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INTRODUCTION

. . (a,B) . :
A Jacobi function ¢y (a,B, e€C,a#-1,-2,...) 1is defined as
the even C®-function on R which equals | at 0 and which
satisfies the differential equation

(1.1) (d2/dt+((2a+1)coth t+(28+1)th t)d/dt +
+A2+(u+8+1)2)¢§u’6)(t) = Q.

It can be expressed as an hypergeometric function (cf.(2.4),
(2.7)). For a >—1,|B| < o+l the Jacobi function occurs as a
kernel in the Jacobi transform pair

1.2y EQ) = j £(0)0 ™) ey (2sn ©)%* (2en )" ar,
0
(1.3) £ty = (2my7| E(K)¢§a’8>(t)lca B(k)l"zdx,

0

where Cy (A) is a certain quotient of products of gamma
functiond, cf. (2.18). This transform generalizes the Fourier
cosine transform (a=R=-1).

For special a,B there are many group theoretic interpre-
tations of Jacobi functions (cf.§4), first of all as spherical
functions on noncompact Riemannian symmetric spaces of rank
one, but also as associated spherical functions, intertwining
functions, matrix elements of SL(2,R) and spherical func-
tions on certain nonsymmetric Gelfand pairs. This makes
Jacobi functions an ideal subject for a case study of the
interactions between special functions and group theory:
Harmonic analysis can be developed for the Jacobi transform,
considered either as a generalization of the Fourier-cosine
transform or as a specialization of a group Fourier trans-
form. Both forms.of harmonic analysis influence each other.
The harmonic analysis applies some "hardware" (a set of
meaningful explicit formulas for Jacobi functions), while
conversely it raises the need of finding some further for-
mulas. These formulas exist both in analytic and group
theoretic form and the two versions of the formulas may be
derived from each other.

The interactions already listed form the heart of this
paper, but there are two kinds of sidc interactions which
will sometimes be mentioned. First one may consider eigen-
functions of second order ordinary differential operators




JACOBI FUNCTIONS AND ANALYSIS 3

more general than the one in (1.1) and study the associated
transform. For such analysis the Jacobi function case can
serve as a prototype, while conversely it makes clear what is
general and what is special in the Jacobi case. Second, there
is the analysis on noncompact Riemannian symmetric spaces of
higher rank, in particular regarding the spherical Fourier
transform. This is helpful for putting the rank one analysis
in a conceptual framework, while conversely rank one results
suggest open problems in the higher rank case.

In the scheme below I summarize these interactions:

formularium hsrmonic analysis

eigenfunctions of
general 2nd order X = > X
differential operators 1
' Jacobi functions, B = '

analytic approach LA » X '
| Jacobi functions, I ] '
| group theoretic « — - |
L_approach I

analysis on higher I l

rank symmetric spaces .- *x

The analysis on semisimple symmetric pseudo-Riemannian
spaces is a particularly active area ih analysis on Lie
groups at the moment. I will also discuss some recent devel-
opments in this area and the possible relevance :of Jacobi
functions there. :

Many people may have met Jacobi functions without being
aware of them, because they were written as hypergeometric
functions. Here I want to advertise the use of the Jacobi
function notation, because it enables one to make contact
with the existing literature on Jacobi functions and because
the arrangement of parameters in the Jacobi function nota-
tion is better adapted to harmonic analysis than in the hy-
pergeometric notation.

The Contents will give the reader an impression of what
is treated inthe various sections. This paper is rather long
because it serves a multiple purpose: to provide an intro-
duction to analysis on groups (notably the spherical Fourier
transform on rank one spaces), to develop the analytic
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theory of the Jacobi transform and to discuss the interaction
between both. The backbone of this paper is material from a
sequence of papers by Flensted-Jensen and the author [41],
481, [81]1, [49], [50] on the analytic approach to the Jacobi
transform with motivation from group theory. For the treat-
ment of analysis on rank one Riemannian symmetric spaces the
presentation owes much to work by Helgason [641, [67], [70],
[71], [72] and Faraut [39]. The role of the Abel transform,
both in the analytic and group theoretic approach, will be
emphasized. Possibly new results are given in (5.22), (5.23),
§5.4 and §9. Complete proofs will usually not be given, but
many proofs are sketched in fairly large detail. Notes with
further results and references are often given at the end of
a section or subsection.

Acknowledgement. I thank Erich Badertscher, Bob Hoogenboom
and, in particular, Mogens Flenstad-Jensen for reading the
manuscript and suggesting improvements and corrections.

How to read this paper

Because of the organization of this paper, it is possible to

just read certain parts of it. Here are some suggestions:

(a) One or more subsections of §3 as a tutorial on analysis
on groups, eventually to be used in the rest of the paper
or elsewhere in this volume.

(b) Only section 2 for main results and history of the
Jacobi transform.

(c) Only section 4 (with occasional reference to sections
2,3) for the various group theoretic settings of the
Jacobi transform.

(d) Sectioms 4.1, 5.1, 6, 7,
ference to sections 3.1
rical rank one case.

(e) Sections 2, 5.3, 5.4, 6, 7, 8.1, 8.3, 9 for the analytic
theory of the Jacobl transform. :

(f) Sections 2, 4.1 and 5 for the Abel transform

2, 8.3 (with occasional re-
2

8.2,
3.2) for analysis in the sphe-

’

2. INVERSION OF THE JACOBI TRANSFORM, STATEMENT OF RESULTS

2.1. Definition of Jacobi functions

The Gaussian hypergeometric function is defined for |z| < 1
by the convergent power series

(a), (b)
%’k k
(2.1) oFy(asbsesz) 1= )y g () kT %
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where a,b,c are complex, ¢ # 0,-1,-2,... and the shifted fac-
torial (a)i is defined by (a)o =1, (a)k := a(a+l)...
(atk-1). It has an analytic continuation to a one-valued
analytic function on G\[1,®). Numerous explicit formulas
exist for this function of four complex variables a,b,c,z
(c£.[33,Ch.2]), which often deter the uninitiated reader.
A fruitful way to discover more structure in this formula-
rium is to fix two of the four variables as parameters and
to consider the two other wvariables as the variable and the
dual variable in a discrete or continuous orthogonal system.
Thus one may consider various families of orthogonal poly-
nomials (Jacobi, Krawtchouk, Meixner and Pollaczek polyno-
mials, see [5, Lecture 2] and [34, 10.21]) and the continuous
orthogonal system of Jacobi functions, which will interest
us here.

Considered as a function of z, 2Fj(a,bjc;z) is the
unique solution of the hypergeometric differential equation

(2.2) z(1-z)u" (z)+(c-(a+b+1) z)u' (z)-abu(z) =0

which is regular at O and equal to 1 at 0. Now consider c

and at+b (or equivalently a := c-1 and B := at+b-c) as para-
meters and choose the eigenvalue ab in (2.2) as dual variable
to z. Depending on the way we restrict the z-variable to an
interval connecting two of the three singular points 0,1,

of (2.2) and on the boundary conditions we get interesting

discrete or continuous orthogonal systems. These are in par-
ticular the Jacobi polynomials

5

(a,B) _ _ n. (a,B) L
(2.3) Rn (x) = (a+lj;'Pn (x) =

2= 2Fl(—n,n+oc+6+l;oc+];%(]—-x)),
which, for n = 0,1,2,..., are orthogonal polynomials on the

interval (-1,1) with respect to the weight function
(1-x)%(1+x)B(a,8>-1), and the Jacobi functions

(2.4) ¢§G’B)(t) E ZF](%(a+8+1—ix),%(a+5+1+ix);

a+l;—sh2t).
(

For ]Bl < a+l the system {¢XG,B)}AZO is a continuous or-
thogonal system on R4 with respect to the weight function
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+
(2.5) A (t) := (2sh £)°% N (2en £)2FF,
a,B
cf. Theorem 2.3. Jacobi functions are called so because of
their relationship with Jacobi polynomials:

t > 0,

(2.6) oy B ey = TR Gen 20
From (2.4) and [33,2.1(22)] one can derive:
2.1 o) = (en IR

. . 2
. 2F1(%(u+8+1+1x),%(a—8+1+1x;a+1;th t).

If no confusion is possible we will suppress the parameters
®,B in our notation and we will write

p = a+f+1.
Assume that o,B,\ are complex, a # -1,-2,... . Let
(2.8) L := d%/de?+ (0" () /6(t))d/de, € > 0,
with A given by (2.5), so
(2.9) La,B = dz/dt2+((2d+l)coth t+(2B+1)th t)d/dt.

Then rewriting of (2.2) shows that ¢, is the unique even
C®-function v on R such that v(0) ="1 and )

(2.10) (L+k2+p2)v = 0.
It follows from this characterization of ¢X that

(_%9—%.) _ g (%,%) _‘ZSiDAt
(2.11) by “(t) = cosit, 9, (t) = e

2.2. The Jacobi transform

Let us define the (Fourier-) Jacobi transform f > £ by

(2.12) () &= J f(t)¢x(t)A<t)dt

0
for all functions f on R, and complex numbers X for which
the right hand side is well-defined, possibly by analytic
continuation with respect to o. For instance, if
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f € Dayen(R) (the space
support on R ) then, for
tic continuation from Re

a # -1,-2,...,-n, in the
n
2.13) By =
‘ 2 " (a+l
c g ST

where we used [33,2.8(27)
(R) then f is an even en
adjointness of L with res

(2.14) (L") = -
Note that f » f reduces t
o =B = -1 and that it is
sine transform if a B =
notion '"continuous orthog
we have to invert the tra
version formula we will 1
occuring in the asymptoti

From [33,82.9] or by
tain, for A # -i,-21i,..
(0,°) given by

*3

(2.15) 0B () -
= (2ch t)i>\_p
iA—p

= (2sh t) 9

cC
of even C ~functions with compact

n=20,1,2,..., (2.12) has an analy-
@ > -1 to Re o > -n-1,
form
{“ 1 4.n
(sth EEJ £(t)-
) Y0
n
)Aa+n,8+n(t>dt’
1. Thus, in all cases, if f ¢ Tgyep

tire analytic function and, by self-
pect to A(t)dt, we have

Zv02)E00).

o the Fourier—cosine transform for
immediately related to the Fourier-—
1. In order to give meaning to the

onal system!'" for the functions ¢

nsform f + f. To formulate the in-

ntroduce the function A » c(})

cs of ¢;(t) as t > =,
straightforward computation we ob-
another solution ¢) of (2.10) on

™~

JF; (1(o=i1), 4 (a=B+1-1n) s 1-iA;ch )=

F](%(p—i%),%(—a+8+1—ix);1-ix;—sh‘2t).

(The second equality is implied by [33,2.1(22)].) Thus

(ix-p

(2.16) ®k<t) = e

For A ¢ iZ , ¢y and o_y a
tions of (2.10), so ¢ is

X 14001)) a5 t + o,

re two linearly independent solu-
a linear combination of both. In

fact, we get from [[33,2.10(2) and 2.10(5)] that, for X ¢ iZ,

(2.17) ¢A C(A)@X+C(

where

-8,
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2°7 A0 (a4 1)1 (10)
(2.18)  e() = ¢, o) = THETEE (I (A Be 1))
Hence
(2.19) ¢X(t) = C(X)e(iA—O)t(1+0(])) as t > « if Im) < Q.

This follows from (2.16) and (2.17) for X # -i,-2i,..., but
it extends to Im A < 0. We can now formulate the main
theorems about the Jacobi transform. Their proofs will be
postponed until §6.

Theorem 2.1 (Paley-Wiener theorem). For all complex a,B
with o # -1,-2,... the Jacobi transform is a 1-1 map of
Deven(R) onto the space of all even entire functions g for
which there are positive constants Ag and Cg p (n=0,1,2,...)

such that

Ag | Im) |

(2.20) s < ¢, QRPN DI , Ae @ n=0,1,...

For o« = 8 = —} this is the classical Paley-Wiener
theorem (cf. Rudin [118, Theorem 7.22]1). As a refinement of
Theorem 2.1 we have that f has support in [-a,a] iff f satis-
fies (2.20) with Af := a.

Theorem 2.2 (inversion formula, first form). If a,f e C,
o # -1,-2,..., 0 20, p > - Re(axp+l), f € Doyen(R),
t > 0, then

(2.21) £(EY = Z—ITFJ ’f(mu)@Hiu(t)(c(—g-iu))‘ldx.

For convenience assume now that a > -1, B € R. Then
A B (c(k))_I has only simple poles for Im X 2 0 which lie in
the finite set

(2.22) D, g :={1(]g]-a=1-2m) |m = 0,1,2,...;]8]-a-1-2m>0}.

If 18] < a+l then Dy g is empty. Put

(2.23) dld) t= =i Res . (e(le(-13)"1), A € D

P=A o, B

The next two theorems are versions of the Plancherel theorem
for the Jacobi transform.
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Theorem 2.3 (inversion formula, second form). 1f o = =1,
Be R, £ e Deyven(R), t ¢ R, then

[ee]

(2.24)  £(0) = o J EQ0o, (D) T 2an +
0

£(V)¢, (£)a(X).
, B

If, moreover, atf + 1 2 O then

* zkeDa

(2.25) £(t) = g; [ E<A)¢X(t>lc(k)l_2dx.
0

Define the measure v on R4 U Dy g by

o

(2.26) g(A)dv(r) := 5%_[ g(K)IC(A)!_ZdA ¥
0

E{+UDQ’B

* lyep 8O0,

O, B

Theorem 2.4 (Parseval formula). If ¢ > -1, B ¢ R and
f,g € Voyen(R) then

(2.27) j £F(t)g()A(t)dt = [ F)g(M)dv(n) .
- J
0 fIR+UDOL’8
The mapping f = f extends to an isometry of

L4(R, ,A(t)dt) onto L (EQ.UDQ,B,v).

In this form these theorems are proved in [41], [44,
Appendix 1] and [81], but special cases of Theorems 2.3, 2.4
have a long history. (We will deal with background to Theorem
2.1 in §6.) Mehler [103] (without proof), Heine [63], both
in 1881, and Fock [[52] in 1943 treated the case a = B8 = 0.
Consideration of a potential problem for the spherical lens
(cf. Mehler [102], Lebedev [94]) brought them to the intro-
duction of what is now known as the Mehler-Fock transform.
This is usually formulated in terms of Legendre functions

(0.0)
2u

(2.28) p;,_y (ch2t) := ¢ ()

as
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f(u) = uthﬂu-[ Piu—%(x)w(x)dx’

I
(2.29)

1]

P (x) J P. (x)f(wdu.
o T2

Fock [52] gave precise conditions on f or ¢ (in terms of in-

tegrability of the function and some of its derivatives) in

order that the one integral transform would invert the other.

In the literature one can find four main methods of
proving Theorems 2.3, 2.4 or special cases of them, but in-
teraction between the various approaches is rare:

a) Factorization of £+ f as f = F(Ff), where F is the clas-
sical Fourier transform and f ~ F¢ is the so-called Abel
transform, which can be explicitly given and explicitly
inverted. This fact is exploited in Heine [63,8§75],

Fock [52], Koornwinder [82] and, in group theoretic con-
text, in Vilenkin [138], [139,Ch.10,84]1 and Takahashi
[129, 4.2]. We will return to this in section 5.

b) Use of spectral theory of second order o.d.e.'s with
singularities at one or both endpoints of the interval.
The Jacobi differential equation then usually occurs as
an illustration of a quite general theory. This approach
was started by Weyl [1441 in 1910. He already has the
example of the Jacobi o.d.e., including a remark about
occurrence of the discrete spectrum for o,B. Later pre-
sentations are in Titchmarsh [136,8§4.18-4.20], Dunford &
Schwartz [28,Ch.13,818,pp.1520-1526] (see also Flensted-
Jensen [41,pp.155-156]) and Faraut [36], where [28],[36]
emphasize the functional analytic aspects.

c) Use of function theory and asymptotics. Olevski? (1111,
[112],van Nostrand [108] and Gotze [58] proved that (2.25)
implies (2.12) under certain conditions on £ by use of

M
J 6, (£)8, (£)A(E)de =

(2.30) J

= @700 (0 006 00-6, 44! (D)

and the asymptotics of ¢X(t),¢i(t) as t -+ o, Inversion
formulas in both directions were given in the very
thorough paper by Braaksma & Meulenbeld [16].

d) As a special case of the inversion of the spherical
Fourier transform on noncompact semisimple Lie groups.
This was first done by Harish-Chandra [61]. A considerable
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simplification of his proof was given by Rosenberg 19777,
see also Helgason [71,Ch.4,871, 72, 4.27,

Yet order approaches occur in Lebedev [921, [93],
Roehner & Valent [116], Stein & Wainger [128] and §9 of the
present paper. In general we can say that approach a)
connects the case (a,B) with the elementary case (-3,-31)
by the Abel transform f -+ Fg, which has the transmutation
property

dZ
(2.31) Fle(t) = — F. (1),

dt
while the methods b), c), d) approximate the case (a,B)
with the case (-3,-3) by observing that, as t - «, La 8 and

its eigenfunctions resemble d2/dt? + 2pd/dt and its
eigenfunctions. L

2.3. Generalizations of the Jacobi transform

Another limit case of the Jacobi o.d.e. (2.10) is the Bessel
equation

(2.32) P E) + 20+ 1)t v (B) +A%v(E) = 0.

Indeed, replace (t,A) in (2.10) by (et,e_lk) and let € ¥ O.
The unique even C®-solution of (2.32) being equal to 1 at O
equals '

(2.33) J () = z“r<a+1>(xt>““Ja<xt),

where J, is the usual Bessel function (cf.[34, (7.2(2))1D).
Then

2.36)  1im P o) = 1 o).
evy0 € A
A full asymptotic expansion of ¢§a’8)(t), t ¥ 0, in terms of

Bessel functions, which is, to a certain extent, uniform in
At, is given by Schindler [120] (a=B) and Stanton & Tomas
[127]. (See Duistermaat [27] for a new approach in the group
case.)

A lot of work (in particular by the Tunis school) has
been done in extending the harmonic analysis for the Jacobi
transform to the case of more general second order differen—
tial operators L of the form (2.8). It is then usually

assumed that, for some o > -3,
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~Z—~1 ; : .. oo
(2.35) e A(t) 1is even, strictly positive C -

function,

while Triméche [ 137] and Chébli [ 23] allow p2 in (2.10) to
be replaced by some even C®~function on R. Chébli [20],
[21] 1227, [24] has the additional conditions

A'(t)
> A(t)

The conditions (2.35), (2.36) are satisfied by the Bessel
equation (2.32) (a>-3}) and the Jacobi equation (2.10) with
(2.9) (-3#02B>-}). Under condition (2.35) ¢, can again be
defined as the even Cw—soluzion of (2.10) being equal to I

at 0 and the transform f » f by (2.12). Under conditions
(2.34), (2.35) there are also solutions ¢) and a function c
such that (2.16), (2.17) hold. Chébli [201, [21], [22], using
approach b), obtains the analogue of the inversion formula
(2.25). Triméche [137], having only condition (2.35), uses
approach a) and obtains an inversion formula in the form

(2.36) A(t) 4 © as t - = ¥ 2p as t > =,

(2.37) £(¢) = Jfo %uwx(t)dv]<>\>+J(Of<ix>¢ﬂ<t>dv2<x>,

where vy and v, are positive measures, v] being tempered

and v, such that Ik eaxdvz(k) < o for all a > 0. Both Chébli
[[24] and Triméche [137] have asymptotic expansions of ¢) (t)
in terms of Bessel functions which are reminiscent to
Stanton & Tomas [127]. Chébli uses results of Langer [91],
Triméche of Olver [113,Ch.127.

3. SOME GROUP THEORETIC PRELIMINARIES (A TUTORIAL)

In this section we put together some background material
from the general theory of analysis on Lie groups. The five
subsections (see contents) are rather disconnected. Each
subsection may be used as a reference in reading other parts
of this paper or as a tutorial to this whole wolume or it
may just be read for its own interest.

3.1. Structure theory of noncompact semisimple Lie groups

References for this subsection are ' 701 and [86,Ch.1,2,3].
Let g be a real semisimple Lie algebra, i.e., g is a real
Lie algebra on which the Killing form B(X,Y) := tr(adX ady)
(X,Yeg) is nondegenerate as bilinear form on g. Let 6 be a
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Cartan involution of g and g = k+p the corresponding Cartan
decomposition of g, i.e., 6 is an automorphism of g,

842 = id, k and p are eigenspaces of 8 for eigenvalues | and
-1, respectively, and B is positive definite on p and nega-
tive definite on R. Such involutions do exist and they are
all conjugate under inner automorphisms. Let G be a connected
Lie group with Lie algebra g. Then G is called a semisimple
Lie group. It can be shown that the Cartan involution 8 1is
the differential of a unique involutive automorphism of G,
also denoted by 6, and that the fixed point subgroup

K :={ge G| 6(g) =g} is precisely the connected Lie sub-
group of G with Lie algebra k. The subgroup K is compact iff
G has finite center; then K is also a maximal compact sub-
group. Assume that G has finite center (such a choice of G
is possible).

Let a be a maximal abelian subspace of p. All such sub-
spaces are conjugate under Ad(K). The (real) rank of g is
defined as the dimension of a. We will exclude the rank zero
case, i.e., we assume that 6 # id. For a in a* (the real
linear dual of a) put g4 := {X ¢ g | [H,X] = a(H)X for all
H in a}. Then gg n p = a. Put m :=.gg n k,
£ := {a ¢ a*\{0} | dim g4 > 0}. Then g, as a linear space,
has the direct sum decomposition g = m + & + I,y Gy. Since
B, restricted to a4, is an inner product, it canonically gives
rise to an inmer product on a*, denoted by <.,.>. The triple
{a*, <.,.>,5} satisfies the axioms of a root system:

Span Z = a* and for all «,B in I, B-2 <B,0>/<0,a> a € I

and 2<B,a>/<a,a> € Z. This root system is not necessarily
reduced: if a,cd € I then ¢ = *i,#1 or *#2; in a reduced root
system only *1 would be possible. Introduce some linear vec-—
tor space ordering < on a*. Put £t := {a e £ | o > 0},

n := Zgen+ go. Then n is a nilpotent subalgebra of g. Put

my := dim Gy, 0 = 3 Igex+ Mgo.

Let N := exp n, A := exp a. Then N,A are closed sub-
groups of G and diffeomorphic images of n,a under exp. Let
N := 0(N). Let M := Zg(a) = {k ¢ K | Ad(k)H = H for all H in
at, M' := Ng(a) = {k ¢ K 1 Ad(k)a = a}. Then M,M' are com-—
pact subgroups of K, both with Lie algebra m, M is a normal
subgroup of M', the group W := M'/M is finite. Via Ad the
group M'/M acts as a group of orthogonal transformations on
a, and hence on a*. Under this identification W can be shown
to be isomorphic to the Weyl group of the root system I, i.e.
the group generated by the reflections
A > A = 2<h,0>/<o,0> a of a¥ (ael).
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If g has rank one then, for some a in a*, I = {a,-a} or
{a,-a,20,-20}. Let H; in a be such that a(H;) = 1 and write
g+y»> G+2 instead of giy, g+pq With dimension myy, myp, re-
spectively. Choose the ordering on a* such that o is positive.
Then n = gy + gp. Put H¢ := tHy, a; := expHt. We will always
keep to these conventions in the rank one case.

We mention some decompositions of G:

(a) G = K exp p (polar decomposition), where (k,X) » k exp X
is an analytic diffeomorphism of Kxp onto G.

(b) G = KAK (Cartan decomposition), where
KaK = KbK(a,beA) iff b = kak™! for some k in M'. In the
rank one case: KagK = KatK iff s = *t.

(¢c) G = KAN (Iwasawa decomposition), where (k,a,n) » Kan is
an analytic diffeomorphism of KxAxN onto G. In the rank
one case: if g ¢ G and g = kagn according to this decom-—
position then write u(g) := k, H(g) := t.

(d) NMAN is open and dense in G (part of Bruhat decomposition).

In the rank one case we finally need the result that the
Ad(K)-orbits on p are the spheres {X € p | B(X,X) = const.}.
Up to local isomorphisms the different rank one cases are:

G | SOqg(1,n) SU(1,n) Sp(1,n) F4(-20)

K | 80(n) S(U(1)xU(n))|Sp(1)xSp(n) | Spin(9)

n | 2,34, 2,3,4,... 2,3,4,...

Table 1

The first three columns in this Table can be treated in
a uniform way as follows (cf.[39]). Let F:= R,C or H (H
denotes the skew-field of quaternions) with real dimension
d =1, 2 or 4. Let U(p,q;F) be the Lie group of (right)
linear operators on FP*dyhich leave invariant the hermitian

form _
= T 3 - p*tq
y¥p teeet prp yp+lxp+l C yp+qxp+q,x,yeE‘ .

In particular, we will meet the groups U(n,F) := U(n,o0;F)
and U(1,n;F) , In case of the latter group we label coordi-

nates on F ™ such that the group elements leave invariant

the form
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- - - n+ 1
Yo¥o Vi¥y "o T Y X, XV € F

* =1 * . ;
If G := U(l,n;F) and 6g := (g ) (geG,g denoting F- hermi-
tian adjoint of g) then 6 is an involutive automorphism of
G and K := U(1,F) xU(n,F) := {( I | veU(1,F) ,VeU(n,F)}
is the subgroup of elements fixed under 6. For F := H this
pair (G,K) matches the third column of Table 1, but for-
T := R or € the groups U(l,n;F) are reductive groups, bigger
than SOp(1,n) and SU(1,n), respectively, but with semisimple
parts equal to the latter groups. This difference is rather
harmless since G/K remains the same. All structure theory '
presented in this subsection will also hold for the groups
G = U(l,n;F) . The remaining rank one group Fy(20)> which is
related to the octonions, needs individual cars We will not
treat it here, but refer to Takahashi [132]. From now on both
the groups G from Table 1 and the groups U(l,n;F) will be
called rank one groups.

For G := U(1,n;F) we already specified K and 6. Let
us list some of the other structural elements of such G (cf.

[39]):

SIS

lz
0 « s = 01 i ht 0...0sh ¢t
0 = 0 0
0
H1 1= R 5 at I . s
0 n
10 0 0 0

ue U(I,F), Ve U(n-1,F) L;

-]
N = {n . | z ¢ T , w e ImF} , where

2
I+3lz]"+w 2z 4zl v
z I g

~
W
N
.3
N
il

Uzl 2 1=}z
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and InF :={we F | w+w=0};
(3.2) m, = d(n-1), m, = d=1,
(3.3) p := %(m]+2m2) = ld(n+1)-1.

We will also use parameters

(3.4) a := %(m1+m -1) = ldn-1, B := %(mz—]) = 1d-1.

2

3.2. Spherical functions on Gelfand pairs

In this subsection we summarize the facts needed from the
general theory of spherical functions. References are '
Helgason [64,Ch.X], [72,Ch.IV], Faraut [39,Ch.I], Godement
[57].

Let G be a locally compact group G with left Haar measure
dg. The convolution product on G is defined by

(£,%6,) (x) := [ £, 0dy, £, e L@,
g

Let K be a compact subgroup of G with normalized Haar measure
dk. The space C.(G//K) of K-biinvariant continuous functions
on G with compact support is an algebra under convolution.
The pair (G,K) is called a Gelfand pair if the algebra
Co(G//K) is commutative. This property implies that the group
G is unimodular. A sufficient condition in order that (G,K)
is a Gelfand pair is the existence of a cg?tinuous involutive
automorphism 6 of G such that 6(KxK) = Kx K for all x in G.
In view of the polar decomposition G = K exp p(cf.§3.1) this
criterium shows that for rank one groups G the pairs (G,K)
are Gelfand pairs.

Let (G,K) be a Gelfand pair and provide C.(G//K) with
the usual topology. Then each nonzero continuous character w
on the commutative topological algebra C.(G//K) determines
a unique ¢ in C(G//K) such that

(3.5) w(f) = J f(x)¢ (x)dx

G .
for all f in C.(G//K). Such functions ¢ are called spherical
functions for the pair (G,K). They satisfy ¢(e) = 1. They
can also be characterized as the nonzero functions ¢ in C(G)
which satisfy the functional equation (product formula)

(3.6) ¢(x)¢p(y) = J ¢ (xky)dk, x,yeG.
K
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The Banach algebra LI(G//K) is also commutative. Via (3.5)
its nonzero characters are in 1-1 correspondence with the
bounded spherical functions. Equip the set of bounded spheri-
cal functions with the Gelfand topology.

A continuous function ¢ on a locally compact group G is
called positive definite if for each finite subset

{x1,...,%3} of G and for all complex ci,...,c
n = =
£, 51 Cicj d)(xi xj) >0
or if, equivalently,
-1 S—
(3.7) [ d(x YIEX)E(y) dxdy = 0
‘G

for each f in C.(G). If ¢ is positive definite then
(3.8) 6GOT < 0(e), oGx ) = 300

for all x in G. The formula

(3.9) ¢(x) = (r(x)e,e), x € G,

establishes a 1-1 correspondence between the nonzero posi-
tive definite functions ¢ on G and the equivalence classes
of pairs (m,e), where 7 is a unitary representation of G and
e is a cyclic vector in the representation space H(m) of .
By use of tensor products of representations it follows from
this correspondence that the product of two positive definite
functions on G is again positive definite.

Let (G,K) be a Gelfand pair. This property can be shown
to be equivalent to the fact that the representation 1 of K
occurs at most once in each irreducible unitary representa-
tion of G. Let (G/K)”™ consist of all 7 in G in which the re-
presentation 1 of K occurs with multiplicity 1. Now (3.9)
gives in particular a 1-1 correspondence between the positive
definite spherical functions ¢ and the elements m of (G/K)A,
where e 1s chosen as a K-fixed unit vector in H(w). Via this
correspondence and in view of (3.8), (G/K)" is included in
the set of bounded spherical functions. Let (G/K)” inherit
the Gelfand topology of this set.

If f € C.(G//K) or L1(G//K) and ¢ is a spherical func-
tion or bounded spherical function, respectively, then write

(3.10) £(6) :=J £ (%) (x) dx.
G
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The transform f & f is called the spherical Fourier transform
associated with the pair (G,K). The Plancherel-Godement theo-
rem states that there is a unique positive measure v on
(G/K)" (the Plancherel measure) such that

(3.11) f(x) = J f(@)o(x)dv(d), x € G,
(G/x)"

for all continuous and positive definite functions f in

L1(G//K). Moreover, if f ¢ L1(G//K) n L2(G//K) then the

Parseval formula

(3.12) j 1£(x) | %dx = 1E(9) 1%av(s)
G

o
holds and the mapping f ' f extends to an isometry of
L2(G//K) onto L2(Q,v).

Let (G,K) be a Gelfand pair such that G is a Lie group
and G/K is connected. Identify functions on G/K with right-
K-invariant functions on G in the obvious way. Then the al-
gebra D (G/K) of G-invariant differential operators on G/K
is commutative, the spherical functions ¢ are C*-functions
and they are joint eigenfunctions of all D in D (G/K) for

certain complex eigenvalues Ap:
(3.13) Do = KD¢, D ¢ D (G/K).

Hence, since D (G/K) contains the Laplace-Beltrami operator
Q on G/K, which is elliptic, all spherical functions are
analytic. Conversely, if ¢ ¢ C*(G//K), ¢(e) = 1 and ¢ satis-
fies (3.13) for certain eigenvalues Ap then ¢ is a spherical
function uniquely determined by -these eigenvalues.

As an application of this last property let G be a rank
one group, cf.§83.1. Choose an orthonormal basis Xj,...,X, of
p. Since the Ad(K)-orbits on ) are spheres (cf.§3.1), the
Ad(K)-invariant polynomials on p are polynomial functions of
the polynomial x1X] +...+ XX, b X7 +...+ xi on p. Now, by
identification of p with the tangent space to G/K at eK,Bg
induces a G-invariant Riemannian structure on G/K. Hence the
corresponding Laplace-Beltrami operator  given by

2 2
(3.16) () (x) 1= (D 4.+ ) E(x exp(e X +o.. 4t X )| g
' 3t] ot i

(feCw(G/K))generates the algebra D (G/K), so to each complex
eigenvalue of Q there corresponds one and only one spherical
function as an eigenfunction,
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3.3. Associated spherical functions and addition formulas

Let (G,K) be a Gelfand pair. Let A be a subset of G such that
G = KAK. Let M be the centralizer of A in K, i.e.,

M := {k € K| ka = ak Va € A}. Suppose that (K,M) is also a
Gelfand pair. For instance, these conditions hold if

G = U(l,n;F) and K,A,M are as in §3.1. Then (K,M) is a
Gelfand pair because the sufficient condition of §3.2 holds
with 8((gs3)) := (gij)((gi’) e U(1,F) xU(n,F)). (Kostant
rg7] showeé for all rank ohe cases that (K,M) is a Gelfand
pair.) '

Let m be a strongly continuous, not necessarily unitary
representation of G on Hilbert space H(w) such that W‘K ig a
unitary representation of K which is the direct sum of cer-
tain representations in (K/M)?, each occurring with multi-
plicity one, and which contains the trivial representation
of K, so W[K = D54 () § for some subset M(m) of (K/M)" and
1 € M(mr). If § € M(w) then let es be"an M-fixed unit” vector
in H(m) behaving under K according to §. Then

(3.15) ¢ﬂ(x) 1= (ﬂ(x)e],el), x € G,
defines a spherical function ¢, for (G,K) and
(3.16) Wd(k) = (w(k)eé,ea), k e K, § € M(m),

defines a spherical function ¢, for (K,M). Let dg be the
degree of §. The function ¢ﬂ,5?6€M(ﬂ)) defined by

(3.17) ¢ﬂ 6(x) 1= dg%(ﬂ(x)el,es), x € G,

b

will be called an associated spherical function for (G,K).
Note that

(3.18) ¢ﬂ’6(ka£) = ¢ﬂ,6(a)¢6(k), k,2 € K, a ¢ A.
Corresponding to (3.17) there is the expansion
1
= 2 f
(3.19) m(a)e, Zaewn) dg ¢, s(adeg, a < A
Let T be the conjugate contragredient representation

to m, that is, the representation % of G on H(w) which
satisfies

(m(x)v,w) = (V,%(X—1>W), v,w € H(m), x € G.
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For a,b ¢ A, k ¢ K we can expand:

s(a kb)) = (ﬂ(a_lkb)el,el) = (r()m(bYe,,T(a)e,)

= Ly, seb(ny (TPepse ) (eg,m(@de N (e, o).

Hence,
(3.20) ¢(a“1kb) = ZGGM(ﬁ)d6¢ﬁ,6(b)¢%’6(a)w6(k),a,beA,kéK.

The convergence in (3.20) is absolute, uniform for (a,b,k)
in compact subsets of AxAxK. We call (3.20) the additiomn
formula for the spherical function ¢. The right hand side
expands ¢(a~lkb) as a function of k on the compact group K.
Integration of both sides with respect to k over K yields
the product formula (3.6).

Now let G be a rank one group and K,A,M as in §3.1. For
T we take the representation m)(Ae€) of G induced by the
one-dimensional representation mayn > e 1At of the subgroup
MAN (cf. Wallach [142,88.3]). Then m) has a realization on
L2(K/M) given by

e(ix—p)ﬁ(x‘lk)

(3.21) (m, G)E) (k) = flulx  KM),

x e G, ke K, fe¢ Lz(k/M),

where u(x) and H(x) are as in §3.1(c¢). The series of repre-
sentations my 1s called the spherical principal series for
G. If A ¢ R then m) is unitary. Restriction of m to K
yields the regular representation of K on L2(K/M), which is
unitary. By Frobenius reciprocity: WA[K = &5 (k/M)AS. Thus
all conditions are satisfied in order to have an addition
formula of the form (3.20). Observe that, with Y5 defined by
(3.16), we can now take for e5(6e(K/M)A) the element

0
kM & dé wa(k) of LZ(K/M).

Thus (3.17) becomes

iA— k
(3.22) b, ((a) = | PP, (qya,
A8t r S
where we replaced the subscript m) by X (cf. Helgason's
[69, 4] definition of generalized spherical function). In
particular, for § = 1, we get for the spherical function ¢

corresponding to my):
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(3.23) 6, (a,) = [ e (1A-p)H(a_ k) 4y
K

Formules (3.19) and (3.20) can now be written as:

(—1A pDH(a

(3.24) Ad6¢x 6(3 )wﬁ(k)a

Z(Se(K/M)
(3'25) ¢A(a ka ) = 26 (K/M)Ad6¢A 6(3 ) >¢ (k)

For the derivation of (3.25) we used that WA = WA See also
[50] for a treatment of addition formulas in group theoretic
form.

3.4. Generalized Gelfand pairs and spherical distributions

References for this subsection are Faraut [37,8I], Thomas
135], van Dijk [30], Benoist[10],[11] and Flensted-Jensen
[47]1. Let G be a unimodular Lie group. If ¢ ¢ D(G), X,y € G
then write (A(x)¢)(y) := ¢ (x71y), (0 (x)9) (¥y) := ¢ (yx).

A distribution vector of a unitary representation m of G is

a continuous linear mapping u: D(G) - H(m) such that
T(x)(u(¢)) = u(A(x)9) (x€G,$eD(G)). Let H_w(m) denote the
space of all distribution vectors of m. There is an embedding
v i u: H(m) cs H_w(m) defined by u(¢) :=m(¢) v (¢€D(G)). The
representation m extends to a representation m_, of G on

" Howo(m):

(r_ ()W (8) 1= ulp(x )6), (r__ (I () = uld*p)
(x€G,¢,9eD(G),ueH__(m)). If v € D(G), u € H-w(m) then m(YP)u
can be shown to lie in H(w). A distribution vector u in
H_o(m) is called cyclic if w(P(G))u is dense in H(m).

A distribution T on G is called positive definite if
T(3x¢) = 0 for all ¢ in D(G) (¢ defined by (3.2.9)). The
formula

(3.26) T(P*¢) = (v__(d)u,m__(¥)u),é,¥ € D(G),

establishes a 1-1 correspondence between the nonzero posi-
tive definite distributions T on G and the equivalence clas-
ses of pairs (m,u), where m is a unitary representation of G
and u is a cyclic element of H_,(m) (cf. the corresponding
statement for positive definite functions in §3.2).

Let H be a closed unimodular subgroup of G. The pair
(G,H) is called a generalized Gelfand pair if, for each
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m in G, the dimension of the space of H-invariant distribu-
tion vectors in H_,(m) is at most one—-dimensional. (There are
many equivalent definitions, cf. [30],[135].) Assume that
(G,H) has this property. Let (G/H)N denote the set of all
in G for which there is a nonzero H-invariant distribution
vector. A positive definite spherical distribution for (G,H)
is a positive definite distribution T on G such that (3.26)
holds for some 7 in (G/H)” and some H-fixed nonzero u. Then
T ¢ D'(G//H), i.e., T is H-biinvariant. If H is compact then
the notions of generalized Gelfand pair, positive definite
spherical distribution are equivalent to Gelfand pair, posi-
tive definite spherical function, respectively.

A potential source of generalized Gelfand pairs is given
by the symmetric pairs, i.e. pairs (G,H) with an involutive
automorphism ¢ of G such that the Lie algebra of H is pre-
cisely the l-eigenspace.of do. If H is compact then a sym-—
metric pair is always a Gelfand pair, but, in general, sym-—
metric pairs are not always generalized Gelfand pairs (cf.
the end of this subsection). A particular class of symmetric
pairs are the pairs (GxG,G*), where G is a unimodular Lie
group, G* is the diagonal subgroup of GxG and o(x,y) := (y,x)
(x,y€G). Then the homogeneous space G x G/G* can be identified
with G, with the action of G x G on G given by
(x,7) .z := xzy~ 1 (x,y,zeG). If G is a type I group (for in-
stance a semisimple Lie group) then (GxG,G*) is a generalized
Gelfand pair. Then (GxG/G*)”"= {ﬂ®ﬂ*]ﬂe@}.ALet T be a spheri-
cal distribution corresponding to m@n*(meG) and consider T as
G*-invariant distribution on GxG/G*, i.e. as central distri-
bution on G. Then, up to a constant factor, T(¢) = tr(d),

b € D(G). (m(d) := IG ¢ (x)m(x)dx can be shown to be a trace
class operator on H(m).) ’

Next consider a symmetric pair (G,H) with G being a
connected semisimple Lie group with finite center. Let
G = h + ¢ be the corresponding Lie algebra decomposition
with respect to o(=do). The rank of (G,H) is the dimension
of a maximal abelian subspace of ¢ consisting of semisimple
elements. Infinitesimally, the rank one cases can be obtained
from Berger's [14] classification. They fall into two classes
depending on whether the space G/H is isotropic or not. The
isotropic cases are (up to local isomorphisms) the pairs
(U(p,q;IF), U(1)xU(p-1,q3;IF)) (IF=R, € or W) considered by
Faraut [37] (and other authors mentioned in the references
to [37]) and the pair (Fy ~20)» Spin(1,8)) considered by
Kosters [88],[89,Ch.3]. (Note that, like in §3.1, U(p,q;IF)
is taken reductive in order to get a
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uniform presentation.) The non-isotropic cases are
(SL(n,R) , GL(n-1,R)) (considered by Kosters [89,Ch.41),
(Sp(n,R) , Sp(1,R) xSp(n-1,R)) and (F4(4), Spin(4,5)).

In the structure theory of these rank one cases it is
convenient to take a Cartan involution 6 of G commuting with
o. Let K be the fixed point group of 6 (a maximal compact
subgroup of G) and let g = k+jp be the corresponding Lie al-
gebra decomposition with respect to 6(=d6). Choose a one-
dimensional subspace @ of p n ¢ and a non-zero element H; of
a. With.g) defined as in the rank one case of §3.1, H; can be
chosen such that g = gg + g1 + g2 *+ g-1 * g—p. Put
A := {ar := exptH] | t ¢ R}, M := Zy(A), n := g1 + g2,

N := exp n. There is a generalized Cartan decomposition
G = KAH, where KaH determines |t| completely.

The isotropic rank one pairs (G,H) in the form given
above as well as the pairs (SL(n,R) ,GL(n-1,R)) (n=3) can be
shown to be generalized Gelfand pairs. But this is not true
for the pairs (SL(2,R), GL(1,R)) and (0(1,n),0(1,n-1))

(van Dijk, yet to be published).

If (G,H) is a semisimple symmetric pair then G/H
naturally becomes a pseudo-Riemannian symmetric space with
G-invariant metric. H-biinvariant distributions on G can be
identified with H-invariant distributions on G/H. For a
generalized Gelfand pair (G,H) of rank one all positive
definite spherical distributions are eigendistributions of
the Laplace-Beltrami operator { on G/H. More generally,
Faraut [37] defines a spherical distribution on a rank
one space G/H to be a H-biinvariant eigendistribution of Q.

3.5. Plancherel theorems, general theory

Let (G,K) be a Gelfand pair and assume that G is a Lie group.
Then it can be shown that the spherical Plancherel theorem
(cf. (3.11), (3.12)) is equivalent to

(3.27) fle) = J £(¢)dv(¢), £ € D(G//K),

R (G/X)N
where f & f is the spherical Fourier transform defined by
(3.10), v is the spherical Plancherel measure and D(G//K)
is the space of K-biinvariant C®-functions on G with compact
support. For f in D(G) and for a spherical function ¢ put

(3.28) " ¢() = E(¢) := [G £(x)¢ (x)dx.
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Put

(3.29) Tix) == £(x ), x e @,

for a function f on G. Now two versions of the spherical
Plancherel theorem equivalent to (3.27) are

(3.30) J f(k)dk = J ¢ (£)dv(¢), £ € D(G),
K (G/RO~

(3.31) J lf(x)lzd(xK) = J ¢(E*f)dv(¢), f e D(G/K).
G/K (G/K)A

The equivalence of (3.30), (3.31) follows from the fact that

(3.32) D(G) = span(D(G)*D(G)),
which was proved by Dixmier & Malliavin [26].

Next, let G be a unimodular Lie group which is type I
(for instance a semisimple Lie group). Then the Plancherel
theorem for G (cf. Dixmier [25,818]) states that there is a
unique measure v on G such that the two following equivalent
statements hold:

(3.33) fle) = J* tr(m(£))dv(w), £ e D(G),
G
(3.34) :I If(x)]zdx = J* tr(ﬂ(f)*w(f))dv(w), f € D(G).
G G

Equivalence of (3.33), (3.34) follows from (3.32). For f in
D(G/K) formulas (3.33), (3.34) imply their spherical analogues
(3.30), (3.31).

Finally, let (G,H) be a generalized Gelfand pair (cf.
§3.4). Define

(3.35) £ (xH) 1= J f(xh)dh, £ e D(G), x € G.
H

Then f & fO is a continuous surjection of D(G) onto D(G/H).
Attach to each 7 in (G/H)® a corresponding spherical distri-
bution T, in a measurable way (with respect to the canonical
Borel structure of (G/H)"). Note that, in general, there 1is
no canonical normalization of spherical distributions. Now
there is a unique positive measure v on (G/H)" (cf. Thomas
[135, Theorem A]) such that the two following equivalent
statements hold:
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(3.36) J f(h)dh = J AT (£)dv(m)VE € D(G),
H G/m- "

¢

(3.37) 1£° Gy | 2a Gan) = J T (Ex£)av(n) ,VED(@).

JG/H (G/H)

If (G,H) = (G{%G{,G]) (c£.53.4) then (3.36),(3.37) reduce to
(3.33), (3.34) and if H is compact then (3.36), (3.37) imply
{3..30) ,43.31}. _

In the case that G is semisimple, K a maximal compact
subgroup, the Plancherel measure in (3.27) was explicitly
determined by work of Harish-Chandra [61] and Gindikin &
Karpelevic [56]. The Plancherel measure in the group case
(3.33) (G noncompact semisimple Lie group) was obtained in
a number of papers by Harish-Chandra, cf, the survey paper
by Schmid [121]. The Plancherel measure for G/H in (3.36)
was only determined in a number of special cases, we mention
Faraut [37], Kosters [88], [89,Ch.3], Benoist [10], [I1].

We now want to emphasize one particular method to ob-
tain the Plancherel measure, namely the method of K-finite
functions. In special cases, to be treated in §4, this method
allows reduction to the Jacobi transform.

Let G be a semisimple Lie group, K a maximal compact
subgroup and, in the case (G,H), let K,H correspond to com-—
muting involutions 6,c0. Let y,8 ¢ K and let Xg denote the
character of § in K. We call f in D(G) a K-finite function
of double K-type vy,8 1if

(3.38) Flx) = { J d x (& Ve (kxl)d x (F Vydkdl,x € G.
kg Y'Y 86
Similarly, f in D(G/H) is a K-finite function of K-type & if -
-1
(3.39) f(g) = J déxé(k Yf(kg)dk, £ € G/H.
K

Now, by density properties of K-finite functions, each of

the Plancherel formulas (3.30), (3.31), (3.33), (3.34),
(3.36), (3.37) will be valid for all C.-functions iff it is
valid for all such functions which are K-finite. Observe that
(3.30), (3.33), (3.36) become trivial for most K-types. More
concretely, (3.30) only needs to be verified for double K-
type (1,1), i.e., it is implied by (3.27). For (3.33) we can
restrict ourselves to functions f of double K-type (§,9)
(8eK) which are moreover K-central, i.e. f(kxk—!) = f(x) for
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x in G, k in K. Finally, for (3.36) it is sufficient to con-
sider functions f in D(G) for which fO is K-finite in D(G/H)
and moreover K nH-invariant. On the other hand, the versions
(3.31), (3.34), (3.37) will imply Plancherel-type formulas
for functions of many more K-types than were needed in order
to verify (3.30), (3.33), (3.36). These things will become
more clear by examples in §4.

4, THE JACOBI TRANSFORM IN GROUP THEORY

In this section we treat a number of cases where Jacobi func-
tions appear in the context of semisimple Lie groups: as
spherical or intertwining functions, as associated spherical
~ or intertwining functions and as matrix elements of irre-
ducible representations. Correspondingly, the Jacobi differen-
tial operator arises by separation of variables of the

Casimir operator on the group and the Jacobi transform can

be interpreted as the group Fourier transform acting on cer-
~tain function classes which possess special symmetries.

4,1, Jacobi functions as spherical functions

Let G be a rank one group and use the notation of §3.

The parameters a,B will be as in (3.4). In view of the
Iwasawa and Cartan decompositions (§3.1), the restriction

f f‘A identifies C®(N\G/K), with C®(A) and C*(G//K) with
Coven(d) = {f € C (A)lf(at) f(a_), t € R} . Note also
that the Laplace-Beltrami operator 2 sends C®(N\G/K) and
C®(G//K) into itself, It can be shown (cf. [72,Ch.2], [39,
Ch.3]) that Q has the following A-radial parts with respect
to these two decompositions:

2
d d %
(4.1) (Qf)(at) = (g;j" 2p Ef)f(at)’ f ¢ ¢ (N\G/K),
(4.2) @f)(a,) = (L E)(a), £ e c (G//K),

b

where Ly ,8 is the Jacobi differential operator (2.9).
W1th H: G > R defined as in §3.1(c) the function
x b exp((ir-p)H(x™ Y)Y (he€) is in C® (N\G/K). Hence, by (4.1):

i =
(4.3) (Q+k2+02) e(lK—D)H(X )

= 0,
Let

TN -1
(4.4) ¢)(X) ge== J e(lx oJH(x k)dk, x € G, » € C.
) K
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Then ¢, ¢ Cw(G//K), ¢y (e) = 1 and, because of (4.2) and the
G-invariance of Q,¢) satisfies the differential equation

(4.5) (Q+K2+p2)¢k = @,

It follows from the results at the end of §3.2 that ¢, is a
spherical function, that the set {¢y | A e €} equals the set
of all spherical functions for (G,K) and that ¢, = ¢, iff

A = tu. In view of (3.23), (4.4), ¢, equals the matrix ele-
ment (3.15) of the principal series representation my. In
view of (4.5), (4.2),

_ (a,B)
(4.6) 6, (a) = 0,% (1),
where ¢§a,8) is the Jacobi function (2.4) and o,B are as in

(3.4). The integral representation (4.4) is due to Harish-
Chandra [61] (in the case of general rank).

For the groups G under consideration the spherical
Fourier transform (3.10) can be rewritten as a transform
f » f defined by

- (
(4.7) f(1) := J f(x)¢k(x)dx,
@

where f € CC(G//K), A € €. It can be shown that, up to a
positive constant factor, the Haar measure on G satisfies

(4.8) j f(x)dx = J f(at)A(t)dt, f e C;(G//K),
G 0

where A is given by (2.9). Normalize dx on G such that (4.8)
holds exactly. Then combination of (4.7) and (4.8) shows that
(2.12) holds with f£(t) replaced by f(at), i.e., the spherical
Fourier transform of f equals the Jacobi transform of
t H—f(at).

By use of this identification we can now apply Theorems
2.3, 2.4 (which will be proved in section 6) in order to ob-
tain the Plancherel measure v (cf. (3.11), (3.12)) for the
present groups. Note that a,B in (3.4) are such that
a =B = -3, so we get from Theorems 2.3, 2.4 and from (4.8)
that

[ee]

(4.9) Pl = E%‘[ f(x)¢x(x)]c(k)]—2dx, £eD(G//K), xeG,
0

(0]

P

(4.10) J £(x)g(x)dx = 5%—j EEM) le)1™%ax, £,8D(6//K),
G 0
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and (4.10) extends to an isometry of Lz—spaces. The spherical
functions ¢j (Ae R) occurring in (4.9), (4.10) are positive
definite because (3.15) holds with 7w = HA(XGIU being a uni-
tary principal series representation. Thus the Plancherel
measure v (cf. (3.11), (3.12)) becomes the measure
2m)~ M e()]~2dx on R, in the present case.

The above interpretation of the Jacobi transform as a
spherical Fourier transform was first observed by OlevskiY
[111] for the real hyperbolic spaces and by Harish-Chandra
[61,813] in the general rank one case. Harish-Chandra re-
cognized the radial part of (4.5) as a hypergeometric dif-
ferential equation and he obtained the explicit value (2.18)
of ¢(X) by identifying (2.17) with an identity for hyper:-
geometric functions. But he obtained the inversion formula
by specialization of his general rank result.

4,2, Jacobi functions as associated spherical functions

Let G be as in §4.1. Since (3.11) implies (3.31), (4.9) will
imply that, for F in D(G/K),

(4.11) J ]F(x)12d(xK) = (2n)"1j (F*F)A(x>|c(x)l'2dx.
G/K 0

In particular, this identity will hold for F in D(G/K) of
the form

(4.12) F(ka K) = £(£)¥s(k), ke K, t e R,

where Y is in LZ(K/M) with norm 1 and is of K-type §

(8e (X/M)M). (Any K-finite function is a finite sum of
functions of the form (4.12).) It follows from (4.7), (4.8),
(4.12), (3.25) that

(4.13) F0) () = j j j J F(la_)F(ka )
KK R, IR °
+ 6, (a_ £ ka )8(s)A(t)ds dt dk db =
(
= JIR JI{ ??E)f(t)¢k,6(as)¢x,6(at)A<S)A<t)dS dt.

- +

Hence (4.11) becomes
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(4.14) J £(e) 128 (t)de =
0
- e ] fwe, s Peoy .
‘ol/0 ’

The set (K/M)A was determined by Kostant [87], Johnson
& Wallach [77], Johnson [76], while Helgason [68] computed
the functions ¢ s 1n terms of hypergeometric functioms. It
turns out (see also §8.1) that the functions t ”’¢A,6(at)
coincide with the associated Jacobi function

(a,B) (t)

415 02 (Co g Nt aiemp M)

k+£¢§a+k+£,6+k-£)(t>’

.« (2sh t)k—z(Zch t)
where the ¢)—-function and c-functions at the right hand side
are defined by (2.4), (2.18), @,B are as in (3.4) and k,Z
run over all integers with k > £ > 0 if F= €¢,H or ® (oc-
tonions) and £ = 0,1,2,..., k = £ or £-1 if F= R . Thus, if
we put

- +
£(t) 1= (2sh )5 2en 0¥ %a (), g ¢ D (R
in (4.14) then we have obtained a group theoretic interpre-
tation of (2.27) with a,B replaced by o+k+Z,8+k-£ and
a,B,k,£ having values as above. (Note that for these values
a+k+f 2 B+k-£ = -1). An analogue of (4.14) in the case of
general rank was proved by Helgason [69,Cor.10.2].

The explicit expressions for the associated spherical
functions in the case of rank one were exploited by Helgason
[66,pp.140,141], [68, sections 6,7], Lewis [95] and some
other authors mentioned in [68,81] in order to characterize
the image of the Poisson transform on a rank one space G/K.
This transform T » f, defined for A in € by

-0 HGE K

(4.16) f(x) = J dT(kM), x € G,

K/M
maps the space of analytic functionals T on K/M into the
space of all C®-functions f on G/K such that Qf = —(A2+pz)f.
This mapping is surjective, as Helgason showed in the case
IF = IR for Im A 2 0 and in the other rank one cases for
iX < 0. In the case of general rank one and general complex
A Helgason's elementary method using estimates in k,£ for
the associated Jacobi functions (4.15) failed. Here
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the proof for general rank given by Kashiwara e.a. [78] and
using the full machinery of hyperfunction theory is the only
available proof until now. Lewis [95] shows for all rank
one cases and for generic A that the Poisson transform maps
D' (K/M) onto the space of eigenfunctions of Q of at most ex-
ponential growth.

See §8 for other applications of associated spherical
functions.

In the following subsections we will consider some group
theoretic interpretations of Jacobi transforms for which the
Plancherel measure has a discrete part.

4.3, Jacobi functions as matrix elements of irreducible re-—
presentations '

The Plancherel measure in (3.33) with G = SL(2,R) was first
determined by Bargmann [8]. Here we will sketch an approach
which uses K-finite functions. This approach was followed
earlier by Takahashi [132] and (for the universal covering
of SL(2,R)) by Flensted-Jensen [43]. ’

For the following facts about SL(2,R) the reader may
consult, for instance, [85]. We will work with G = SU(1,1),
which is isomorphic to SL(2,R). Consider an Iwasawa decom-—
position G = KAN with

— ks
e 216)|O < 8 < 41},

Il
e
(o}

1l

1z
K : diag(ezle,

ch t sh t
A := {at < ) . t e I{}.
sh t ch £

Then M = {uO,uzﬂ}. K consists of all Sps N € 3Z , given by

Splug) := ein® and M consist of 6€’M’ £ =0 or 3. The prin-

cipal series representation my ) (Ae€,& = 0 or i) of G is
the representation of G induced by the representation

magn B e"lXt6€(m) of MAN, Then Tg A|K = ®h7 6n+ » In par=
ticular, each K-type occurs in “g’xat most once. %or a
suitable orthonormal basis {en}nei~+£ of H(TrE >\) with

g A(ugle, = dp(uglen, the matrix elements ?

¢= ) +&
ﬂg,x;m,n(x) (wg’k(x)en,em,, X € G, myn € Z +¢&

can be expressed in terms of Jacobi functions (cf.[85,
Theorem 2.11]):
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(4.17) “g,k;m,n(at) S (cg,x;m,n/(lm—nl)I)-
c(sh o) M (en ™Ry, (Imnlomin)
where
(-zidntz) _ if m 2 n,
“g,a3m,n T

-3ix-n+1) if n > m.
*’n-m

These explicit expressions (in terms of hypergeometric func-
tions) were already ogtained in [8].
The elements of G can all be obtained by unitarizing

suitable subquotients of representations 7mg ). They are
(c£.0851):

(a) unitary principal series: A(X>O,£=O or 1),

T
€y
+ -

m s Ty ns T
0,0 3,0

N m = e'ﬂ-— .
1,0 (M4,0 7 M0 © L0

(b) complementary series: ™ iu(O<u<]_) up to unitarization.
3

+
(c) discrete series: T T
Exh® Epd

(=0 or 3, X = i(2g+1),

i(2e+3), 1(28+5),...), where, up to unitarization,

! 3
T, aman Wg’x;m,n(m,n = L]+, b ]+ e s o Ja

m
€,A3m,n

TrE,K;m,nﬁn’n =_%[AI—%’_%|A|‘“%s~‘-). b

(d) identity representation.

Now we determine the Plancherel measure in (3.33) by
the method of K-finite functions. It follows from (2.24),
(2.18), (2.23) that, for f in Dgyen(R) and n = 0,1,2,...:

(4.18) £(0) = J £ (x)2"4n"zx thimh d\ +
0 0,2n
n—-1 ,.~4n-1 ~ ]
+ Jg 2 (2k+1)fq 5 ((2k+1)1),
(4.19) £(0) = ) £ (x)2'4n"4x thimh d) +
° - O 0’2n+1 CO 2’”‘
n -4n-3 ~ .
+ zk=1 2 (21) £ 5 4q (21D,
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where f B(X) = f(k) as defined by (2.12). Now let F e D(G)
such thaﬁ
in(6+n)

(4.20) F(uga,u ) = (ch £ e

with f € Dayen(R) , n € 3Z, i.e., F is K-central of K-type
Sy Then (4.18), (4.19), (4.20), (2.12), (4.17), (4.8) imply
that

F(e) = { (J F(X)WO . (x)dx) ixthimx dx +
JO el ,>‘s s 1
]n]_] 1
+ zk=0 (k+1) GF(X)ﬂO,(2k+1)i;n,D(X)dX’n€:Z’
F(e) = J (J F(x)m, .. (x)dx) IxcothimA dx +
0 G . §,>\,n,1’1
'Dl 1
) + z GF(X)H%’Zki;n’n(X)dX, neZ+ 5.

Hence, for all F of the form (4.20) we have

(4.21) F(e) = J trﬂO A(F)%kth%ﬂk dx +
O |

# trm, . (F)idcothimh d) +
0 797\

| (k+E+3 )tr(ﬂ (F)+7_

k 0 Fa O,2 1 (2k+2E+1) g, 1(2k+2g+1)(F))
In view of §3.5, formula (4.21) is now valid for all F in
D(G). This yields the Plancherel measure we looked for. Now
(3.34) holds with the same measure v. Specialization of this
formula to functions f of arbitrary double K-type yields,

in view of (4.17), Theorem 2.4 for all o,B € Z with a = 0.

The explicit knowledge of the matrix elements of the
principal series representations of SL(2,R) in a K-basis,
cf. (4.17), was exploited by Koornwinder [84], [85],
Takahashi [133] in order to treat the representation theory
of SL(2,R) 1in a global, i.e. non-infinitesimal way.

For the universal covering group G of SL(2,R) the
subgroup K in the Iwasawa composition is no longer compact
but isomorphic to R. The principal series representations
of G restricted to K still decompose as a multiplicity-free
direct sum of irreducible K-types and the matrix-elements
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of these representations can again be expressed in terms of
Jacobi functions. In particular, for the diagonal matrix
elements restricted to A we get the function

ag » (ch t)5¢\0 R’(t) with B arbitrarily real. Flensted-
Jensen [43], %44] used (2.24) for these Jacobi functions in
order to obtain the Plancherel measure for G. This measure
was earlier determined by Pukanszky [114]. Another derivation
using K-finite functions is given by Matsushita [99]7.

4,4, Jacobi functions occurrlng in spherlcal functions on
‘nonsymmetric Gelfand pairs

In §3.3 we pointed out that, for each rank one group G, (K,M)
is a Gelfand pair. Then the spherical functions for (K,M)
can be expressed in terms of Jacobi polynomials (cf. §8.1).
Case—-by-case inspection shows that noncompact duals (in a
certain sense) of these pairs (K,M) are also Gelfand pairs
and that the corresponding spherical functions involve
Jacobi functions. If F= R this yields nothing new, for

F= ¢ this has been considered by Flensted-Jensen [44],
while the quaternionic and octonionic cases were treated by
Takahashi [130]1, [131].

In the complex case we take G = SU(l,n) or its univer-
sal covering group @, and K = SU(n) (n22). Then (G,K) and
(G,K) are Gelfand pairs. The K-biinvariant functions on G
are completely determined by their restriction to some
abelian subgroup LXA isomorphic to Tx R or its universal
covering Rx R . The spherical functions for (G,K) restricted
to this subgroup are A

(2,,a,) et L (“ 1,8)

(t),
where ¢, is a Jacobi function, A € € and B runs over Z or
€, respectively. In [44] the spherical Plancherel measure
for this Gelfand pair is obtained from the Plancherel for-
mula for the Jacobi functions involved. The associated
spherical functions can also be expressed in terms of Jacobi
functions. In the special case n = | we can work with
G = SU(1,1)xS(U(1)xU(1)) and K the diagonal of S(U(1)xU(1))
in this direct product. Then the spherical Plancherel for-
mula for (G,K) yields the group Plancherel formula for
SU(1,1). A similar result holds for gﬁTTTTS.

In the quaternionic case we take G = Sp(1,n)xSp(l),
K = Sp(n)xSp(1)*, where Sp(1)* is the diagonal in the direct
product Sp(1,n)xSp(1). Then Takahashi [130] shows that
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(G,K) is a Gelfand pair and that the spherical functions, in
suitable coordinates, have the form

(8,5 = feh £3° ;2“ : k+l>Ré%’%)(cose),

1 1
where A ¢ €, k = 0, 2,..., and Ré »2) is a Jacobi polynomial
(cf.(2.3)). (Note that Rézsz)(cose) sin(k+1)8/ ((k+1)sinb)
and that it has an interpretation as a character on Sp(1).)
For n = 1 this situation was earlier met by Takahashi [129]
in the context of the representation theory of S04(4,1).

Finally, in the octonionic case Takahashi [131] points
out that (Sping(1,8), Spin(7)) is a Gelfand pair with spheri-
cal functions

6,t) & (ch £)K (3 k+3) R£3/2 »3/2) (. 058).

4,5, Jacobi functions as K-finite functions on G/H ~

For preliminaries to this subsection we refer to §3.4, §3.5.
We restrict ourselves to Faraut's [37] generalized Gelfand
pairs (G,H) = (U(p,q;F) ,U(1,TF) xU(p=1,q3F)) .

cos B sin © 0 \1

Let B := {aie :=<—sin 6 cos B I
0 I

p+q-2
Then HAH u HBH is dense in G and the H-biinvariant distribu-
tions on G are in 1-1 correspondence with-=a certain class of
generalized functions on {at!t >0} u {ale]O <6 < in} (i.e.
on Ry u i[0,47]) with respect to a suitable class of test
functions on Ry u i[0,3iw], having a certain singularity at O.
The "radial" part of the Laplace-Beltrami operator on G/H
becomes, up to a constant factor, the Jacobi differential
operator L, (cf (2.9)) on Ry v 1[0,3i7m] with
6 = 2d(p+q 1)—1 = 3d-1 (d=dimpg F ). Thus the spherical
distributions are essentially distributional solutions T, of
the Jacobi differential equation (2.10). Faraut shows that,
for ) outside a specific discrete countable set, (2.10) has
only a one-dimensional eigenspace, for the exceptional
values A the eigenspace is two-dimensional. The eigendistribu-
tions are regular on (0,«) and on i(0,im), but they are not
necessarily regular at 0. In particular, they do not neces-
sarily coincide with the Jacobi functions ¢§“ 8) on (0,»),
but for certain d,p,q they do, as follows from [37,8II1].
We normalize the eigendistribution T, such that it depends
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analytically on A and is nonzero for all A.

In §3.4 we introduced subgroups K,M,N of G, (These M,N

are different from M,N in §3.,1.) For the present G we have

= U(p,F) xU(q,F) , M= U(1,F) xU(p-1,F) xU(q-1,F) . Let m,
(Xf@) be the regresentation of G induced by the representa-
tion magn #» e "t of the subgroup MAN (a maximal parabolic
subgroup, while the subgroup MAN used for obtaining (3.21) is
minimal parabolic). Then, as shown in [37], an H-invariant
distribution vector uk'and the spherical distribution Ty can
be associated with m). The representation m) is unitary if
A =2 0 (H-spherical unitary principal series) and w;, may con-
tain unitarizable subquotients belonging to (G/H)"N if u > 0.
This happens if 0 < u < pg, where ugp depending on p,q,d can
be explicitly given (H-spherical complementary series) and,
possibly, if uw > pg, w — p € Z (H-spherical discrete series).
It can only occur in the discrete series case that two dis-
tinct elements of (G/H)” correspond to one my. ALl of (G/E)N
can be obtained in the above way. Faraut obtains these results
by using K-finite functions (cf. an analogous approach for
the K-spherical case in §8.2).

We will now give some more details about the K-finite
functions because they involve Jacobi functions and can be
used for deriving the Plancherel formula for G/H. Since
G = KAH, a K-finite function f on G/H can be written as a
function (kM,t) = f(kayH) on K/M x R. Futhermore, K/M can
be identified with a space of orbits of U(1,F) on
S(FP) xS(F4d) (S(FP ) is unit sphere in ETU. Denote by V{
the space of spherical harmonics of degree £ on S(FP ). Then
any K-finite function of certain K—type on K/M is in parti-
cular contained in the space Vﬂ Vgp x qu for certain
£L,m in Z,. Faraut obtains the expr6551on of the Laplace-
Beltraml operator  as a differential operator on K/M x R.

In this way it can be shown that the K-finite solutions f of
(Q+A2+p )f = 0 which are of certain K-type are given by the
functions

’e ( dq—1+m, 2dp“]+£) (t)Y

(4.22) ka H+ (sh £)"(ch £)7¢ R

where Yp . ¢ VK e Now let f in D(G) be such that fo {cf.
(3.35)) is of the form

(4.23) _fo(katH) = (sh t)™(ch t)zF(t)YK,m(kM),

where F € Deyen(R) , Yp € Yp . Then it follows that
. 9
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(4.24) T, () = 8 (b, ¥, ((eK):

JF(t)(b( S T

(t)Xt
E s
O 2

1, dp=1+

for certain constants by p which are explicitly evaluated by
Faraut. A similar formula holds for Syf, where Sy is a
spherical distribution for X in the discrete spectrum of Q.

Now, in view of (4.23), (4.24) the Plancherel measure Vv
in (3.36) is obtained from inversion of the Jacobi transform
in the cases (a,B) = (4dq-1,3dp-1+£), where £ runs over a
certain subset of Z, . Thus Theorem 2.3 can be applied again.
In a similar way, the version (3.37) of the Plancherel thecrem
can be reduced to Theorem 2.4, where now
(a,B) = (idq-1+m,idp-1+L). This is Faraut's second proof of
his Plancherel theorem in [37,§10]. (His first proof uses
direct spectral decomp051t10n of L, ,g on R, u 1i[0,3m].) Ob-
serve that in Faraut's second proof more cases of the
Plancherel theorem for the Jacobi transform are used than is
strictly needed: m can be put-=zero.

Kosters [88], [89,Ch.3] derived the Plancherel formula
for (F4(_20), Spin(1,8)) in a similar way, using Jacobi func-
tions,

The fact that the K-invariant eigenfunctions of Q on
G/H can be expressed as Jacobi functions holds for all semi-
simple symmetric pairs of rank one. More generally it holds
for semisimple symmetric pairs (G,H) where the maximal
abelian subspaces of p n ¢ (cf.§3.4) have dimension one.

This follows from the explicit expression for the radial
part of Q with respect to the decomposition G = KAH (cf.[67],
[72,ch.I1]1, [45,(4.12)],[46,p.307], [75,Ch.10,11]). For the
cases (G,H) = (0(p,q),0(1)x0(p-1,q)) this was already ob-
served [42]. Unfortunately, K-finite eigenfunctions of non-
trivial K-type cannot always be expressed in terms of Jacobi
functions. For instance, on the space SL(n,IR)/GL(n-1,R)
'congidered (for n=3) by Kosters [89,Ch.4] and (for n=3) by
Molcanov [107] the K-finite eigenfunctions do not factorize,
in general, as katH » Y(kM)F(t), but for the t-dependence

we get vector-valued functions satisfying a system of second
order o.d.e.'s. Thus many of the methods used in [37] fail
here, because the theory of these vector-valued special
functlons is not yet developed.

It is still worthwhile to have knowledge about Jacobi
functions as K-invariant eigenfunctions of Q on G/H (so-
called intertwining functions): in order to do harmonic
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analysis for K-invariant functions on G/H, in order to get
partial information about full harmonic analysis on G/H and
in order to get new group theoretic interpretations of for-
mulas for Jacobi functions. For the first and third objective
see Flensted-Jensen [42], Badertscher [6], for the second ob-
jective see, for instance, Kosters [89,Ch.4], Sekiguchi
122,871, Sekiguchi [122] characterized the eigenhyperfunc-
tions of © on G/H = U(p,q;F) /U(1,TF) xU(p-1,q;F) as Poisson
transforms of the hyperfunctions on K/K n M by using the full
machinery of hyperfunction theory. W. Kosters (Leiden, to
appear) did analogous work for SL(n,R )/GL(n-1,R) . It would
be interesting to redo the results in [122] in the style

of Helgason [68]1(cf.84.2) by use of the explicit expressions
(4,22) for the K-finite functions. :

Badertscher [ 6] does harmonic analysis for K-invariant
functions on G/H with G = 0(p,1), K = 0(p)x0(1), H = 0(p-1,1)
(so H is slightly smaller than in the case of [37]). The
radial part of 9 with respect to the decomposition G = KAH
now becomes the Jacobi differential operator L_1 1,_| on_ the

. . . 3 i s 2P 2
full real axis. The eigenfunctions with elgenvaiue —X%—Q
are the linear combinations of t?eleven function ¢§'§’§P—1y
and the odd function t - sh t ¢§§’ip_l)(t). So, by decompo-
sition into even and odd functions the spectral decomposition
of .1 1,-1 on R can be reduced to inversion of the Jacobi
transform for (a,B) = (+3,3p-1). The occurrence of multipli-
city 2 for the K-invariant eigenfunctions of Q already sug-
gests that (G,H) is not a generalized Gelfand pair in this
case.

Mizony [1051, [106] and Faraut [38] point out that for
G=0(p,1), H=0(p-1,1) and A4 := {at|t > 0} the subset
HALH of G is a subsemigroup of G, Thus the continuous H-
biinvariant functions on G with support included in HAH
form a convolution algebra which turns out to be commutative.
After restriction to a smaller algebra of C*-functions of at
most exponential growth on A,, the characters of this algebra
can be determined, It turns out that they have the form
h2sh g H[ fay 2T 0p-DT =i Goml-D) (.
0 t r(1-1)) A

. (sht)p—]dt,

where ¢, is a Jacobi function of the second kind (cf.(2.15))
and ImA is sufficiently large. Thus we have a group theoretic
interpretation of the Laplace-Jacobi transform if B = -%,
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o =0,5,1,... . Mizony [105] and Carroll [19] consider the
Laplace-Jacobi transform also for more general a,B, without
group theoretic interpretation, and they obtain inversion
formulas. Mizony [106] points out that, in the case of group
theoretic interpretation, the functions HaiH - ¢, (t) can be
considered as certain generalized matrix elements of 'prin-—
cipal series" representations of the semigroup HA H. The in-
terpretation as characters of a convolution algebra is in-
teresting, since such an interpretation is not known for
spherical distributions,

5. THE ABEL TRANSFORM

As we already observed in §2, the Jacobi transform f » f has
a factorization

e
\ /F
P

where F is the classical Fourier transform and f » F¢ is the

Abel transform. This last transform can be defined both in

a group theoretic (geometric) way and in a purely analytic

way. Since fairly much is known about the properties of F,

a study of the Abel transform will teach us a lot about the

Jacobi transform. Moreover, the Abel transform is an in-

_teresting object in its own right. Roughly the following

aspects of the Abel transform will be discussed:

(a) the homomorphism property with respect to suitable con-
volution algebras;

(b) the transmutation property with respect to suitable dif-
ferential operators;

(c) the bijection property with respect to suitable function
spaces;

(d) the inversion of the Abel transform;

(e) the images of certain special functions;

(f) the dual Abel transform.

One can start reading this section either in §5.1, where
the Abel transform is treated in the spherical rank one case,
or in §5,3, where an analytic treatment of the Abel transform
is presented, In §5.2 the transposition of formulas from
group theoretic into analytic form is discussed. Finally,
§5.4 contains a generalization of the Abel transform and
§5.5 discusses results and references.

(5.1)
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5.1. The spherical rank one case

The main reference for this subsection is [39]. Assume that

G is a rank one group, use the notation of §3.1 and use the
‘rtesults and conventions of 84.1. The Haar measure dn on N can
be normalized such that the Haar measure on G, normalized by
(4.8) has the following expression with respect to the
Iwasawa decomposition:

i
(5.2) J f(x)dx = J J J f(katn)eZDtdkdtdn,f e C (G).
| G K'R’N &

For £ in C.(G//K) define the Abel transform f & Ff by

(5.3) Ff(t) 1= ept J f(a,n)dn, t e R.
N t

Combination of (4.7), (4.4), (5.2), (5.3) shows that, for f
in C.(G//K), . ,
(5.4) E) = J 7 (e e,
f

R
Thus the spherical Fourier transform is the composition of
the Abel transform and the classical Fourier transform (cf.
(5.1)). It can be shown that £ » Ff is an homomorphism of
the convolution algebra C.(G//K) (or D(G//K)) into the con-
volution algebra Cc,even(R) (or Dgyen(R)) :

(5.4) Ff*g = Ff*Fg, f,g e C_(G//K),
and that the mapping has the transmutation property (use(4.1)):
2
2
(5.5) F,-.(t) = KSL— -p \F (v),
Qf dt2 f

where £ € D(G//K),
Let the dual Abel transform g * Eg be the linear mapping
of C(R) into C(G//K) which satisfies

(5.6) J f(Xx)E (x)dx = J F.(t)g(t)dt
G & R °
for all £ in C-(G//K), Then (use (5.2))
_ _ -1
(5.7) Eg(x) = J g(H(lek))e pH(x k)dk, Xx e G, g e C(R),
K

and there is the transmutation property

(5.8) QEg = Eg"_DZg, g ¢ E(R) (=C (R)) .




40 T. H. KOORNWINDER

If g(t) := el>\t then E, = ¢, (cf.(4.4)).

Now make the further assumption that G = U(l,n;TF) (cf.
§3.1). Then we can rewrite (4.4) and (5.3) in a more concrete
form. If x in U(l,n;TF) has matrix (Xij)i,j=0,...,n then it
can be shown that

(5.9) i(X) = log(Ixyytxy )5 x € G.

u
Let k =(p V) be an element of K = U(1,F) xU(n,F) . Then it
follows from (5.9) that

H(a_tk) = log(Ju ch t - Vnnsh‘t]).
Thus (4.4) can be rewritten as

(5.10) 6, (a,) = j jch £ + y_sh £ APy

S(FD)
where S(F") is the unit sphere in Iﬁl,
v = (J1seee5Yn) € S(F?) and dy is the normalized U(n,F) - _
invariant measure on S(FD ). Note that S(FD) is the homo-
geneous space K/M.

Next we rewrite (5.3). In terms of the elements n, y
(cf.(3.1)) the Haar measure on N equals dn, cQ g%J%W’
where dz and dw are Lebesgue measures on ETVH ='Rd n
and ImF = Rd-1 | respectively, and the positive constant co
has yet to be determined. For a K-biinvariant function f on
G write

(5.11) flcht] := f(at), te R.
Then
(5.12) f(x) = f[]xoolj, X £ G,

For an even function g on R .also write
(5.13) glcht] := g(t), t ¢ R.
Now we can rewrite (5.3) (using- (3.1) and (5.12)) as

Ff(t) = Coept J o1 f[lcht+et(%|z]2+w)‘]dz dw,
F xIm F

hence

(5.14) Ff[X] f[xll+!z|2+2wi]dzdw,x22}.

P
c.(2x) j
{ Fn ]XIm]F
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It was observed by Godement [57] that (5.14) reduces for
F= R, n=2 to

1 [ 2
CO(2X)2 flx(1+z7)]dz =

Ff[X] -

« -1
COZ J flyl(y-x) *dy,
x

N

Il

which is a version of the classical Abel transform (cf.
Abel [1]). This explains the name of the transform f > Fg.
If we substitute

-1A=p

(5.15) fx] := (2x) , Im\ < 0,

in (5.14) then

(5.16) Felx] = CO(ZX)—lAJ ] - 114121 %4201 Pz du,
T xIm F

Here f[+] determines a function f(+) in C.(G//K) and Ff is
well-defined although f does not have compact support., It is
possible to determine cp from (5.16). Observe that, for K-
biinvariant f,

I f(at)A(t}dt = ( Ff(t)eptdt.

0 IR
Substitute (5.15), (5.16) in this identity, put A := iv and
let v ¢+ —p, Then we obtain
- h 2 =2
(5.17) (:O'1 = ( 01 J1+|z | +2w] Pdz dw.
JEY xIm T

Remember the c—function, cf., (2.17), (2.18), (2.19). By
application of (2.19) to (5.10) we can derive an integral
representation for the c-function. Rewrite (5.10) as
e(ik—p)tJ iy Ty | TP

¢X(a ) =

-
¢ 14y ) 1 Pay,

S(TF) n

Let t > 0. Then the integrand is dominated by
[L(14yn) |~ ImA=0 if —p < Tm\ < 0 and by | if Im\ < —p. Hence,
an application of the dominated convergence theorem shows
that ¢) (ay) satisfies (2.19), where

(5.18) c{X) = [ I%(1+yn)]ix—pdy, Im\ < O.
S(E")
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Next we will express the constant factor in (5.16) in
terms of the c-function. By the Bruhat and Iwasawa decomposi-
tions (cf.83.1) the mapping n #» u(n)M is a diffeomorphism of
N onto an open dense subset of K/M. Here u(n) is as in
§3.1(c). The corresponding Jacobian occurs in the formula

(

( - - =%
(5.19) | nana@n = | na@we 20H(0) 42 1 e cr/M) .
K/M IN
This formula can be rewritten as
(
5.20 ey dy =
( ) Jls(]Fn)h((y] y_))dy

' (=2 500 w52 11 2] "2}
n-1
= COJ n-1 h< 2 )
FY OxIm T

1+|z]| "+2w
2 -~
l1+]z] “+2w] Zpdz dw,

where h € C(S(E’)) . Formula (5.20) can also be derived by
stralghtforward computation. Now put h(y) := |2(1+yn)llx
in (5.20) and combine with (5.18). Then we obtain

( —
(5.21) e =g 11412 242w ] TPz a0, Tmh < O,
F xIm F

and, in view of (5.15), (5.16):

_](ZX)~1A—Q,ImA<O. 7

(5.22) P [x] = 22)" M if %] = {e(1))
Formula (5.22) has an analogue for Jacobi functions of
the second kind defined by (2.15):
1

(5.23)  F(0) = & P(0)if £(kak,) = () e, (B)

(t>0,k kzeK), Imk < O.

]’
Here the function f is well-defined on G\{e} and so is its

Abel transform defined by the right hand 31de of (5.14). It
follows from (2.9) and (5.5) that (d /dt +) )Ff(t) = 0 and

(5,22), (5.14) and (2.15) show that

Fe(t) = _1kt(1+0(l)) as t - », Thus (5.23) is proved,

The results (5.22), (5.23) seem to be unobserved in
literature until now. It would be of interest to find an
higher rank analogue of (5.22).
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5.2. Elimination of group variables from the integration
formulas

In order to pass smoothly to the analytic treatment in §5.3,
which does not use group theory, we will rewrite some of the
previous integrals like (5.10), (5.14) in a form which does

not involve group variables, thus allowing generalization to
other values of a,B. The key observation is that, for

F=C€ or H,

' lem .
f(Reyn+i]Imyn|)dy = J j e elw)dmu B(r,w);
0’0 ?

(5.24) J
S(EF™)

where f is a function on the upper half unit disk and

(5.25) dma,B(r,w) 1=

_ 2F(OL+1) " 2. 0—-p-1 ) 28 7
=TT Ty (7T (r siny) “Frdrdy,

and that

(5.26) f([1+]z|2+2wl)dz dw =

)
d ]Fn ]xIm]F

(" 2.2, 2.4
- J J E(((1+s7) " +4t7)?) dn_ _(s,t),
= o,R

0“0

where f is a function on (1,°) and
2p+1
2P r(at) 20-28-1_28

(5.27) dna,B(s,t) = T T (a=B)T (6+D) s t "ds dt.
These formulas remain valid for F= R (B=-1), but the
measures My -1, ny _1 degenerate to measures with one-di-

mensional support:’tﬁe weak limits of my g, ny g as BY—1.
Throughout the rest of the paper we will,keep to this con-
vention, so we will not give the formulas for B = - (or
a=B) separately. '
Formulas (5.10), (5.14), (5.18), (5.21) now can be re-

written as

1em ) )
(5,28) ¢A(at) = J [ ]ch t+r e "sh t]t —pdm(r,w).
0’0
(5.29) Ff[X] = (ZX)QJ J f[x((1+52)2+4t2)%]dn(s,t),
0’0
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1em . .
(5.30) c(h) = j J |1 (1+r elw)llx_pdm(r,w) =
0’0

Il

J f ((1+s2y 24t 2y~ 2 CEAD) 4o e 0y, Tmn < 0.
00

The equality of the two integrals in (5.30) also follows by
the transformation of integration variables i (l+r elV) =

= (1+s2-2it)~). This is seen by straightforward computation
or by use of (5,20). The explicit expression (2.18) of c(})
can also be obtained by evaluation of one of the integrals
in (5.30).

5.3. The analytic case

A reference for this subsection is [81], We will obtain a
pair of dual integral transforms f Ff,\g » E_ such that
the transmutation properties (5.5), (5.8) hold for more
general a,B. These transforms will be built up from two
fractional integrals and a quadratic transformation. So let
us first introduce these building blocks.

Let La,g be defined by (2.9). Then there is the qua-
dratic transformation (QT)

(5.31) (L, Y1) = 4(L_ _,8)(2t) if £(t) = g(2t),
(5.32) ¢§§’“)(t> = ¢§“’T%)<2t>,®§§’“)<t> - @f“"%)<2t>.

