to Jacobi polynomials living on an arbitrary bounded interval we have big q-Jacobi polynomials which are expressible as $_3\phi_2$'s. Little and big q-Jacobi polynomials have many properties similar to those of the classical orthogonal polynomials (Jacobi, Laguerre and Hermite). For instance, they are eigenfunctions of a second order q-difference operator.

The most general class of orthogonal polynomials which is yet considered as 'classical' is formed by the Askey-Wilson polynomials. This is a four-parameter

¹⁹⁹¹ Mathematics Subject Classification. Primary 33D15, 33D45.

This paper is in final form and no version of it will be submitted for publication elsewhere.

¹

family of orthogonal polynomials on the interval [-1, 1] with respect to a continuous weight function. The polynomials are expressible as $_4\phi_3$'s and contain all other 'classical' orthogonal polynomials as special cases or limit cases.

For further reading see Gasper & Rahman [2] on q-hypergeometric series and Askey & Wilson [1] on Askey-Wilson polynomials.

References

- 1. R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.
- 2. G. Gasper and M. Rahman, *Basic hypergeometric series*, Cambridge University Press, 1990.

Mathematical Institute, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands