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ABSTRACT

This paper collects a large deal of what is presently known about

spherical harmonics on the Heisenberg group and the related functions

Céa’s). It contains both new results and new approaches to old results.

(e, B)
X a
discussed. Next a new approach to Kordnyi's Kelvin transform on the

First, orthogonality properties and generating functions for C re

Heisenberg group is given. After a treatment of Heisenmberg harmonics, the
Kelvin transform is applied in order to obtain a new proof of Dunkl's ex-
pansion of the translate of the fundamental solution for LY. Finally it

is shown that, if the Dirichlet problem for L on the Heisenberg ball is

(

solvable, then the related functions de’B) form a complete system.
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0. INTRODUCTION

This article is concerned with the functions € » Céa’B)(ela),

asf ¢ €, k =0,1,2,... and 0 < 0 < 7, defined by the generating function

iS)

—0

{(0.1) (1-re (1--reie)h8 = E rk C(Q’B)(eia).

k=0 k

iu,B)_S comes from the Dirichlet

The impetus for the study of the C
problem for a class of second order differential operators, LY’ on the
Heisenberg group Hn' Hn has underlying manifold t" x R and the non-abelian

multiplication

(0.2) (z,t)(z2",t") = (z+z2',t+t"+2Im z-z2'),

where z = (ZI""’zn) and z+z' ;= E?=l ngg' With this group law the groups

Hn form the simplest class of non-commutative nilpotent Lie groups. Define

+1iz. -—, J = 1,.e.,1.

(0.3 Zj 1=

dJ
170 ly 3¢
vector fields on Hn' Set

{zl,...,zn,i } is a basis for the Lie algebra of left-invariant

(0.4) L, =~

ne~19

s s .3
e L T
LY is left-invariant with respect to (0.2) and invariant under the natural
action of the group U{(n) on the z-coordinates. Given R > 0 one introduces
the dilation R: (z,t) (Rz,th). Then [ is homogeneous in the sense that
LY(fOR) = Rz(LYf)OR for any smooth functzon £.

LY is not elliptic. Nevertheless, FOLLAND [5] (for y=0) and FOLLAND &
STEIN [ 6] showed that LYhas a fundamental solution at any u in Hn:

(uw) il R
(0.5) LY @Y(v u) = G(V), u,v ¢ Hn, ty # n,n+2,...,
where

(0.6) @Y((z,t)) 1= cy(]z|2+it)_%(n-Y)(|z|2—it)_%(n+Y)



for some constant CY
There is a great deal of similarity between LY on Hn and the usual
2, 2
Laplace operator, A := Z?:] 3 /ij on R" (cf. [9]). To deepen the analogy

we say that f is H-homogenous of degree k if
2 k
(0.7} f{(Rz,R"t) = R f(z,t), R > 0,
and that f is LY—harmonic if
(0.8) L £ =0.
Y

Tf #y # n,n+2,n+4, ... LY—harmonics are real-analytic. This follows from the
analyticity of @Y away from the origin. Hence an LY—harmonic has a conver-
gent power series expansion near the origin. In analogy with A we consider
the power series as a sum of H-homogeneous LY-harmonic polynomials. Such
polynomials were first described in [9] where the discussion was restricted
Lo Hl. DUNKL extended this to Hn in [3]. The space of LYwharmonic H~homo~—
geneous polynomials of degree m uniquely splits as a direct sum of irredu-
cible subspaces under the action of U(n). In spherical coordinates adapted
to Hn’ the functions in these irreducible subspaces factorize and one of the

factors 1s a function Cﬁa,ﬂ)

. Dunkl also expanded @Y(vh]u) in a series of
H-homogeneous LY~harmonic polynomials in u whose coefficients are functions
of v, which are H-homogeneous LY—harmonic functions near infinity, and
singular at the origin. This is in complete analogy with such an expansion
of the classical Newtonian potential, ]x—yl_n+2, in a double series of
spherical harmonics on R", which are Kelvin transforms of each other. It
motivated us to introduce an analogue of the Kelvin transform on H]. In-
dependently, KORANYI [17] introduced a Kelvin transform on Hn’ guided by
group theoretic motivations. Unfortunately, this transform does not operate
radially, thus there is no obvious way it can be used to solve Dirichlet's
problem for LY in the unit Heisenberg ball {(z,t) 0 [ |214+t2 < 1},
Using probabilistic methods GAVEAU [8] showed that the Dirichlet
problem for LO has a solution in the Heisenberg ball in Hn' An analytic
proof (also for certain LY) was later given by JERISON [12], [13}. Heuris-

tically this result suggests that, by restricting the H~homogeneous Ly_



harmonic polynomials to the surface of the unit Heisenberg sphere one ob-
tains a "complete" system of functions. More precisely, introducing spheri-

cal coordinates adapted to H_, we are interested in the "completeness" of

. n
(a,B)(elﬁ)}

the system {6 = C _ on {0,w) (see [91). We note that
k=0,1,2,...