For Re pu > O define the fractional integral operators

R, of Riemann-Liouville type and W, of Weyl type by
I

X
(5.33) (Ruf)(x) i= ~7—-j f(y)<x—y)”_1dyﬂ
i }

T (u)

Il

[ £(y) (s-x)" "y,
X

(5.34) (W £) (%) 1= e

I . .
where f ¢ L ([1,#)) and, in (5.34), f > 0 sufficiently fast
as x > » (cf, [35,Ch,13]). Some simple properties are:

n "
(5.35) RR =R ,DR =RD=R_,, DR =id,
n.
(5.36) WooW, =W, DW= WD =W, ann = (-1)"4,
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where D :=

45
= d/dx and n € N . Define the class Hg(0>0) by
(5.37) H = {£c (=) |Vnez, £V = 06T, x - =,
The following two mappings are bijections

o 411
U.(x—1>0‘c ([1,2)) » (x=D*"Mc"([1,%)), Re o > -1,
WU:HO - HO—Reu’ Re H £ G,

A generalized integration-by-parts formula is given by

(5.38) J f(x)(wug)(X)(X—])a(x+l)6dx
1

J <R(“ B) £y () g ) b=1) M e 1) B
1

where f € Cm([l o5)), g € Cz(Fl ©)) and

(5.39) (R<a B)

£)(x) := (x=1)" "M (x+1)TBTH.

‘R (b1 G+ 1) £ (5 ) 6
(a B)

is a bijection of c ([1,»)) onto itself and of
C ([1,#)) n Hy onto C*([1 oo)) n Hy_ge

Let Ly,g be the differential Opera%or on (l,x) obtained
from Lo, B by making the transformation x

(5.40)

= ch 2t:
(L, g8 ()

o= 1) g )+ (ot Bt 2 mho~B) gt )

A straightforward computation yields the transmutation
formula

(5.41) (L B+(oc+5+1) )w f = w (L

2
+(a+B+2u+1 f
o, B+ (a+B+2u+1) ") £,
where £ € H;, Re u < o. By using (5.41),

(5.38) and the self-
adjointness of L, g with respect to the weight function
(x-1)*(x+1)P we obtain another transmutation formula

(5.42) (1, o, +(arsr2e) HRGPE - %8,

u
where f ¢ Cw([],w))

(e DD,
yield:

Three applications of the beta integral

b
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(5.43) WU((x—a)_O) = I%%%%z-(x—a)—0+u, 0O < Reu< Reo,
ity _
Goaw) @O = 2Dy, £ P,
(a,B) , .0y _ T'(a+B+0+1) o-u
(5.45) RU TI(xT) = T latBrornrT) X (modHU_G_l).
Now we consider maps g » E(Q’B) and f + Féa’B) which

are, schematically, compositions of the following maps:

b
5.46) BBy oy OB ampg,eme-h) Es
| R(aTB—%,-é)
—— (amB},-p) 2 > (a,8),
Goan P ap B gy gy
i W

— (Q—B—%,G_B-% _2:§+ (—%’—%)-
We will work in the t-variagble and we will normalize E(G’B)
and F(a,g such that Eéa,B (0) = g(0) and g (a,B8) and F(a,B)
are adjoint to each other in a suitable sense. More concrete-
ly, we define

Gy P = o o aoa (5,004
. g (t = il o,B t . g(s 5, B s,t)ds,
(5.49) Féa,B)(S) = JS f(t)Aa,B(s,t)dt,
where
30+3/2 t
| 2 I'(a+1)sh2t _ B-3,
(5.50) Aa’B(S,t) i = F(%)F(a_B)F(B+%) JS (Cth Ch2W>

+ (ch w-ch s)a_B—lsh wdw, 0 < s < t,a > B > -3,

with degenerate cases

Ay, -y (sst) = gAa,a(gs,gt) =

3a+3
. 2 2T (a+1) a-1 1
B T(d+%)r(%) sh t<Ch t-ch S) ;g & > =3,
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Again we call the transform f » Fgf defined by (5.49) an Abel
transform. It equals the classical Abel transform if
a =8 =0,

It follows from (5.42), (5.31), (5.44) that

o wl@sB) .= Lo
(5.51) g Eg .ceven(lR) Ceven(]R)’
(5.52) Eé“’B)(o> = g(0),
(3.53) Eéﬁ’g) = (Lu’6+(a+e+1)2ﬁé“’8).

In order to describe the mapping properties of F<a’8)

let us introduce, for ¢ in R, the class
Hot= (£ C7((0,=) [vaez, £ () = 0(e75), e =,

Then it follows from (5.41), (5.31) that

(5.54) £ H-Féuié): Ho - Ho—a—B’ o>a+ B+ 1,
(5.55) CISLD N

(L, g+(a+prD D"

It follows from (5.43) that

(5.56) F(a’B)(s) =.c (X)(2coshs)_1k

- f 0,B
) 9F Fi(t) = (Zcoshe)y "~ Rl
where c(X) is given by (2.18) and ImA < 0.

By combination of the above results about f b F¢ with
(2.11) and the characterization of ¢) as special solution of
(2.10) we obtain the integral representation

t

-1

(5.57) ¢A(t) = 2(A(t)) [ cosis A(s,t)ds,

0
which, in the case o = B = 0, goes back to Mehler [103].
Similarly, if we combine the above results about f » F
with the characterization of ¢, as solution of (2.10) satis-—
fying
(5.58) 0\ () = PP E (ot

ImA+p+2)’

(in view of (2.15)) then we obtain
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ixs _ ” ®X(t)
¢ R )

Different proofs of (5.57), (5.59) were given in [81,(2.16),
(2.17)] by the use of fractional integrals for hypergeometric
functions.

Formula (5.57) together with (5.45) yields again (2.19)
for o 2 B =2 —-;. We now give another proof of (2.17). For
A ¢ 1Z we have ¢ = a(A)dy + b(A)®_y for certain coefficients
a(Ax), b(A). From (2.19) and (2.16) we find a()) = c(1) 1if
Im\ < 0. By analyticity in X and since ¢ = ¢_) we have
b(A) = a(-X), This proves (2.17).

The kernel A  ,(s,t) can be written as a hypergeometric
function by making the substitution
T = (ch t-ch w)/(ch t-ch s) in (5.50) and by using Euler's
integral [33,2.1(10)7:

(5.59) A(s,t)dt, Im)x > O,

3a+2B8+1
_ 2 I'(a+1) -1
(5.60) Au,B(S’t) T DT sh2t(ch t)
_ 1
" - a=3 1 | _pemel. Ch t=ch s
(Ch t-ch S) 2F1(2+B,2 B,CY.'*‘Z, *——ZE:E'——E—-—),

Instead of in kernel form we can write the formulas
(5.57), (5.49) also in a more group-like way. In (5.57),
(5.50) make the two successive transformations of variables
(s,w) & (s,x) v (r,y) given by ch w = cosy ch t and
ch t + sh t r etV = 571X, The resulting formula is (5.28)
(with left hand side replaced by ¢, (t)), now proved for
@ = B > -3. A different proof was given in [41,p.150]. In
the case of Legendre polynomials (a=B=0) this integral re-
presentation goes back to Laplace. Next consider (5.49),
(5.50). With the convention (5.13) formula (5.49) can be
written as

23a+8+lf(a+l)

I(z)T(a=B)T(B+3)

® J J f[y](yz—zz)B 2 (z-x)% . ly dy dz.
- Yz=x ‘Yy=z

Ff[x] =

1
By making the transformation of variables y = X((sz+l)2+t2)2;
z = x(s2+1) we obtain (5.29) for general o > B > -1, Finally
(5.30) follows from (5.28), (2.19), (5.29), (5.56).
In order to invert the Abel transform we introduce a
version WJ (Reu>0,1t>0) of Weyl's fractional integral trans-
formz
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co

.
} J f(t)(ChTt—ChTS)M—]dChTt,
‘s

I'(u)

where, for convenience, we assume that f € Ugyen(R). Then
it follows from (5.36) that /\f has an analytic continuation
to all complex u: if n = 0,1,2,... and Re u > -n then

(5.61) (WSf)(s) =

(5.62) (W E)(s) = ((-D/T(u+n)) -
o n
.. J —ﬁ—fifl—-(ChTt—ChTS)u+n—1dChTt.
S d(chTt)n

It follows (again using (5.36)) that ()" has inverse Wi and
that it is a bijection of Dgyen(R) onto itself.

For f in UeVen(IU formula (5.49) can be rewritten as
3a+3}

(5.63) pl®B) _

= 1
2
¢ T F(a+])wa_

2
ow8+%(f),

B -_
this formula has an analytic continuation to all complex
a,B with a # -1,-2,... and it can be inverted as

. ,-30-3 % 1.2 1 (o, B)
(5.64) £ = 2 R (o) T,y olly (7).

Let us summarize the various expressions for the Abel

transform obtained until now:

(a) kernel form (5.49) with kernel given by integral re-
presentation (5.50) or by hypergeometric function (5.60);

(b) composition (5.63) of two fractional integrals;

(c) group-like form (5.29) with only essemtial integration
variables being preserved;

(d) group form (5.14) using special structure of Nj;

(e) group form (5.3) which generalizes to arbitrary semi-
simple G.

We might add:

(f) geometric form (cf. [66]) involving integration over
horospheres: the so-called Radon transform.

A similar list can be made for the integral representation

for ¢k'

5.4. A generalization of the Abel transform

Let

(5.65) (Aa,B;y,é (s,t)dt, s > 0,

f)(s) := JS f<t)Au,B;y,6




S0 T. H. KOORNWINDER

where
(5 66) R (S t) a 22(OH-B—Y-(S)F(OL+1)
) o,B3Y,8 7 T(y+1)T(a-y)
« sh2t(ch t)Y--(S-_OhLB(chzt—chzs)OL—Y—1
' ch2
« JF (3 (a+B=y+6), 5 (a=B=y+8) ja~y; 1= %3,
271 4 2
ch t

a > v, fe Cw((O,w)) and sufficiently rapidly decreasing.
Then it can be shown (unpublished work of the author) that

2 ;)
(5.67) (LY,5+(Y+§+1) )Aa,B;Y,é ) Aa,B;Y,ﬁ(La,B+(u+B+1) )
A=y—06-1
_(2chs )l .
(5.68) Ay gsy s (8) = &) if
(Zcht)ik—a—B—l
f(t) = )
i S, M)
@ia,B) \ ®§Y,5)

. A - ,

(5.69) a,B3Y,8 \ca,s(—)\)/ CY,S(_}\)
(a,8) _ (5,8

(5.70) N (t)Aa,B(t) = j0¢x (S)AY,5(5>AG,B;Y,5(S’ads'

Formulas (5.68), (5.69) are valid for Im\ > - v + |§]|-1.

Formula (5.69) may be derived from (5.68) by using that

(a,B) s Y Ty R

®k (t) e ( 1)\)2k (2cht)1x 2k-a—-R-1
cu,B(—A) k=0 (-—1)\+1)k ca,B(—X—Zkl)

(5.71)

(this follows from (2.15), (2.18)).

In view of [33,2.11(22)], (5.66) and (5.60) we have

L -1 = Ay B hence A ._1 _1 £ =F¢ and formulas
(5 6?) 15270) glneralize (5 %5)2’(5 56), (5.59) and (5.57).

Sprinkhuizen-Kuyper [125,(3.1)] defines a generalized
fractional integral operator IB’X which operates on C((0,11),
but which can immediately be extended to an action on suffi-
ciently rapidly decreasing continuous functions on (0,®).
Then
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oy L ,2(8-8)+3(a=y) T(a+1)
Aa,B;Y,S(f ch) = 2 T (y+1)
a—-B-y+8 ,B=8

(126+1

f)och
and the composition property [125,(3.4)] can be translated
as ;

(5.72) A . A . = A .
Bl T T B L e L B L it LUt T

Like in [125,83], analytic continuation of the operator
(5.65) with respect to a,B,y,8 is possible by use of (5.72)
and

-5 -1 -1
(5.73) Aa,B;a+l,B+l = =2 “(a+1) (ch t) d/d(ch t),

- _ L (a2 28+1 _d
a,B30+2,8 26(a+])(a+2) \\d(cht)) cht d(cht) /)

The kernel (5.66) simplifies if a =y =8+ 8, 8 - 6, =B + &

(5.74) A

or -8 =§. The kernel degenerates completely if o =y, B=-§
and then (5.69), (5.70) give rise to the symmetries
| - -
5.75) 6B (0) = () Bl 8 oy,
(5.76) 0. (t) = (2cnt) T2 o7 (o,

which can also be derived from (2.4), (2.15).

It would be of interest to find integral transforms on
groups which give interpretations of (5.65). One possibility
would be to consider (5.3) with N replaced by some suitable
subgroup of N. Another possibility is in Badertscher [6,85],
where formulas (3) and (14) give interpretations of our
formulas (5.70) and (5.65) as a passage from K-biinvariant
functions to left-K, right-H-invariant functions on
G(G = 0(1,n), K = 0(1)x0(n), H = 0(1,n-1)x0(1)).

5.5. Notes

The Abel transform (5.3) can also be considered in the case
of higher rank. It is an interesting open problem to find
analogues of (5.63) in those cases, maybe related to frac-
tional integrals in several variables, and to find an ex-
plicit inversion formula. Partial answers to the inversion
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problem in higher rank are given by Gindikin & Karpelevic
[56], Helgason [ 66, Theorem 2.6] and Aomoto [4]. Flensted-
Jensen & Ragozin [51] were motivated by the structure of
(5.57) to prove that also in the higher rank case spherical
functions ¢, (a), considered as function of A, are Fourier
transforms of L!-functions.

Flensted-Jensen [45] considers integral transforms be-
tween function spaces on a complex semisimple Lie group and
on its normal real form. The special case SL(2,C) yields a
pair of integral transforms connecting Jacobi functions of
order (i,1) and (0,0) (cf.[45,(10.4),(10.5)1).

Flensted-Jensen [42,83] gives an analogue of the Abel
transform (5.3) for left-K, right-H invariant functions,
where (G,K,H) are certain triples as in §3.4, 4.5. In parti-
cular, this gives an interpretation in the Jacobi cases of
order (a,B), a = B = -1, a,B ¢ 1Z.

Lions [96,Ch.12] finds an analogue of the dual Abel
transform (5.48) in the case of a differential operator
[+q, q € Eeven(mj , L given by (2.8), t v t=20-1a(t) in
Eeven(R) but not necessarily positive, a ¢ € but -a ¢ N .
He proves the existence of a unique continuous bijection E
of Eeyen(R) such that (Ef)(0) = £(0), Ef" = (L+q) (Ef).

For the proof he considers the hyperbolic p.d.e.

(5.77) (Lt+q(t)—82/852)v(s,t) -

Chébli [21], [22], [24] and Triméche [137] have analogues
of the integral representation (5.57) under their conditions
(2.35) and eventually (2.36). Chébli [21], [22] uses (5.77)
for its derivation. Moreover, in view of (2.36), he can
apply a maximum principle and he thus obtains the positivity
of the kernel. Chébli [24] and Triméche [137] obtain their
integral representation from asymptotics of ¢, in terms of
Bessel functions and from properties of the Fourier trans-
form. (Conversely, estimates for ¢; can be derived from its
integral representation, cf.§6.) Triméche [137] obtains
analogues of the Abel transform (5.49) and its dual (5.48)
from the integral representation,

Carroll [18] uses the Jacobi function example as a
model for a general theory of transmutation operators.

6. PROOF OF THE PALEY-WIENER AND PLANCHEREL THEOREM

This section contains proofs of the two above-mentioned
Theorems 2.1 and 2.3 by use of the Abel transform. We start
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with some estimates which will be needed in the proofs and
we end with some notes. The papers [41] and [8!] can be used
as a reference for this section

Assume that o > B8 > -}, From (4.4), (5.10) or (5.28) it
follows that [¢p+iv(t)| < loiv(e) | (u, veEU ¢_lo(t) =1,
éip(t) = 1 (since ¢, = ¢_y) and that v b ¢i, is a convex
function on R for all real t. It follows that

(6.1) I¢A(t) <1 if |Im\] < p, te R.

By combination of this result with (2.19) we obtain that
¢y is bounded iff |Imk| < p. From (5.28) we see that

. etlImA

(6.2) ENG) b,(t), =0,

Now ¢qg(t) can be written as a linear combination of two solu-
tions of (L+p Ju = 0 behaving like e Pt and te Pl as t »
(cf.[33,Ch.2]). Hence, for some C > O:

(6.3) |¢k(t)i < C(1+t)et(!ImX}—p)for all t >0, A € C.

See [41, Lemmas 14,151, [81, Lemma 2.3], [101,(2.8)] for
estimates of derivatives of ¢)(t).

Let now o,B be arbitrarily complex (a#-1,-2,...). Ob-
serve that (c(=X))~1 has only finitely many poles for
ImA 2 0 (none if ImA > 0 and Re(a*B+1)>0). Then an applica-
tion of Stirling's formula [33,1.18(2)] shows that for each
r > 0 there is C, > 0 such that

- 1
(6.4) lc(-2) | 1 = Cr(]+|K|)Rea+2 if Im\ > 0 and

c(-u) # 0 for Iu—xl

Finally we need the following estimate for &,: For each
§ > 0 there is Cg > 0 such that

e—(Im)vf'ReO)t if t > 8 >0, Imh > 0.

(6.5) o, (£) |
See Flensted-Jensen [41,pp.150-152] for a proof, which is
analogous to Harish-Chandra's [61] proof in the group case
(general rank). It proceeds by deriving a recurrence rela-
tion for the coefficients I'p(A) in the expansion

(6-6) 0,(t) = PP r Gye™
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and proving that TI'py(X) is of at most polynomial growth in m,
uniformly in A. (Stanton & Thomas [127] give more precise

estimates for TI'p(Ah).)
Let a = B = -1, In view of (5.57), (5.49) the Jacobi

transform f > £ defined by (2.12) factorizes as in (5.1) if,
for instance, f ¢ Co(R). In the spherical rank one case thlS
was already observed in (5.4).

We now prove the Paley-Wiener Theorem 2.1. The operator
WU defined by (5.61) can be shown to be an isomorphism of
topological vector spaces in the two following cases:

-
W (R) -~ 7D n(]R),

u’ even eve

T, -0 N -0+TU
wu. (ch t) Seven(R) (ch t) Seven(mj

(o=T1u=0).

N

Thus, in view of (5.63), we have isomorphisms

(6.7) f > Fet D (R) -~ D (R) ,
even even

. - ~0+p
(6.8) g (cht) Seven(m) + (cht) Seven(lR)
(o2p in (6.8)). It follows from (6.7), (6.8), (5.1) and
standard mapping properties of F that the Paley-Wiener
Theorem 2,1 holds for a > B > -} and also

Theorem 6.1. For o = B = -}, 0 = p the Jacobi transform is a
1-1 map of (ch t)798,yen(R) onto the space of even C®-func-
tions g on {} € C]|ImA] < 0-pJ, holomorphic in its interior
and s. satisfying e

SUB | 1 g 1D T1E™ ] < =, nm ez,
Flensted-Jensen [41, Theorem 4] shows that the bijec-
tions in Theorems 2.1,6.1 are homeomorphisms and that, in
Theorem 2.1, there is also a bijection between the dual
spaces. :
Theorem 2.1 can similarly be proved for general complex
a,B(a# -1,-2,..) by use of the analytic continuation of (5.1)
with respect to a,B (use (5.63), (5.62), (2.13)). Note that
Theorem 2.1 both generalizes and is derived from the clas-
sical Paley-Wiener theorem, cf, for instance Rudin [118,
Theor.7.221].
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Next let us prove the inversion formulas (2.21), (2.25)
for the Jacobi transform in the case a = 8 = -3, Let g(t)
denote the right hand side of (2.25). Because of Theorem
2.1, (6.3), (6.4) g is well-defined and continuous. Observe
that c(x) = c(-1) if X €« R and use (2.17). Then, for t > O,

Qx(t)

efE) = 5% J OV =7

A+1u(t)
c(-r-1in)

= (w EQin)
8

1
~2-TT— d)\, u ZO,

because of the estimate

I o . (t) !
~ 5 A+1U . it
—_— < -~
lf(x+1u) oot < e Cg(1+Iarinl)
(Ag-t)u-pt )
> e ,t>238 >0, ¢ R, u 20,n ¢ Z+

(use Theorem 2.1, (6.4), (6.5)). Hence
g(t) =0 if t > A so g € C¢ even(R) . Now, by injectivity,
f = g will follow from F¢ = F_. We have

c(=A-1iu)

g\ =0 ’ ~

% /(00 o° . (t)
Fo(s) = %T?J ([ OURTT) . dA\}A(s,t)dt,u>O, s> 0.

The above estimate together with an estimate for A(s,t) fol-
lowing from (5.50) allows us to apply Fubini's theorem. Com-
bination with (5.59) yields

F,(s) = é-‘FJ mf(x+iu>e<” “)de=§;J F()et %
Thus, because of (5.1) and the inversion formula to the clas-
sical Fourier transform we obtain Fg = Fg and we have proved
(2.21) and (2.25).

By a slight adaptation of the above reasoning (cf.

f82 §4]) Theorem 2.2 can be shown to hold for general a8
Then Theorem 2.3 follows from Theorem 2.2 by moving u to O
in (2.21) and by taking account of the poles of the inte-
grand which are passed. Formula (2.27) follows from (2.24)
and (2. 12), while the extension of (2.27) to an isometry of
L4-spaces is unique because of Theorem 2.1,

There is a close relationship between the Paley-Wiener
and the Plancherel theorem, but there are many possibilities
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for the order of their proofs. For instance, Flensted-Jensen
[41] first proves the Plancherel theorem and then uses it to
prove the Paley-Wiener theorem, but in the proofs given in
[81] and in the present section we have the converse order,
while in Rosenberg's [117] proof for the spherical case of
general rank (see also Helgason [72,Ch.4,87], [71,84.2])
ingredients of proofs of both theorems follow each other in
logical order.

