On q^{-1}-Al-Salam-Chihara polynomials

Tom H. Koornwinder, thk@science.uva.nl

Informal note, version of January 29, 2004

In $[2,(3.3)]$ and [4] the Al-Salam-Chihara polynomials $Q_{n}^{A S C}(x ; q ; a, b, c)$ are considered, which can be defined as solutions of the recurrence relation (with usual starting values)

$$
\begin{equation*}
\left(1-q^{n+1}\right) Q_{n+1}(x)=\left(x-a q^{n}\right) Q_{n}(x)-\left(c-b q^{n-1}\right) Q_{n-1}(x) . \tag{1}
\end{equation*}
$$

Note that the three parameters involve one scale parameter:

$$
\begin{equation*}
\lambda^{-n} Q_{n}^{A S C}\left(\lambda x ; q ; \lambda a, \lambda^{2} b, \lambda^{2} c\right)=Q_{n}^{A S C}(x ; q ; a, b, c) . \tag{2}
\end{equation*}
$$

In particular:

$$
\begin{equation*}
i^{-n} Q_{n}^{A S C}(i x ; q ; i a,-b,-c)=Q_{n}^{A S C}(x ; q ; a, b, c) . \tag{3}
\end{equation*}
$$

We suppose that $c \neq 0$ (for $c=0$ we obtain Al-Salam-Carlitz polynomials, see [2, $\S 3.7]$). So, it is sufficient to consider for the parameter triples (a, b, c) with $c \neq 0$ and $x \in \mathbb{R}$ the cases $(a, b, 1)$ and $(a, b,-1)$. In $[8, \S 3.8]$ the Al-Salam-Chihara polynomials are notated in a different way; in terms of the Askey-Wilson polynomials $p_{n}(x ; a, b, c, d \mid q)$:

$$
\begin{equation*}
Q_{n}^{K S}(x ; a, b \mid q)=p_{n}(x ; a, b, 0,0 \mid q) . \tag{4}
\end{equation*}
$$

In this notation the recurrence relation (see [8, (3.8.4)]) becomes

$$
\begin{equation*}
2 x Q_{n}(x)=Q_{n+1}(x)+(a+b) q^{n} Q_{n}(x)+\left(1-q^{n}\right)\left(1-a b q^{n-1}\right) Q_{n-1}(x), \tag{5}
\end{equation*}
$$

I also introduce the polynomials

$$
\begin{equation*}
\widetilde{Q}_{n}^{K S}(x ; a, b \mid q):=i^{-n} Q_{n}^{K S}(i x ; i a, i b \mid q) . \tag{6}
\end{equation*}
$$

for which the recurrence relation becomes

$$
\begin{equation*}
2 x \widetilde{Q}_{n}(x)=\widetilde{Q}_{n+1}(x)+(a+b) q^{n} \widetilde{Q}_{n}(x)-\left(1-q^{n}\right)\left(1+a b q^{n-1}\right) \widetilde{Q}_{n-1}(x) . \tag{7}
\end{equation*}
$$

The relationship between $Q_{n}^{A S C}$ and $Q_{n}^{K S}$ (and $\widetilde{Q}_{n}^{K S}$) is:

$$
\begin{equation*}
Q_{n}^{A S C}(x ; q ; a, b, c)=\frac{(\sqrt{c})^{n}}{(q ; q)_{n}} Q_{n}^{K S}\left(\frac{x}{2 \sqrt{c}} ; \frac{a+\sqrt{a^{2}-4 b}}{2 \sqrt{c}}, \left.\frac{a-\sqrt{a^{2}-4 b}}{2 \sqrt{c}} \right\rvert\, q\right), \tag{8}
\end{equation*}
$$

or the other way around:

$$
\begin{align*}
& Q_{n}^{K S}(x ; a, b \mid q)=(q ; q)_{n} Q_{n}^{A S C}(2 x ; q ; a+b, a b, 1), \tag{9}\\
& \widetilde{Q}_{n}^{K S}(x ; a, b \mid q)=(q ; q)_{n} Q_{n}^{A S C}(2 x ; q ; a+b, a b,-1) . \tag{10}
\end{align*}
$$

If we consider the polynomials $Q_{n}^{A S C}(x ; q ; a, b, \pm 1)$ for $q>1$ then the necessary and sufficient conditions for orthogonality of the polynomials with respect to a positive measure on \mathbb{R} become $a \in \mathbb{R}$ together with $b>c>0$ or $b \geq 0>c$ (see [2, (3.69)]). For the polynomials $Q_{n}^{K S}(x ; a, b \mid q)$ with $q>1$ these conditions are $a b>1$ together with $a, b \in \mathbb{R}$ or $b=\bar{a}$. For the polynomials $\widetilde{Q}_{n}^{K S}(x ; a, b \mid q)$ with $q>1$ these conditions are $a b \geq 0$ together with $a, b \in \mathbb{R}$ or $b=\bar{a}$. Note that the $a, b \rightarrow 0$ limit to continuous q-Hermite polynomials with $q>1$ while remaining in the parameter domain allowing a positive orthogonality measure, is possible for the polynomials $\widetilde{Q}_{n}^{K S}(x ; a, b \mid q)$ but not for the polynomials $Q_{n}^{K S}(x ; a, b \mid q)$. Continuous q-Hermite polynomials with $q>1$ were studied in [1] and [7].

If the conditions of the previous paragraph are satisfied, then the necessary and sufficient conditions for the determinacy of the moment problem associated with the polynomials $Q_{n}^{A S C}(x ; q ; a, b, c)$ are

$$
\begin{equation*}
a^{2}>4 b \quad \text { and } \frac{4 b}{\left(a+\sqrt{a^{2}-4 b}\right)^{2}} \leq q^{-1} \tag{11}
\end{equation*}
$$

See $[2,(3.77)]$. For the polynomials $Q_{n}^{K S}(x ; a, b \mid q)$ and $\widetilde{Q}_{n}^{K S}(x ; a, b \mid q)$ these conditions become:

$$
\begin{equation*}
a, b \in \mathbb{R} \quad \text { and } \quad b a^{-1} \leq q^{-1} . \tag{12}
\end{equation*}
$$

The indeterminate case $q>1, a^{2} \leq 4 b$ of the polynomials $Q_{n}^{A S C}(x ; q ; a, b, c)$ is studied in [4]. I assume that the authors intended this under the additional condition $b>c>0$ or $b \geq 0>c$ (not explicitly mentioned there) for existence of a positive orthogonality measure.

The special indeterminate case $q>1, c<0=a \leq b$ of the polynomials $Q_{n}^{A S C}(x ; q ; a, b, c)$, i.e., the special indeterminate case $q>1, b=-a \in i \mathbb{R}$ of the polynomials $\widetilde{Q}_{n}^{K S}(x ; a, b \mid q)$, is studied in [5].

Dual little q-Jacobi polynomials

Rosengren [9] (somewhat implicitly), Groenevelt [6, Remark 3.1], and Atakishiyev \& Klimyk [3] observed that q^{-1}-Al-Salam-Chihara polynomials are duals of little q-Jacobi polynomials:

$$
\begin{align*}
& \frac{(-1)^{n} q^{\frac{1}{2} n(n-1)} b^{-n}}{\left((a b)^{-1} ; q\right)_{n}} Q_{n}^{K S}\left(\frac{1}{2}\left(a q^{-k}+a^{-1} q^{k}\right) ; a, b \mid q^{-1}\right) \\
& \quad=\frac{\left(-a b^{-1}\right)^{k}\left(q a^{-1} b ; q\right)_{k}}{q^{\frac{1}{2} k(k+1)}\left((a b)^{-1} ; q\right)_{k}} p_{k}\left(q^{n} ; a^{-1} b,(q a b)^{-1} ; q\right), \quad q>1, n, k=0,1,2, \ldots, \tag{13}\\
& \frac{(-1)^{n} q^{\frac{1}{2} n(n-1)} b^{-n}}{\left(-(a b)^{-1} ; q\right)_{n}} \widetilde{Q}_{n}^{K S}\left(\frac{1}{2}\left(a q^{-k}-a^{-1} q^{k}\right) ; a, b \mid q^{-1}\right) \\
& \quad=\frac{\left(-a b^{-1}\right)^{k}\left(q a^{-1} b ; q\right)_{k}}{q^{\frac{1}{2} k(k+1)}\left(-(a b)^{-1} ; q\right)_{k}} p_{k}\left(q^{n} ; a^{-1} b,-(q a b)^{-1} ; q\right), \quad q>1, n, k=0,1,2, \ldots \tag{14}
\end{align*}
$$

Then, the orthogonality relations for little q-Jacobi polynomials give dually the orthogonality relations for q^{-1}-Al-Salam-Chihara polynomials:

$$
\begin{align*}
& \sum_{y=0}^{\infty} \frac{1-q^{2 y} a^{-2}}{1-a^{-2}} \frac{\left(a^{-2},(a b)^{-1} ; q\right)_{y}}{\left(q, a^{-1} b q ; q\right)_{y}}\left(a^{-1} b\right)^{y} q^{y^{2}}\left(Q_{n}^{K S} Q_{m}^{K S}\right)\left(\frac{1}{2}\left(a q^{-y}+a^{-1} q^{y}\right) ; a, b \mid q^{-1}\right) \\
& \quad=\frac{\left(q a^{-2} ; q\right)_{\infty}}{\left(a^{-1} b q ; q\right)_{\infty}}\left(q,(a b)^{-1} ; q\right)_{n}(a b)^{n} q^{-n^{2}} \delta_{n, m}, \quad 0<q<1, a b>1, a^{-1} b<q^{-1} \tag{15}\\
& \sum_{y=0}^{\infty} \frac{1+q^{2 y} a^{-2}}{1+a^{-2}} \frac{\left(-a^{-2},-(a b)^{-1} ; q\right)_{y}}{\left(q, a^{-1} b q ; q\right)_{y}}\left(a^{-1} b\right)^{y} q^{y^{2}}\left(\widetilde{Q}_{n}^{K S} \widetilde{Q}_{m}^{K S}\right)\left(\frac{1}{2}\left(a q^{-y}-a^{-1} q^{y}\right) ; a, b \mid q^{-1}\right) \\
& \tag{16}\\
& =\frac{\left(-q a^{-2} ; q\right)_{\infty}}{\left(a^{-1} b q ; q\right)_{\infty}}\left(q,-(a b)^{-1} ; q\right)_{n}(a b)^{n} q^{-n^{2}} \delta_{n, m}, \quad 0<q<1, a b>0, a^{-1} b<q^{-1}
\end{align*}
$$

If the constraint $a^{-1} b<q^{-1}$ is narrowed to $a^{-1} b \leq q$ then these are the orthogonality relations obtained in [2, (3.82)]. For $q<a^{-1} b<q^{-1}$ the orthogonality relations (15) and (16) remain valid if a and b are interchanged. Thus for $q<a^{-1} b<q^{-1}$ and $a \neq b$ we have an explicit example of two distinct orthogonality measures.

Note that it is allowed above to take the duals of the orthogonality relations for little q Jacobi polynomials, because the little q-Jacobi polynomials form a complete orthogonal system in the L^{2}-space corresponding to their orthogonality measure, since this measure has bounded support. Then we can use the characterization of unitary operators on a Hilbert space as surjective isometric operators (see for instance [10, Theorem 12.13]).

References

[1] R. Askey, Continuous q-Hermite polynomials when $q>1$, in q-Series and partitions, D. Stanton (ed.), IMA Vol. Math. Appl. 18, Springer, 1989.
[2] R. Askey and M. E. H. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Memoirs Amer. Math. Soc. 300, 1984.
[3] N. M. Atakishiyev and A. U. Klimyk, On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials, arXiv:math.CA/0307250 v3, 2003.
[4] T. S. Chihara and M. E. H. Ismail, Extremal measures for a system of orthogonal polynomials, Constr. Approx. 9 (1993), 111-119.
[5] J. S. Christiansen and M. E. H. Ismail, A moment problem and a family of integral evaluations, preprint, 2003; to appear in Trans. Amer. Math. Soc.
[6] W. Groenevelt, Bilinear summation formulas from quantum algebra representations, arXiv:math. QA/0201272; to appear in Ramanujan J.
[7] M. E. H. Ismail and D. R. Masson, q-Hermite polynomials, biorthogonal rational functions, and q-beta integrals, Trans. Amer. Math. Soc. 346 (1994), 63-116.
[8] R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/.
[9] H. Rosengren, A new quantum algebraic interpretation of the Askey-Wilson polynomials, in q-Series from a contemporary perspective, M. E. H. Ismail and D. W. Stanton (eds.), Contemporary Math. 254, Amer. Math. Soc., 2000, pp. 371-394.
[10] W. Rudin, Functional analysis, McGraw-Hill, 1973.