that the Céa,ﬁ)_s on Hn are the analogues of the Gegenbauer polynomials on r"
Finally, a short outline of this article is in order. Section 1 dis-

cusses analytic properties of the Cid,B)_S

» integral representations, bi-
tinear generating functions, and orthogonality on [0,2r], originally found
by GASPER (see [71). Section 2 is devoted to a discussion of the Kelvin
transform on Hn (in a way which is even more group theoretical and less
computational than in Kordnyi's approach), while in sections 3 and 4 we
calculate the LY—harmonic polynomials and discuss Dirichlet's problem.
Finally, in chapter 5 we expand @Y(v_]u) in a sum of products of harmonics
near zero and of harmonics near infinity by the use of the Kelvin trans-
form. This yields a new proof of Dunkl's expansion. Next, knowing that the
Poisson kernel in the Heisenberg ball exists for Lo, we show that its
spherical harmonics are dense in the class of continuous functions on the

surface of the unit Heisenberg ball.

Acknowledgement. We want to thank C.F. Dunkl and M.E.H. Ismail for giving
us access to unpublished results and permission to use these results in

our paper.

1. ANALYTIC PROPERTIES

1.1. Definition of the functions CéG,B)

For complex o,B the functions Céa,ﬁ) (k = 0,1,2,...) are defined by
the generating function
- — — = k , -
R R IR A B C NP S P
k=0
It follows immediately that
ko o), .(B).
(a,R) - k=3 "3 ;k=j ]
(1-2) ck () = E (k“J)!J' Z [ L e,



@3B im0

. k
(a,B) 1 =
(1.3) Ck (e™™) Z ""_—(k_j)!‘jr_

i=0

¢ ¢ R.

Here we follow GASPER's [7] notation. GREINER [9], who first introduced

these functions, denoted them by Hi’n(aem,n,keZZ,kEO). On comparing [9,

(8.7)] with (1.1) we find

(_(a_])/2’n+(a-])/2)(ei¢)

Ck n =0,
(1.4) Héu’n)(el¢) = .
ey P /B @D (b o,

From (1.3) we obtain:

(1.5) cﬁ“’s)(—ei¢) = (—1)kc£“’3)(ei¢),

(1.6) o8 (') = B0 - cﬁé’a)(ei¢) - cia’é)(e'i¢),

(1.7) B ' - E%;E-e“ik¢2Fl(-k,s,1—u-k;e2i¢)(a¢o,-t,...,—k+1)
= E%;E eik¢2F](—k,a;l—B—k;e_2i¢)(B%O,—l,...,—k+1),

(1.8) Céa,e)(]) } (“;T)k

Special cases are

(a,0) , id, _ @
(1.9) Ck (e”7) = Ck(cos¢),
where Ci denotes a Gegenbauer polynomial,
. {a) .
(1.10) ci“’o)(el¢) -—Fe 1k
. (B) :
(1.11) cio’s)(el¢) = ot et

Finally, by (1.3) and (1.8) we have:



Y “—— ry——

Clal+181),

(Tal, {R1) -
(1) = Py

¢ _oaleitlal-ly

(1.12) Ecéa’ﬂ)(ei¢)l <C

k =+ o,

1.2, Orthogonality properties

In this subsection we give a new proof of GASPER's [ 7] orthogonality
(05’8)
k

for the functions C and we show that there is some more freedom in
the choice of the weight function. In the special case B = a + | we get an

orthogonality which was earlier obtained by ASKEY [2].

LEMMA 1.1. Lef a,B ¢ €, Re(a+B) > 0, k ¢ {0,1,2,...},£ez{-k—l,—k+l,...,
k-1,k+1t}. Then

™
(1.13) J Céa’s)(e1¢)el(£+8_u)¢(sin¢)a+8_1d¢ _
0 1= -
= 621(“G+B l)ﬂﬂr(a+6+k) 8 +
P o akey | Lk
eﬁl( G+B+])nﬂf(a+8+k) s
2Bl T (pekey Lok

PROOF. Let I denote the left hand side of (1.13). Then, by (1.7):
Ls -
ezlw(a+8 l)(“)k i

_ kg -gek s liOy .
= T oF (k85 1-o-kse ™)
ke 0

. ei(ﬂ—k-2a+l)¢(]_62i¢)a+8—1d¢ -
e%iﬂ(a+8—2)(a)k(0+)

It

F (-k,B;1-a-k;z):
T 9 ]( B3 1-a-k;z)

o+p=~1

. Z%(z‘k'l)"a(l_z) dz (O=argz<2n).