The Paley-Wiener theorem was first proved by Ehrenpreis
& Mautner 31], N32] for SL(2,R), respectively in the
spherical case and in the case of arbitrary double K-type,
by Helgason [65] in the spherical rank one case, by Gangolli
537 in the spherical case of general rank, by Helgason
[69, Cor.10.2] for arbitrary K-types on rank one spaces G/K.
Chébli [21], [22], [23] and Triméche [137] obtain a Paley-
Wiener theorem under their more general conditions (2.35),
(2.36). Nussbaum [[110] announces without proof that for
positive A satisfying (2.36) but not necessarily (2.35) still
a Paley-Wiener theorem can be proved.

7. CONVOLUTION

In this section the convolution structure associated with the
Jacobi transform is discussed. A reference is [48]. We start
in §7.1 with the hardware, i.e. explicit formulas for the
product of two Jacobi functions and for the generalized
translation, both in the spherical rank one case and in the
analytic case. In §7.2 the corresponding harmonic analysis

is treated: the Jacobi transform of LP-functions, the con-
volution of two LP-functions and the Kunze-Stein phenomenon.
This subsection ends with some notes.

7.1. Product formulas and generalized translation

Let G = U(l1,n;F) as in §3.1. Remember that the spherical.
function ¢3 on G of argument ay equals the Jacobi function
¢y = M(O"B of argument t, for suitable order (a,B). Now
apply the product formula (3.6) to the spherical function ¢y
with x = a;, y = a¢ and use (5.12). Then for k = (8 %) in
K=U0(l,F)xU(n,F) the integrand of (3.6) becomes

¢3Llu chs ¢ch t + V_sh s sh t]].
nn

Hence, just as we got (5.10) and (5.28) we can rewrite (3.6)
in terms of Jacobi functions as
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(7.1) b, (s)o, (t) = ¢,Llch s ch t + y_ sh s sh t]]dy
A A JS(Fn) A n

lem .

(7.2) = ( J b []lch s cht+r a™¥eh. g sh t]Jdm(r,y) .
Jodo A |
If £y,fp ¢ D(G//X) then
f ~1

(7.3) (£,#£,)(a) = JGf](y>f2(y a )dy

[ /f -1 \ '
JG fl(y)\JK £,(y kat)dk/dy

(e}

JO fl(as)(TSf2)(at)A(s)ds,

where, for f ¢ CT(G//K),

‘
(7.4) (Tsf)(at) = JK f(askat)dk

f a0 fllch s ch t + y sh s sh t‘jdy
S(F™) o
rlgm £l

J J fllch s ch t + r e "sh s sh t|ldm(zr,¥)
0/0

T f is called the generalized translate of f. Easy group
theoretical arguments show that (Tgf) (ay) is symmetric in s
and t and that

j(L(S)—'L(t)MTSf) (a,) =0,

_ 9 -
[Tof = f, —a‘g‘ (Tsf) (at) 'S=O = O.

(7.5)

Furthermore, from the definition of spherical functions
(§3.2) together with (4.7) we obtain

A ~ -~
(7.6) (fl*fz) ) = fl(k)fZ(A).
Also remember the homomorphism property (5.4) of the Abel

transform.
Let us now extend the above results to other values of
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o,B (0=Bp>-3%), without using group theory. First we sketch a
proof of (7.2) (cf.[48,84]). Observe that (5.28) implies that

1
ey 2
(7.7) (%(ch23+ch2t))lk p¢k{“2 ch s ch E} _
(ch2s+ch2t) ?
rerT . .
= | J lch s ch t +r elwsh s sh tllk ® dm (r,v) .
7070
Next it can be shown (cf.[48, Theorem 4.2]) that

(7.8) 0, (s)¢, (t) = Zzzo An(%(ch23+ch2t))ix_p—n.

.
[ 2%2ch s ch t]

| — I|>
L (ch2s+ch2t)?

s >t

v

.¢k+in 0,

N . . . .
where the coefficients A, are the ones occurring 1in

(7.9) 3. () = 57 A (Jlch2s+1))™ PR o 50,
A similar expansion was independently-obtained by Bellandi

Fo & Capelus de Oliveira [9]. Combination of (7.7), (7.8),
(7.9) yields

¢lpm ;
(7.10) ®X(s)¢k(t) = J J QA[ICh 5 oh £+ ¥ o Ysh 5 gh t|Jdm(r , V).
0“0

Finally, (7.10) together with (2.17) vields (7.2).

In §5.2 we described how to pass from the kernel form
(5.57) of the integral reprsentation for ¢) to the group-
like form (5.28). We can use a similar change of integration
variables in converse direction, namely

elXch u = ch s ch t + r el¥sh s sh t, in order to derive
from the product formula (7.2) the kernel form
{HOO 5
(7.11) . (s)o, () = ¢. (u)K(s,t,u)A(u)du,
A A 0 A -
where

1-2p : _
(7.12) K(s,t,u) := % [(atl) (sh s sh t sh u) 2a‘
- 2T (a=B) T (B+3) ' 1
. J (l—chzs—ch2t—ch2u+2ch s ch t chu cosx)z—g— .
0

-(sinx)zde
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if |s-t| < u < s+t and K(s,t,u) := 0 otherwise, and
xz := x¥ if x > 0 and O otherwise. By the use of Euler's in-
tegral representation 2.1(10), formula (7.12) can be re-

written as

~2p a=B-1
(7.13) K(s,t,u) = 2 . I'(a+1) (ch s ch t ch u;a
m?T(a+i) (sh s sh t sh u)

2 g=1
- (1-B9)%72 ,F | (a+B,0-B3a+535 (1-B)) , |s—t] <u<s+t,
where
(7.14) B .= ch23+ch2t+ch2u—]
* ’ 2ch s ch t ch u °

Observe that K is nonnegative and symmetric in its three
variables. From (7.11) with X = ip we obtain that

(7.15) J K(s,t,u)A(u)du = 1%
0

The generalized translate T f of a function f(in Devyen
(R) , for convenience), 1s definad by

(7.16) (Tsf)(t) y= J f(WK(s,t,u)d(u)du
0

Irm : .
= [ ( f{lch s ch t +r elwsh s sh t|Jdm(r,v).
/070
Then, obviously, TS? € Deven(R) , Tf 2 0 if £ > 0 and, by
use of (7.11),
A ~
(7.17) (Tsf) ) = ¢A(S)f(K)-'

Also (Tgf) (t) = (T¢f)(s) is C in (s,t), Tof = £, Tf = T_ f
and, by (7.17),

(7.18) (L(S)—L(t))(TSf)(t) = 0.
For f,g € Dayen(R) define the convolution product fxg by
(7.19) (fxg) (t) := J (th)(s)g(s)A(s)dS =

0

= J J f(r)g(s)K(r,s,t)A(r)A(s)drds.
0/0
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Then fxg = g*f € Dgoyen(R) , fxg 2 0 if f,g = 0 and, by (7.17),

(7.20) (£x2)" (V) = TEO) .

From (7.20) we conclude that the convolution product is as-
sociative and that

(7.21) Ff*g Ff*Fg.

7.2. Harmonic analysis

Let o 2 B8 2 -}, (a,B) # (-3,-3). Write LP for LP(R, ,A(t)dt)
and ”f” for the LP-norm of f. We will first discuss the
mapping propertles of the Jacobi transform on LP, cf. [48,
§3]. Let 1 < p < 2 and take q such that p~! + g~ =l 1. Let

(7.22) < Dp s= X e @ I | ImA| < (Zp—]—l)p}.
It follows from (6.3) and (6.1) that

(7.23) T I <o if XA e D, 1 <p<2
A q P P

(7.24) lo Il <= if XxeD.

Thus, by Holder's inequality we obtain from (2.12) that

A

(7.25)  JEO) <l hgl iffelP, xeD, 1<p <2
] —

(7.26) 1T < el , fel,red

A

E

By the analyticity of ¢ (t) in A we conclude that f is holo-
morphic in the strip Dp if f € LP. Moreover, if f is in Ll
then f is continuous on D] and a similar argument as for the
classical Fourier transform shows that £(A) > 0 as Rel = #e,
. uniformly on D] :

Finally we have that the Jacobi transform is injective
on LP (I<p<2), cf. [48, Theorem 3.2] for the proof. It uses
(2.27) for £ € LP n L2, ¢ & Vayans

Let us now discuss the convolution product of LP-func-
tions. Definition (7.16) of Tgf can still be used if f ¢ LP
(1<p<=). An application of Hdlder's inequality together with
(7.15) then shows that Tgf ¢ LP and

(7.27) T £ < Il .
s P P
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Next, definition (7.19) of f*xg remains valid if f ¢ LP,
g € L9 such that I < p,q,r < « and p’1 * q—l -1 =1, Then,

by standard techniques, fxg ¢ LT and

(7.28) I £xoll < el Il
¢ r P - q
However, because of (7.25) we can do better than in (7.28).
Observe that for f,g € Dgyeng(R) , 1 < p < 2, p~l+q™! = 1 we
have ,
_l. ~ ~ -~ ~
(ZN)ZHfngZ = Hf.g“z < Hgﬂmﬂfﬂz <

I o I =
< llfll2 ng Sup, ' 9y . HfHZHngH¢OHq.

Thus, for some Ap > 0 we have.

A

(7.29) exgl, < A Iel gl | £ 1%, geLP?, 1<p<2.

This phenomenon was first discovered by Kunze & Stein [90]
on SL(2,R) . From (6.24) it can be derived (cf. [48, Theor.
5.51) -that

(7.30)  exgl <A Nel lgh), f,g e 55, 2 %ig s,

For more general A satisfying (2.35) and eventually
(2.36) product formula, generalized translation and convolu-
tion were treated by Chébli [20], [21], Triméche [137].
Chébli obtains a positive convolution kernel, by applying
a maximum principle to (7.18). In [21] he also gets a Kunze-
Stein phenomenon. Triméche [137] gets his convolution struc-
ture by transplantation from the case A(t) = 1, by using the
Abel transform. Braaksma & de Snoo [17] and Markett [98] .
discuss generalized translation with respect to operators
L = d2/dt? + (2a+1)t~! d/dt + q(t) for certain potentials q.
They get estimates for the generalized translation operator
by using the Riemann function for the p.d.e. (Lg-Lt)v(s,t) =

Flensted-Jensen [42] gives a group theoretic interpre-
tation of the convolution structure for the Jacobi trans-
form if ¢« 2 8 =2 -}, a,B € 3Z . This is done in terms of K-H-
invariant functions on G = 0(p,q). In very interesting work
Badertscher [6,§5] transplants convolution for K-biinvariant
functions on G = O0(p,1) to convolution for K-H-invariant
functions by using his Abel-type transform.
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8. ADDITION FORMULA, POSITIVE DEFINITE SPHERICAL FUNCTIONS
AND DUAL CONVOLUTION STRUCTURE

In §3.3 we already derived a group theoretic version (3.25)
of the addition formula for Jacobi functions. Here an analy-
tic version of the addition formula will be obtained and it
will be shown how this formula follows from (3.25) for special
a,B. Next follow two applications of the addition formula:
the examination of positive definiteness of spherical func-
tions and the occurrence of a positive dual convolution
structure. Both applications are connected with the posi-
tivity of the expansion coefficients in the addition formula
of ¢, for certain X. The reference for the group theoretic
derivation of the addition formula and for the positive de-
finite spherical functions will be [50], while the analytic
derivation of the addition formula and the treatment of the
dual convolution structure is based on [49]. ~

8.1. The addition formula, analytic form

In order to obtain analytic versions of (3.24), (3.25) for
general a,B (a>B>-3}) we have to expand

(8.1) lech t - r elwsh t]lk—p
and
(8.2) ¢)[lch s cht-r elwsh s sh tl|],

respectively, as functions of r elw on the upper half unit
disk. This expansion should be in terms of some complete
system of functions which are orthogonal with respect to the
measure dm(r,y) and which generalize the spherical functions
for (K,M) (cf. the group theoretic derivation of (5.28) from
(4.4) and of (7.2) from (3.6)). The most appropriate choice
O%utg§ orthogonal system is given by the functions

y (a>B>=4,k,LeZ ,k>£>0) defined by

k,£
(a,8) .
(8.3) Xe 2 (r,¥) :=
- - : k— el Pl
- RéOL R ],B+k ,@) (21‘2-1)1"K KRIEEZZ’B 2)<COSKP>,
where Réa’8> is the renormalized Jacobi polynomial (2.3).

They are polynomials in the two variables rz,r cosy,
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orthogonal with respect to the measure dmg g. It can be com-
puted that

(a B) /j J (a,B) 2 =
(8-4) = ( ( ,11))) dm (raw:)) =
| "k, \ 090 X, L B B
} (2k~2£+8)(k+£+u)(a—B)K(28+l)k_£(u+l)k
a (k—£+26)(k+aiZ!(k—£)i(B+1)k

The associated Jacobi functions ¢(a,8) were defined by (4.15).
Now we can state the analytic versions of (3.24), (3.25):

Theorem 8.1. Let o > B > -}, then

(8.5) lch t - r elwsh t[ﬁ\—p =

= Tio Leo ¢§a£82(t>“(a’8)xéaie)ﬁr’w)’

(a,B)
¢k

(8.6) [lch scht-re wsh g sh £]] =

(o, B) (d B)

(o, B) (a B)
¢ (s)o £<t) kL Xk,l (r,¥).

= lk=0 L2=0 Ak, 200

The double series in (8.6), (8.7) converge absolutely, uni-
formly for (s,t,r,y) in compact subsets of their domain.

For o = B or B = -4 the theorem remains valid if one

puts r = 1 or ¢ = 0,7, respectively in (8,5), (8.6). Then
both expansions degenerate to a single series (£=0 if o=R,
k-£=0 or 1 if B=-}). The case a = B = 0 was proved in
[145,815.71] and the case a = B by Henrici [73,(80)].

In order to prove Theorem 8.1 we imitate the proof in
[82] of the addition formula for Jacobi polynomials. First
we show that the expansions formally hold, i.e. that

1em . .
(8.7) JOJO lch t - r elwsh tllx—pxéfég)(r,w)dma,B(r,w) =
(u B)
AR
(8.8) J J s B>[lch scht-re 1Psh s sh t|]-
(

i wwan, @ = 05 @Y

X 2 - olt)
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For k = £ = 0 these formulas coincide with (5.28) and (7.2),
respectively. In fact, we will derive (8.7), (8.8) from
(5.28), (7.2) by using the following lemma:

Lemma 8.2. Let f ¢ Cw((O,w)),a >B > -t ke Z,k 2L 2

(u B) - e L 2(B+k-0) +1 ci\ﬂ/ d \k 2

Then, for a,b in R, a > |b]:

1w .
(8.10) J,(O‘(O f(la+bre“”!>xéf‘f> (r,9)dmy o (2,9) =

k+£bk -£ J{] {’TT ('OL 8)
J

{(D>"2 f)(|a+breiw1)
(u+l) 0lo Kt

"My el gk (T V) -

Lemma 8.2 is proved by using a Rodrigues type formula
for x¥a B) and by integration by parts (cf. [82, Lemma 4.11).

Formuld™(8.7) follows from (5.28) and (8.10) by using that
8.1y B>/r<a+1>xlk‘“‘8" \
) k,E \ ( A) )
) (_])k+£22k+2£F(a+k+£+])xik—a—8—2k—1

Ca+k+£,3+k;£(_x)

Formula (8.11) is derived by straightforward differentiation
and by substitution of (2.18). Formula (8.8) follows from
(7.2) and (8.10) by using that

_ )/r(a+1)®(“ By

L U Ca (-1) /

24k+2£F(a+k+£+l)®(a+k+£ B+k— Z)

(8.12) D

tx]

u+k+£,8+k—£<~A)
(by termwise differentiation in (5.71) or by (5.69), (5.73),
(5.74)) .

The proof of Theorem 8.1 is completed by showing that
the right hand sides of (8.5), (8.6) actually converge ab-
solutely and uniformly to the left hand sides. This follows
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from the following lemma (cf. [49,Theor.3.61):

Lemma 8.3. Let f be a C -function on the closed upper half
unit disk. Then, for each k > 0:
R Lem ; N

B, i= | | £ty p(rw)dm(e,e) =0 as

/0’0 ’ k > o

b
uniformly in £, and

iy, _ pe k 2
f(re™ ") = yk=0 y2=0 f(kyz)ﬂk,zxk,z(rﬂw

i re

with absolute and uniform convergence. Moreover, if f depends
on an additional parameter s running over a set S such that
all partial derivatives of f with respect to r cosy, r siny
are uniformly bounded inf?felW,s) then the absolute conver-
gcence of the above series is also uniform on S.

Now we will sketch how (8.5), (8.6) follow :from (3.24),
(3.25) for special values of a,B. By abuse of notation we
consider the spherical function yg for (K,M) as a function
on K/M = S(FL). Thenr(3.22) takes the form

(8.13) oy (B = J

lcht—ynshfllx—pwé(y)dy.
S(F)™
For W@ we have in the three cases F= R ,C,H:

F=TR (see [34,Ch.111): o = jn-1, B = -3,

In=-3/2,-1+k-£ 2 k-
‘1’5(3’) ™ Rézn [2,-3+ )(Zyn—])yn L = O/éi;.. sk=£ or
F=¢ (see [140],[80]): @ = n-1, B = 0,
(-2, [k=L]) 2 kb

U (¥) =R, 2ly_I"-Dly_|

o (=) Carg yo) (k. £ = 0,1,...).
Hence

Rey (y) = Rewg(y) =

1)/Re Yn\

_ _(n-2,k-2) 2_ k=L_(-},-
= Rﬂ (2 v, 1)]Yn| Rk_é 2 \"Ty 1)’
where k,£ ¢ Z, k 2 £ =2 0. n

F=H (see [123], [77)) :a =2n-1, B =1,

(2n-3, k—L+] 2 !
b = RZTPEED oy 1Py 1R
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where k, £ ¢ Z , k > £ > 0.
By inserting these expressions for yg5 into (8.14) and
by taking the '"radial' part of the normalized invariant
measure on S(FD) we obtain that o, s(t) = ¢k V(t) is given
by the left hand side of (8.7) for suitable values of a,B.
By applying (8.7) we obtain (8.5), (8.6) from (3.24), (3 25).
A group theoretic derivation of (8.6) in the case
=8 =0,4,1,... (F=R) was given in [139, Chap.10, §3.5].
Durand [29] obtained an addition formula for Jacobi functions
of the second kind.

8.2. A criterium for positive definite spherical functions

Remember the definition of positive definite spherical func-—
tions on G and their relationship with unitary representa-~
tions as given in §3.2. For G = U(1,n;F) 1let my o (AeC) be
the (unique) irreducible subquotient representat{on of the
representation m) (cf.(3.21)) which contains the representa-
tion 1 of K. Then precisely those § from (K/M)" occur in
my,0 for which both ¢y ,¢ and ¢35 o are monzero (ef.[B4,83])
Furthermore the spherlcal function associated with ™, 0
equals ¢A- The spherical function ¢ is positive definite
iff m) o is unitarizable, i.e., if there exists a possible
new G-invariant inner product on some G-invariant dense sub-
space of H(WK 0)- Thus it is important to know which spheri-
cal functions’ ¢y are positive definite. We derive a criterium
by using the addition formula (3.25). For f in C.(G) write

£o(s) = J J Pk 'a E). (k)dk aL, & e &M
K’ K 8

Then 1t follows from (3.25) that

[ -1 L
JG o, (x YEEE(y)dx dy = 25€(K/M)A d,*

[ee]

(a )¢ (a )f (s)f (£)A(s)A(t)ds dt.

(-
O

We conclude:

Lemma 8.4. ¢; 1s positive definite on G iff for all ¢ in

(KM " with ¢ £ 0 # o) there is cg > 0 such that
A, 0 A, 6 8
@A,é = C6¢X,6
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For real X we already know that m) 1s unitary and if A
is not real or imaginary then wx(t) = ¢5(t) # ¢A(t) so then
¢y cannot be positive definite because of (3.8). So we will
use Lemma 8.4 in the case of imaginary A. In §8.1 we pointed
out that t ¥ ¢, 6(at) equals the associated Jacobi functions
oy kL (cf.(4.15)) for certain k,ﬁ.‘By use of (2.18) it fol-
lows from Lemma 8.4 that:

Theorem 8.5. ¢, is a positive definite spherical function on
= U(l,n;F) 1ff

(-p,0) (F=R or @),
Xe R, X\ = £ip or iA ¢
(-2n+1,2n-1) (F= H).

On comparing Theorem 8.5 with [48, Theorem 6.3] we see
that, in the cases F= R, €, a bounded spherical function
¢ satisfies (3.7) for all f in C.(G) iff ¢ satisfies (3.7)
for all f in Co(G//K) but that this equivalence no longer
holds if T = H.

Theorem 8.5 (for all rank one cases) was earlier proved
by Kostant [87], and, for F= R, by Takahashi [129].
Takahashi [132] deals with the exceptional rank one case.

8.3. Dual convolution structure

Let G = U(1,n;F) and let f ¢ Lp(G//K) (1<p<2). Then f is
even, bounded and analytic on R (cf.§7.2). Hence it follows
by a slight variation on the Bochner—Godement and Plancherel-
Godement theorem (cf. [39,Ch.1]) that f is positive definite
iff f(k) >0 for A =20 and that for such p051t1ve definite f
we have fin L H(R+ ;v) and

(8.14) £(x) = f f(x)¢k(x)dv(k), x e G

J0
(v given by (2.26)). Now let f(x) := ¢A (x) 0y, (%)
(x¢G,A ,A,eR) . Then f ¢ LP(G//K) for each p S 1 (c£.(6.3),
(4.8)) ang f is positive definite because ¢A1 and ¢), are so.
We conclude that

(9, ¢ )A(K ) = f b, (N, (X)o, (x)dx=
iy kg C gkt g Ay

Ag)

(8.15) a(k 2, 3

( b, ()¢, (B)¢, (V)A(r)dt
g %y Ry Ay

Il
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is well-defined and even, bounded and analytic in A3, that
a(A1,29,23) 2 0 (Aj,X9,X3¢R) and that

(8.16) 9y (X)¢x (x) = J N (X)a(XI,Xz,A3)dv(A3).
1 2 0 3

Now we can define the dual convolution product feg of f,g in
LI(ILF;v) by
OOrOO
. o = [ ) .
(8.17) (fog) (1)) JOJO £ )g0)alt 2,52 )dv(A,)dv(hy)

Then fog E.LI(KL+;V) and

(8.18) Hfogﬂl < HfHIHgHI.
v
Let £ » f denote the inverse spherical Fourier transform
(8.19) Fiz) o= { EO)6, (0dv (A, £ e LR, ).
B 0

Then

Vv \Y \"
(8.20) (fog) (x) = £(x)g(x).

In order to develop a dual convolution structure with
nonnegative kernel for the Jacobi transform in the case of
more general o,B we need a substitute without use of re-
presentations for the usual positive definiteness proof of
¢u¢v(u,veﬂU. We observed that, in the group case, it is suf-
ficient to know that (¢U¢v)A is nonnegative on R. This last
property is equivalent to

(8.21) J
G

f b (x '9)6 (= 'PEEEFF)dxdy 2 0
G H V

for all £ in D(G//K), so it is not necessary to prove (8.21)
for all £ in Co(G). The left hand side of (8.21) can be re-
written as -

oooo/’, ——_—.
J JO \JK¢U(a_Skat)¢V(a_Skat)dk)f(as)f(at)
A(s)A(t)dsdt.

Combination with (3.25) yields

f) e 2
zée(K/M)A daljo ¢U,6(as)¢v,g(as)f(as)ﬁ(s)ds] "
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v
which is nonnegative. (8 is contragredient representation to
§.)

We will now imitate this method in cases without group
theoretic interpretation. We need the following lemma (cf.
(49, Lemmas 4.1, 4.2, 4.3]).

Lemma 8.6. Let o = B > -3, 1 p < 2and f ¢ LP(ELF,A(t)dt)

Then £(A) > 0 for A = 0 iff Jo(f*g>(t)g—tm(t)dt > 0 for all

g in Deyen(R) . If f is more over continuous on [0,®) and
f(N).=20 for A 2 "0 then T ¢ LT(R+ ;v) and (2. 25) holds.

1f AI,X € R then ¢y,¢ e LP (R; ,A(t)dt) for all

p > 1 (c£.87.2) and for ali g 1n Deven(R) we have

(8.22) [ (9, 9, e (£) g () A(t)dt =
10 1 "2

_ (F2erlpm ;

= J J ] J b, [lch s ch t - elwsh s sh t|]-
0 o\ 070 "1

¢A [lch s cht-r eiwsh s sh t]J1ldm(r,¥))-
2

cg(s)g(t)A(s)A(t)ds dt = y 12 =0 "k,2°

.IJO ¢k Z(S)¢A X, ﬂ(s)g(s)A(s)dsl

where we used the addition formula (8.6) and the property
that -XfEfZTf) ¢-x,k,£(t) if X is real. Now the properties
of the p031t1ve dual convolutlon structure for L (R+ 3v)
follow in the same way as in the group case.

The method of applying the addition formula in order to
prove the positivity of the dual convolution structure was
earlier used in [83] in connection with Jacobi polynomials.
The dual convolution kernel (8.15) was explicitly computed
by Mizony [104] for o = B = 0 or . It is an open problem
to find it for other o,B. Mayer-Lindenberg [100,§3] discus~
ses dual convolution in the spherical rank one case. Nussbaum
[109], also working in the rank one case, considers functions
¢ in C(G//K) which satisfy (3.7) for all f in C-(G//K) (a
weaker form of positive definiteness). Such ¢ are inverse
Jacobi transforms of certain positive measures on R, U iR, .
He shows that radial functions on a ball around O in G/K
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which are positive definite in this sense have an extension
to a similar function on G/K. Triméche [137] and Chébli
[21], working with a more general A satisfying (2.35) and
(in [21]) (2.36), show that any distribution T satisfying
<T,f%xT> > 0 for all f in Dgyen(R) (convolution in gener-
alized sense) is the inverse ¢j)-transform of appropriate
positive measures on R, and iR4 . By use of the Abel trans-
form they reduce this property of T to the case A = 1, for
which the result can be found in [54,Ch.2,86.3,Theor.5].

In [137] the Plancherel formula (2.37) is deduced from this
result.

9. TWO SPECIAL ORTHOGONAL SYSTEMS MAPPED ONTO EACH OTHER BY
THE JACOBI TRANSFORM
2
1
It is well-known that the functions x & e 2% Hn(x) (H,,
Hermi terpolynomial) form a complete orthogonal system of
eigenfunctions with respect to tbe Fogrler transform and,
similarly, the functions x » 2%V 2Ze Lu(xz) (LY Laguerre
polynomial) with respect to the Hankel transform. For the
Jacobi transform we cannot expect such a system because
¢)(t) is not symmetric in A,t. Still it would be pleasant
to have two explicit orthogonal systems in LZ2(R, ;A(t)dt)
and L2(R+, ic(k)l'zdk) which are mapped onto each other by
the Jacobi transform. In this section I will present such
systems (author's result, unpublished until now). The proofs
will only be sketched.
First observe that, for Re u > 0:

9.1) J[ <zcht)'“‘p¢§o"8?(tma L (D) dt -
O 5

s < i\s =1 _
Ca,B( 1u)j_OO (2chs) "ds =

2% BT (D T umi)) T (G (utin))

T (L (o+B+1+p)) T (L (a=B+1+n))
in view of (5.4), (5.56), (2.18) and [33,1.5(26)]. This
formula is quite useful for evaluating Jacobi transforms of

functions which are given as series in inverse powers of
cht. For instance, by use of (9.1) and (2.15), the integral

rm
IR IR C TN OLE
O 3
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can be evaluated as a quotient of products of gamma functions.
A special case of this evaluation can be found in Sprinkhuizen
(126,88.3], where it is obtained by use of fractional inte-
grals in two variables.

Now fix a,B,8 such that o = B > -1, & > —-1. For
n=0,1,2,... let

_Q_B_é—zRéa’o>(l—2th2t),

(9.2) rn(t) := (cht)
(a,8) . . , |

where Rn is a Jacobi polynomial, cf. (2.3). It follows

from the orthogonality properties of Jacobi polynomials (cf.

(34,810.8]) that

(9.3) [ r (t)r ()4
jo & m a,
_ 222 (p (a1)) PP (nrs+ )t

(2n+o+8+ 1) T (n+a+1)T (n+a+S+1) “n,m

and that the system {rp} is complete in LZ(R 4+;A(t)dt). By

[34,10.8(13)] and (2.3) r (t) can be expanded as

(s+1) % (-n), (n+a+s+1)

n tn k k

(a+1)n “k=0 (6+1)kk!

B(t)dt =

~a-B-8-2-2k

-n" (ch t)

On combining this with (9.1) we obtain that

= (G',B) _ ; .
(9.4) | Jo r (©)¢, (t)Aa,B(t)dt = s _(t) :=
(=D P22 2B a1y (84 1) LT (5 (8+1-12) )T (4 (6+1+10))
- F(%(a+6+5+2))F(%(G—B+5+2>)(d+1)n
+ Fof nonrar8+l, 1 (8+1-10) , 1 (8+1+i0) | )
. 8+1,1(a+B+5+2), 4 (a—B+8+2) L

In view of.(9.3) and (2.27) we must have

(ee]

-1 [ _
(9.5) (2my "] JO s s W e, ()] 24X = RHS of (9.3)

On the other hand, the right hand side of (9.4) can be ex-
pressed in terms of Wilson polynomials

(9.6) pn(tz;a,b,c,d) := (a+b)n(a+c)n(a+d)n .

1

~ a+b,a+c,a+d 1o

cf. Wilson [146]. For positive a,b,c,d these are orthogonal
polynomials in t2 on R4 satisfying the orthogonality rela-
tions [146,(3.1)]1. They are symmetric in a,b,c,d. By (9.4)
and (9.6) we have

- F /—n,n+a+b+c+d—l,a—t,a+t
4 3\
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(—1)“22“+26+1r(a+1)(a+1)n|r(g(a+1—ix)|2

[ (z(0+8+6+2)) T (3 (a=B+6+2)) (a+1)
cp_ (-1 75 (641), 5 (%) L3 (atge 1), 3 @=B+1)) /p_(0).

(9.7) sn(k)

By substitution of (9.7) into (9.5) we obtain the orthogo-
nality relations [146,(3.1)] for the Wilson polynomials. ‘
Thus the Plancherel Theorem 2.4 and the orthogonality rela-
tions for the Wilson polynomials imply each other. If, more
generally, o > ~1 and B is arbitrarily real then , by Theorem
2.4, the functions sp are orthogonal with respect to the
measure v (cf.(2.26)) which may include a discrete part, see
[146,(3.3)1].

The Hankel transform acting on Laguerre polynomials can
be obtained as a limit case of (9.4). Indeed, use of
Stirling's formula [33,1.18(2) ] gives
2

F]z4n;a+1;t2)OFl(a+l;—£A t2) .

.
't2u+ o st A =

—a—B—G—ZR(u,é)
n

22(a+B+1) jw
0 1

. a+l m 2
= llm5+w5 JO (ch t) (1-2th"t) -

(a,B)

(t)A(t)dt =
ASI/Z

¢

20+
(—1)n2 ¢ 28+]F(a+])lim .
§> 1 1

5a+](%(a+8+6+2))nr(%(6+1—ix6§))F(%(6+1+ik6§))
T(§(o¥B+8+2)) T (J (a-B+8+2)) (3 (o-B+6+2)) _

1 1
-4F3/—n,n+u+6+1,%(a+6+1+iA62),%(u+8+1—iA62) 1\
\ a+l, i (a+B+86+2), § (a+p+8+2) | )

2
) _ Iy
_ 23u+28+2(—1)nr(a+1)e 5 A IFI(—n;u+1;A2).
Thus we have obtained the well-known formula (cf.[35,8.9(3)1)
® aif lela 32 : |
(9.8) t %8 ° L (£ 0e)0t)qde =
o n )
2

a+s

1
3h A B B
n

= (-1
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A special case of (9.4) was obtained by Boyer & Ardalan
[15] in a group theoretic context. The paper gives the fol-
lowing motivation for the choice of a special orthogonal
basis like (8.2). A spherical principal series representa-
tion of 0(l,n) can be realized both on H; := LZ(O(I,n—l)/O(n—lD
and on Hp := L2(O(n)/0(n~1)). A canonical (continuous) basis
for H; with respect to O(n-1) involves Jacobi functions,
while a canonical basis for Hy with respect to O(n-1),
transferred to H] by the intertwining operator, involves
functions of the form (9.2). Then the overlap functions be-
tween these two bases involve functions of the form (9.4).

It is an open problem to extend the results of this
section such that Wilson polynomials (9.6) occur without the
restriction a = b in the parameters.

10. FURTHER RESULTS

First we list some further references on the harmonic analysis
of the Jacobi transform. Hasegawa [62] gives sufficient con-
ditions on f in L? in order that f e Ll. Schindler [120]
derives transplantation theorems in the case o = B.

Stanton & Tomas [127]1, Vretare [141] and Achour & Triméche
(2], [3] obtain multiplier results by using various tech-
niques (in [2], [3] an analogue of the Littlewood-Paley g-
function). Van de Wetering [143] obtains necessary and suf-
ficient conditions for f in order that f is variation
diminishing. Meaney [101]considers differentiability proper-
ties of the inverse Jacobi transform of a Ll-function and
applies this to the study of sets of synthesis. Chébli [24]
gives a theory of almost periodic functions with respect to
differential operators of the form (2.8).

Of course, special cases of the above results allow
immediate translation to the context of noncompact symmetric
spaces of rank one. The following papers exclusively deal
with harmonic analysis on rank one spaces G/K but make es-
sential use of properties of Jacobi functions. Berenstein
& Zalcman [12] give criteria for pairs of double cosets
KxK, KyK in order that they satisfy the Pompeiu property
on a noncompact rank one symmetric space. Kawazoe [79]
studies the radial maximal function on G/K. Lohoué &
Rychener [97] obtain properties of the resolvent of the
Laplacian on G/K by using inversion of the Abel transform.

Samii [119] obtains curious inequalities for the spheri-
cal functions on SO@(1,n)/SO(n) by using an explicit expres-
sion for the operator which intertwines the Euclidean and
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the non-Euclidean Poisson transform for the unit ball in RDP .

Mizony [104] and Grunbaum [59] raise the question
whe ther ¢Aa,8 (t) is eigenfunction of a differential opera-
tor in A, as 1s the case when a = 8 = } (cf.2.11)). Grunbaum
(see also [60]) would like to apply such a property to ob-
tain a p.d.o. commuting with the operation of both time and
band limiting on a rank one space. However, the answer is
probably negative.

Van den Ban [7] considers the integral representation
(4.4) as an integral over a contour in (K/M)., (complexifi-
cation) and he next deforms the contour. In the rank one
case a sume comes out of two integrals which represent
C(X)®X and c(—l)@_ , respectively

Roehner & Valent [116] use Jacobi functions in connec-—
tion with birth and death processes. They prove the
Plancherel theorem for the Jacobi transform by writing it
as a Hankel transform followed by a Kontorovich-Lebedev
transform. This factorization can be seen from the integral
representation

(u B)(t) = c(sht)_u JO Kik(x)Ju(X sh t)dex,

cf. [34,7.7(31)1. See Faraut [40] and Terras[134] for the
occurrence of the Kontorovich-Lebedev transform on rank one
spaces.

Berezin & Karpelev1c [13] state without proof that the
spherical functions for (G,K) = (SU(n,n+k),S(U(n)xU(n+k))
restricted to A =~ RD equal

o de t(qb(k 0 (¢ )5

i,j=1,...,n
(Ch2t —ch2t ) :

1<<<

A rigorous proof was later given by Hoogenboom [74].

Historical remarks about the Mehler-Fock transform in _
connection with separation of variables problems can be found
in Robin [115,Ch.IX]. Sneddon [124] gives applications
of this transform.

Centrum voor Wiskunde en Informatica
Postbus 4079
1009 AB Amsterdam, Nederland




JACOBI FUNCTIONS AND ANALYSIS 75

REFERENCES

[1] Abel, N.H.: 'Résolution d'un probléme de méchanique'

J. Reine Angew. Math. 1(1826) (in German) = in:
Oeuvres, Tome I, pp.97-101.

[2] Achour, A. and K. Triméche: 'La g-fonction de Littlewood-
Paley associée a l'opérateur de Jacobi', in Séminaire
d'Analyse harmonique de Tunis, 1980-81, Faculté des
Sciences, Tunis, 1981, Exposé 28.

[3] Achour, A. and K. Triméche: 'La g-fonction de Littlewood-
Paley associée 3@ un opérateur différentiel singulier',
preprint.

(4] Aomoto, K.: 'Sur les transformations d'horisphére et les
€équations intégrales qui s'y rattachent', J. Fac.Sci.
Univ. Tokyo Sect. I 14(1967), 1-23.

[5] Askey, R.: 'Orthogonal polynomials and special func-
tions', Regional Conference Series in Applled Math.

21, SIAM Philadelphia, 1975.

[6] Badertscher, E.: 'Harmonic analysis on straight line
bundles', preprint.

[7] Ban, E.P. van den: 'Asymptotic expansions and integral
formulas for eigenfunctions on semisimple Lie groups'
Dissertation, University of Utrecht, 1982.

[8] Bargmann, V.: 'Irreducible unitary representations of
the Lorentz group', Ann. of Math.(2) 48 (1947), 568-640.

[9] Bellandi Fo, J. and E. Capelas de Oliveira: 'On the
product of two Jacobi functions of different kinds
with different arguments', J. Phys. A 15 (1982),
L447-1L449.

[10] Benoist, Y.: 'Analyse harmonique sur les espaces symé-
triques nilpotents', C.R. Acad.Sci.Paris Ser.I Math.
296 (1983), 489-492.

[11] Benoist, Y.: 'Espaces symétriques exponentielles'

Thése 3M€ cycle, Université de Paris VII, 1983.

[12] Berenstein, C.A. and L. Zalcman: 'Comment. Math. Helv.
55 (1980), 593-621.

[13] Berezin, F.A. and F.I. Karpelevi¥: 'Zonal spherical
functions and Laplace operators on some symmetric
spaces', Dokl.Akad.Nauk SSSR 118(1958), 9-12 (in
Russian) .

[14] Berger, M.: 'Les espaces symétriques non compacts,
Ann.Sci.Ecole Norm.Sup.(4) 74 (1957), 85-177.

[15] Boyer, C.P. & F. Ardalan: 'On the decomposition

SO(p,1) > SO(p-1,1) for most degenerate representations',
J. Math. Phys. 12 (1971), 2070-2075.




76 T. H. KOORNWINDER

[16] Braaksma, B.L.J. and B. Meulenbeld: 'Integral transforms
with generalized Legendre functions as kernels', Com-
positio Math. 18(1967), 235-287. o

[17] Braaksma, B.L.J. and H.S.V. de Snoo: 'Generalized trans-
lation operators associated with a singular differen-
tial operator', in B.D. Sleeman, I.M. Michael (eds.),
Ordinary and partial differential equations, Lecture
Notes in Math. 415, Springer, Berlin, 1974, pp.62-77.

[ 18] Carroll, R.: 'Transmutation, scattering theory and
special functions', North-Holland, Amsterdam, 1982.

[19] Carroll, R.: 'Some inversion theorems of Fourier type',
Rev. Roumaine Math. Pures Appl., to appear.

[20] Cchébli, H.: 'Sur la positivité des opérateurs de trans-
lation généralisée' associ€s a un opérateur de Sturm-
Liouville sur [0,«[', C.R. Acad.Sci. Paris Sér.A-B
275 (1972), A601-A604.

[21] Chébli, H.: 'Positivité des opérateurs de '"translation
géhéralisée” associés a un opérateur de Sturm-—
Liouville et quelques applications a l'analyse harmo-
nique', Thése, Université Louis Pasteur, Strasbourg,
1974 .

[22] Chébli, H.: '"Sur un théoréme de Paley-Wiener associé 2
la décomposition spectrale d'un opérateur de Sturm-—
Liouville sur JO,~[', J. Funct.Anal. 17 (1974),
447-461.

[23] Chébli, H.: 'Théoréme de Paley-Wiener associé 3 un
opérateur différentiel singulier sur (0,x)', J. Math.
Pures Appl. (9)58(1979),1-19. .

[24] Chébli, H.: '"Sur les fonctions presque-périodiques as-
sociées @ un opérateur différentiel singulier sur
(0,»)"', preprint.

[25] Dixmier, J.: 'Les C*-algébres et leurs représentations’,
Gauthier-Villars, Paris, 1969.

[26] Dixmier, J. and P. Malliavin: 'Factorisations de fonc-
tions et de vecteurs indéfiniment différentiables',
Bull.Sci.Math.(2) 102 (1978), 305-330.

[27] Duistermaat, J.J.: 'On the similarity between the
Iwasawa projection and the diagonal part', preprint.

[28] Dunford, N. and J.T. Schwartz: 'Linear operators, Part
II', Interscience, New York, 1963.

[29] Durand, L.: 'Addition formulas for Jacobi, Gegenbauer,
Laguerre and hyperbolic Bessel functions of the second
kind', SIAM J. Math. Anal. 10(1979), 425-437.

[30] Dijk, G. van: 'On generalized Gelfand pairs, a survey
of results', Proc. Japan Acad. Ser. A Math. Sci., to
appear.




JACOBI FUNCTIONS AND ANALYSIS 77

[31] Ehrenpreis, L. and F.I. Mautner: 'Some properties of
the Fourier transform on semi-simple Lie groups, I',
Ann. of Math.(2) 61 (1955), 406-439,

[32] Ehrenpreis, L. and F.I. Mautner: 'Some properties of
the Fourier transform on semi-simple Lie groups, II',
Trans .Amer .Math.Soc. 84 (1957), 1-55.

[33] Erdelyi, A., W. Magnus, F. Oberhettinger and
F.G. Tricomi: 'Higher transcendental functions, Vol.I',
McGraw-Hill, New York, 1953.

[34] Erdélyi, A., W. Magnus, F. Oberhettinger and
F.G. Tricomi: 'Higher transcendental functions, Vol.II',
McGraw-Hill, New York, 1953.

[35] Erdélyi, A., W. Magnus, F. Oberhettinger and
F.G. Tricomi: 'Tables of integral transforms, Vol.II',
McGraw-Hill, New York, 1954.

[36] Faraut, J.: 'Opérateurs différentiels symétriques du
second ordre', in Séminaire de théorie spectrale,
1974, Institut de Recherche Mathématique Avancée,
Strasbourg, 1974, Exposé 6.

[37] Faraut, J.: 'Distributions sphériques sur les espaces
hyperboliques', J. Math. Pures Appl. (9) 58(1979),
369-444

[38] Faraut, J.: "Algébre de Volterra et transformation de
Laplace sphérique', in Séminaire d'Analyse harmonique
de Tunis, 1980-81, Faculté des Sciences, Tunis, 1981,
Exposé 29. B

[39] Faraut, J.: 'Analyse harmonique sur les pairs de
Guelfand et les espaces hyperboliques', in J.-L. Clerc,
P. Eymard, J. Faraut, M. Rais, R. Takahashi, Analyse
harmonique, C.I.M.P.A., Nice, 1982, Ch.IV.

[40] Faraut, J.: 'Un théoréme de Paley-Wiener pour la trans-

- formation de Fourier sur un espace riemannien symé-
trique de rang un', J. Funct. Anal. 49(1982),
230-268.

[41] Flensted-Jensen, M.: 'Paley-Wiener type theorems for a
differential operator connected with symmetric spaces',
Ark. Mat. 10(1972), 143-162.

[42] Flensted-Jensen, M.: 'Spherical functions on rank one
symmetric spaces and generalizations', Proc.Sympos.
Pure Math. 26(1973), 339-342.

[43] Flensted-Jensen, M.: 'A proof of the Plancherel formula
for the universal covering group of SL(2,R) using
spectral theory and spherical functions', in Séminaitre
de Théorie Spectrale, 1972-73, Institut de Recherche
Mathématique Avancée, Strasbourg, 1973, Exposé 4.




78

[44]

L45]

L46]

[47]

(48]

[49]

[501

[51]

[52]

[53]

[54]

[55]

T. H. KOORNWINDER

Flensted-Jensen, M.: 'Spherical functions on a simply
connected semisimple Lie group. II. The Paley-Wiener
theorem for the rank one case', Math. Ann. 228 (1977),
6592,

Flensted-Jensen, M.: 'Spherical functions on a real
semisimple Lie group. A method of reduction to the
complex case', J. Funct. Anal. 30 (1978), 106-146.

Flensted-Jensen, M.: 'Discrete series for semisimple
symmetric spaces', Ann. of Math. (2) 111 (1980),
253=311.

Flensted-Jensen, M.: 'Harmonic analysis on semisimple

symmetric spaces—A method of duality', in R. Herb e.a.

(eds.), Proceedings Maryland 1982-83, vol. III,

Lecture Notes in Math., Springer, to appear.
Flensted-Jensen, M. and T.H. Koornwinder: 'The convolu-
tion structure for Jacobi function expansions', Ark.

Mat. 10(1973), 245-262.

Flensted-Jensen, M. and T.H. Koornwinder: 'Jacobi func-
tions: the addition formula and the positivity of the
dual convolution structure, Ark. Mat. 17 (1979),
139-151.

Flensted-Jensen, M. and T.H. Koornwinder: 'Positive
definite spherical functions on a non-compact, rank one
symmetric space', in P. Eymard, J. Faraut, G. Schiffman,
R. Takahashi (eds.), Analyse harmonique sur les
groupes de Lie, II, Lecture Notes in Math. 739,
Springer, Berlin, 1979, pp.249-282.

Flensted-Jensen, M. and D.L. Ragozin: 'Spherical func=
tions are Fourier transforms of Lj-functions', Ann.
Sci. Ecole Norm. Sup. (4) 6 (1973), 457-458.

Fock, V.A.: 'On the representation of an arbitrary
function by an integral involving Legendre's function
with a complex index', C.R. (Doklady) Acad. Sci.
URSS(N.S.) 39(1943), 253-256.

Gangolli, R.: 'On the Plancherel formula and the Paley-
Wiener theorem for spherical functions on semisimple
Lie groups', Ann. of Math. (2) 93 (1971), 150-165.

Gelfand, I.M. and N.Ja. Vilenkin: 'Generalized func-
tions, Vol. 4, Applications of harmonic analysis',
Moscow, 1961 (in Russian) = Academic Press, New York,
1964, ' '

Gindikin, S$.G. and F.I. Karpelevié: 'Plancherel
measure for Riemann symmetric spaces of nonpositive
curvature, Dokl. Akad. Nauk SSSR 145(1962), 252-255
(in Russian)= Soviet Math. Dokl. 3(1962), 962-965.




JACOBI FUNCTIONS AND ANALYSIS 79

[56] Gindikin, S.G. and F.I. Karpelevil: 'One problem of
integral geometry', in Pamyati N.G. Chebotareva,
Izdatelstvo Kazanskov Universiteta, 1964 (in Russian)=
Selecta Math. Soviet. 1(1981), 169-184.

[57] Godement, R.: 'Introduction aux travaux de A. Selberg',
in Séminaire Bourbaki, Paris, 1957, Exposé 144.

[58] Gotze, F.: 'Verallgemeinerung einer Integral transfor-
maticn von Mehler-Fock durch den von Kuipers und
Meulenbeld eingefihrten Kern PM>0N(z)', Nederl.Akad.
Wetensch. Proc. Ser.A 68 = Indag Math. 27 (1965),
396-404. A

[59] Grunbaum, F.A.: 'The limited angle problem in tomo-
graphy and some related mathematical problems', in
Proceedings Internat.Colloq. Luminy (France), May 1982,
North-Holland, Amsterdam, to appear.

[60] Grunbaum, F.A.: 'Band and time limiting, recursion rela-
tions and some nonlinear evolution equations', in this
volume. )

[61] Harish-Chandra: 'Spherical functions on a semi-simple
Lie group, I,II', Amer. J. Math. 80 (1958), 241-310,
553-613.

[62] Hasegawa, Y.: 'On the integrability of Fourier-Jacobi
transforms', Ark. Mat. 16(1978), 127-139,

[63] Heine, E.: '"Handbuch der Kugelfunctionen, Zweiter Band',
Berlin, 1881.

[64] Helgason, S.: 'Differential geometry and symmetric
spaces', Academic Press, New York, 1962.

[65] Helgason, S.: 'An analogue of the Paley-Wiener theorem
for the Fourier transform on certain symmetric spaces',
Math. Ann. 165(1966), 297-308.

[66] Helgason, S.: "A duality for symmetric spaces, with
applications to group representations', Adv. in Math.
5(1970), 1-154.

[67] Helgason, S.: 'Analysis on Lie groups and homogeneous
spaces', Regional Conference Series in Math. 14,
Amer. Math. Soc., Providence, R.I., 1972.

[68] Helgason, S.: 'Eigenspaces of the Laplacian; integral
representations and irreducibility', J. Funct. Anal.
17 (1974), 328-353.

[69] Helgason, S.: 'A duality for symmetric spaces with
applications to group representations, II. Differen-
tial equations and eigenspace representations', Adv.
in Math. 22(1976), 187-219.

[70] Helgason, S.: 'Differential geometry, Lie groups and
symmetric spaces', Academic Press, New York, 1978.




80 T. H. KOORNWINDER

[71] Helgason, S.: 'Topics in Harmonic analysis on homoge-
neous spaces', Birkhauser, Boston, 1981.
[72] Helgason, S.: 'Groups and geometric analysis, I',

Academic Press, New York, to appear.

[73] Henrici, P.: 'Addition theorems for Legendre and
Gegenbauer functions', J. Rational Mech. Anal. 4(1955),
983-1018.

[74] Hoogenboom, B.: 'Spherical functions and differential

operators on complex Grassmann manifolds', Ark. Mat.
20 (1982), 69-85.

[75] Hoogenboom, B.: 'Intertwining functions on compact Lie
groups', Dissertation, University of Leiden, 1983.
[76] Johnson, K.D.: 'Composition series and intertwining

operators for the spherical principal series, II',
Trans. Amer. Math. Soc. 215 (1976), 269-283.

[77] Johnson, K.D. and N.R. Wallach: 'Composition series and
intertwining operators for the spherical principal
series', Trans.Amer.Math.Soc. 229(1977), 137-174.

[78] Kashiwara, M., A. Kowata, K. Minemura, K. Okamoto,

T. Oshima and M. Tanaka: 'Eigenfunctions of invariant
differential operators on a symmetric space', Ann. of
Math.(2) 107(1978), 1-39.

[79] Kawazoe, T.: 'Maximal functions on non-compact rank one
symmetric spaces. Radial maximal functions and atoms',
preprint.

[80] Koornwinder, T.H.: 'The addition formula for Jacobi
polynomials. II. The Laplace type integral represen-—

- tation and the product formula', Report TW 133/72, Math.
Centrum, Amsterdam, 1972.

[81] Koornwinder, T.H.: 'A new proof of a Paley-Wiener type
theorem for the Jacobi transform', Ark. Mat. 13 (1975),
145-159.,

[82] Koornwinder, T.H.: "Jacobi polynomials, III. An analy-
tic proof of the addition formula', SIAM J. Math. Anal.
6 (1975), 533-543. :

[83] Koornwinder, T.H.: 'Positivity proofs for linearization
and connection coefficients of orthogonal polynomials
satisfying an addition formula', J. London Math. Soc.
(2) 18(1978), 101-114. ‘

[84] Koornwinder, T.H.: 'The representation theory of
SL(2,R) , a global approach', Report ZW 145/80, Math.
Centrum, Amsterdam, 1980.

[85] Koornwinder, T.H.: 'The representation theory of
SL(2,R) , a non-infinitesimal approach', Enseign. Math.
(2) 28(1982), 53-90.




JACOBI FUNCTIONS AND ANALYSIS 81

[86] Koornwinder, T.H. (ed.): 'The structure of real semi-
simple Lie groups', MC Syllabus 49, Math. Centrum,
Ams terdam, 1982.

[87] Kostant, B.: 'On the existence and irreducibility of
certain series of representations', in I.M. Gelfand
(ed.), Lie groups and their representations, Halsted

. Press, New York, 1975, pp. 231-329.
[88] Kosters, M.T.: 'Spherical distributions on an excep-
tional hyperbolic space of type F4', Report ZW 161/81,
Math. Centrum, Amsterdam, 1981.

[89] Kosters, M.T.: 'Spherical distributions on rank one
symmetric spaces', Dissertation, University of Leiden,
1983.

[90] Kunze, R.A. and E.M. Stein: 'Uniformly bounded represen-—
tations and harmonic analysis of the 2x2 real unimodu-
lar group', Amer. J. Math. 82 (1960), 1-62.

[91] Langer, R.E.: 'On the asymptotic solutions of ordinary
differential equations with reference to the Stokes
phenomenon about a singular point', Trans. Amer. Math.
Soc. 37(1935), 397-416.

[92] Lebedev, N.N.: 'Parseval's formula for the Mehler-Fock
transform', Dokl. Akad. Nauk SSSR 68 (1949), 445-448
(in Russian).

[93] Lebedev, N.N.: '"Some integral representations for pro-
ducts of sphere functions', Dokl. Akad. Nauk SSSR
73 (1950), 449-451 (in Russian). )

[94] Lebedev, N.N.: 'Special functions and their applica-
tions', Moscow, revised ed., 1963 (in Russian) =
Dover, New York, 1972. >

[95] Lewis, J.B.: 'Eigenfunctions on symmetric spaces with
distribution-valued boundary forms', J. Funct. Anal.
29 (1978), 287-307. :

[96] Lions, J.L.: 'Equations différentielles—-opérationnels
et problémes aux limites', Springer, Berlin, 1961.

[97] Lohoué, N. and Th. Rychener: 'Die resolvente von A auf
symmetrischen Raumen von nichtkompakten Typ', Comment.
Math. Helv. 57(1982), 445-468,

[98] Markett, C.: 'Norm estimates for generalized transla-
tion operators associated with a singular differential
operator', preprint.

[99] Matsushita, 0.: 'The Plancherel formula for the uni-
versal covering group of SL(2,R) ', Sc. Papers College
Gen. Ed. Univ. Tokyo 29(1979), 105-123.

[100] Mayer-Lindenberg, F.: 'Zur Dualitatstheorie sym-
metrischer Paare', J. Reine Angew. Math. 321 (1981),
36-52.




82 T. H. KOORNWINDER

[101] Meaney, C.: 'Spherical functions and spectral syn-
thesis', preprint.

[102] Mehler, F.G.: 'Ueber die Vertheilung der statischen
Elektricitat in einem von zwel Kugelkalotten begrenz-
ten Korper', J. Reine Angew. Math. 68 (1868), 134-150.

[103] Mehler, F.G.: 'Uber eine mit den Kugel- und Cylinder-
functionen verwandte Function und ihre Anwendung in
der Theorie der Elektricitatsvertheilung', Math. Ann.
18 (1881), 161-194.

[104] Mizony, M.: "Algébres et noyaux de convolution sur le
dual sphérique d'un groupe de Lie semi-simple, non-
compact et de rang 1', Publ. Dép. Math. (Lyon) 13
(1976), 1-14.

[105] Mizony, M.: 'Une transformation de Laplace-Jacobi',
SIAM J. Math. Anal. 14 (1983), 987-1003.

[106] Mizony, M.: 'Analyse harmonique hyperbolique: represen-
tations et contractions des groupes SOg(l,n)', pre- ~
print.

[107] MolXanov, V.F.: '"The Plancherel fromula for the pseudo-
Riemannian space SL(3,R) /GL(2,R) ', Sibirsk. Mat. .
23 (1982) no. 5, 142-151 (in Russian) = Siberian Math.
J. 23 (1983), 703-711.

[108] Nostrand, R.G. van: 'The orthogonality of the hyper-
boloid functions', J. Math. Phys. 33 (1954), 276-282.

[ 109] Nussbaum, A.E.: 'Extension of positive definite func-
tions and representation of functions in terms of
spherical functions in symmetric spaces of noncom-
pact type of rank 1', Math. Ann. 215 (1975), 97-116.

[110] Nussbaum, A.E.: 'Paley-Wiener theorem associated with
a certain singular Sturm-Liouville operator', pre-
print. :

[111] Olevskii, M.N.: 'On a generalization of Bessel func-
tions', C.R. (Doklady) Acad.Sci. URSS(N.S.) 40 (1943),
5=10 ..

[1127] Olevskig, M.N.: 'On the representation of an arbitrary
function in the form of an integral with a kernel con-
taining a hypergeometric function', Dokl. Akad. Nauk
S.S5.S5.R. 69 (1949), 11-14 (in Russian).

[113]0lver, F.W.J.: "Asymptotics and special functions',
Academic Press, New York, 1974.

[1147TPukanszky, L.: 'The Plancherel formula for the univer-

' sal covering group of SL(R,2)', Math. Amn. 156 (1964).

[115]JRobin, L.: 'Fonctions sphériques de Legendre et fonc-
tions sphéroidales, tome III', Gauthier-Villars,
Paris, 1959,




JACOBI FUNCTIONS AND ANALYSIS 83

116l

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Roehner, B. and G. Valent: 'Solving the birth and
death processes with quadratic asymptotically sym-
metric transition rates', SIAM J. Appl. Math. 42
(1982), 1020-1046.

Rosenberg, J.: 'A quick proof of Harish-Chandra's
Plancherel theorem for spherical functions on a semi-
simple Lie group', Proc. Amer. Math. Soc. 63 (1977),
143-149.

Rudin, W.: 'Functional analysis', McGraw-Hill,

New York, 1973.

Samii, H.: 'Les transformations de Poisson dans la
boule hyperbolique', Thése 3M€ cycle, Université de
Nancy I, 1982.

Schindler, S.: 'Some transplantation theorems for the
generalized Mehler transforms and related asymptotic
expansions', Trans. Amer. Math. Soc. 155 (1971),
257-291,

Schmid, W.: 'Representations of semi-simple Lie groups',
in M.F. Atiyah (ed.), Representation theory of Lie
groups, Cambridge University Press, Cambridge, 1979,
pp. 185-235.

Sekiguchi, J.: 'Eigenspaces of the Laplace-Beltrami
operator on a hyperboloid', Nagoya Math. J. 79 (1980),
151-185.

Smith, R.T.: 'The spherical representations of groups
transitive on SB', Indiana Univ. Math. J. 24 (1974),
307-325.

Sneddon, I.N.: 'The use of integral transforms',
McGraw-Hill, New York, 1972.

Sprinkhuizen—-Kuyper, I.G.: 'A fractional integral
operator corresponding to negative powers of a cer-
tain second order differential operator', J. Math.
Anal. Appl. 72 (1979), 674-702.

Sprinkhuizen-Kuyper, I.G.: 'A fractional integral
operator corresponding to negative powers of a second
order partial differential operator', Report TW 191/
79, Math. Ceuntrum, Amsterdam, 1979.

Stanton, R.J. and P.A. Tomas: 'Expansions for spheri-
cal functions on noncompact symmetric spaces', Acta
Math. 140 (1978), 251-271.

Stein, E.M. and S. Wainger: 'Analytic properties of
expansions, and some variants of Parseval-Plancherel
formulas', Ark. Mat. 5 (1963), 553-567.




84

[129]

[130]

[131]

[132]

[133]

[134]
[135]

[136]

[137]

[138]

[139]

[ 140]

T. H. KOORNWINDER

Takahashi, R.: 'Sur les réprésentations unitaires
des groupes de Lorentz généralisés', Bull. Soc. Math.
France 91 (1963), 289-433.

Takahashi, R.: 'Fonctions sphériques dans les groupes
Sp(n,1)', in J. Faraut (ed.), Théorie du potentiel
et analyse harmonique, Lecture Notes in Math. 404,
Springer, Berlin, 1974, pp. 218-238.

Takahashi, R.: 'Spherical functions in Spino(l,d)/
Spin(d-1) for d = 2,4 and 8', in J. Carmona,

M. Vergne (eds.), Non-commutative harmonic analysis,
Lecture Notes in Math. 587, Springer, Berlin, 1977,
pp. 226-240.

Takahashi, R.: 'Quelques résultats sur 1'analyse har-
monique dans 1l'espace symétrique non compact de rang |
du type exceptionnel', in P. Eymard, J. Faraut,

G. Schiffman, R. Takahashi (eds.), Analyse harmonique
sur les groupes de Lie, II, Lecture MNotes in Math.
739, Springer, Berlin, 1979, pp. 511-567.

Takahashi, R.: 'SL(2,R)', in J.-L. Clerc, P. Eymard,
J. Faraut, M. Rais, R. Takahashi, Analyse harmonique,
C.I.M.P.A., Nice, 1982, Ch.III.

Terras, A.: 'Noneuclidean harmonic analysis', SIAM
Rev. 24 (1982), 159-193.

Thomas, E.G.F.: 'The theorem of Bochner-Schwartz-
Godement for generalised Gelfand pairs', preprint.
Titchmarsh, E.C.: 'Eigenfunction expansions associated

with second-order differential equations, Part I',
Oxford University Press, London, 20d ed., 1962, =

Triméche, K.: 'Transformation intégrale de Weyl et
théoréme de Paley-Wiener associés 3 un opérateur
différentiel singulier sur (0,«)', J. Math. Pures
Appl.(9) 60 (1981), 51-98.

Vilenkin, N.Ja.: 'Special functions connected with
class | representations of groups of motion in spaces
of constant curvature', Trudy Moskov. Mat. Obg¢.

12 (1963), 185-257 (in Russian) = Trans. Moscow
Math. Soc. 12 (1963), 209-290.

Vilenkin, N.Ja.: 'Specia! functions and the theory of
group representations', Moscow, 1965 (in Russian) =
Amer. Math. Soc. Transl. of Math. Monographs, Vol. 22,
Amer. Math. Soc., Providence, R.I., 1968.

Vilenkin, N.Ja. and R.L. gapiro: '"Irreducible repre-
sentations of the group SU(n) of class I relative to
SU(n-1)", Izv. Vyss. Ucebn. Zaved. Matematika (1967),
no. 7 (62), 9-20 (in Russian) = Amer. Math. Soc.
Transl.(2) 113(1979), 187-200.




JACOBI FUNCTIONS AND ANALYSIS 85

L141] Vretare, L.: 'On Ly Fourier multipliers on certain
symmetric spaces', Math. Scand. 37 (1975), 111-121.
[142] Wallach, N.R.: 'Harmonic analysis on homogeneous spaces

!
Dekker, New York, 1973.

[143] Wetering, R.L. van de: 'Variation diminishing Fourier-
Jacobi transforms', SIAM J. Math. Anal. 6 (1975),
774-783. '

[ 1447 Weyl, H.: 'Uber gewohnliche lineare Differential-
gleichungen mit singularen Stellen und ihre Eigen-
funktionen (2.note)', Gottinger Nachrichten (1910),
442-467 = Gesammelte Abhandlungen I, 222-247. 7

[145] Whittaker, E.T. and G.N. Watson: 'Modern analysis',
Cambridge University Press, Cambridge, &4th ed., 1927.

[146] Wilson, J.A.: 'Some hypergeometric orthogonal polyno-
mials', SIAM J. Math. Anal. 11 (1980), 690-701.