Substitution of the Rodrigues type formula

1

y+k S+k
(Y+1)k

2Fl(‘k,kﬂf‘fﬁ‘fl;\f+l;z)zY(l-z)‘S = (§2Dk[z (1-2) ]



(cf. [4, 10.8(10),10.8(16) 1) vields

. . (0+)
Linr (a+R-2) k
(-1 d. k- -o
T =25 J () [z T(1~z)
04+B 1 dz
2 k!l 1

o+R+k-1

1.

1 -
. zz(k+£ 1)dz.

Repeated integration by parts yields I = 0 if £ = -k+1,-k+3,...,k-1. If
£ = -k-1 then

(0+)

l I3
zin{a+f=2) |k —g—k~ -
e (-1 J ;e k 1(1_2)a+8+k 1

I =
o+8

dz,
2

1
which can be evaluated by {4,1.6(9),1.5(5),1.2(6)]. Finally, the case
£ = k+1 follows from (!.13) for £ = k-1 by the transformation of integra-

tion variable ¢ - m—¢ and by (1.5), (1.6}. [J

PROPOSITION 1.2, #or complex CysCyr0sB with Re(a+B) > 0 let the weight

2

function w be defined by

wi9) = w(p+m) := ei(s_a)¢(c]ei¢+c2e—i¢)(sin¢)a+8_l, 0 <6 < 7.

Then, for nonnegative integers k,&:

2T
(1.14) J e B (1) e[ Mgy as =
0 .
i ( ¢, ) 62\ e%l(_a+8+l)ﬁnf(a+8+k) ) .
\B+k  a+k)/ 2G+B—ZF(Q)F(B)RE k,£

PROOF. Because of (1.5) it is sufficient to evaluate the integral at the

left hand side from 0 to 7 for k-{ even. This can be done by the use of

(1.3 and (1.13). [

GASPER [ 71 showed that

ki)
J ci“’s)(ei¢)ei(£+5““)¢(sin¢)“+3d¢ =0
0

for £ = ~k+2,-k+4,...,k-2, which is implied by our formula (1.13), and next



he derived the case ¢, = ey of Prop.1.2.

PROPOSITION 1.3. If Re(a+B) > 0 then

)a+8*l

m
(1.15) J eikd’clﬁ“’s)(ei‘i’)e“lﬂq’céﬁ“"“*” (e-_w)em(s—u—l)(sim db =
0]

e%i“(_u"'lg-"l ) T ((]'.+B+k)
F(a+1)T(R)k!

2u+B~I k,£ °

PROOF. If k 2 £ then substitute (1.3) for CEB—I’Q+I)(e_l¢) and apply (1.13).
If k < £ then make the change of integration variable ¢ = 7-4¢ in (1.15),

substitute (1.3) for Ck and again apply (1.13). [

COROLLARY 1.4. If a > -} then

m
(1.16) J eik¢céu,a+1)(ei¢)ei£¢céa,u+l)(el¢)(sin¢)2a d
0

B ol (2a+k+1) 5

Zzar(a+i)r(a+1)ki

k,£°
PROOF. (1.15) with 8 = g+1. [J

Formulas (1.15), (1.16) were given by ASKEY in [2] and [1], respective-
ly. Note that (1.15) and (1.16) give a biorthogenality respectively orthog—
onality for the functions ¢ b eik¢C(a’8)(ei¢) on (0,m) and that (1.14) gives
an orthogonality for the functions ¢ H’Cﬁd’B)(ei¢) on (0,2r). However, what
would be needed for the applications we have in mind and what is unfor—
tunately unknown is a (bi)orthogonality for the latter functions on (0,7).

Formula (1.13) implies yet another orthogonality:

PROPOSITION 1.5. Let Re(a+B) > 1. Then, for £,m « {0,1,...,k}:

m
(1.17) J (sin¢>£céfzﬂ’5*£)(el¢)(sin¢)mc£§;m’5+m)<ei¢)
0

(sin¢)a+6_2ei(8_u)cp d¢ =
Lin(B=-a)
e (a+B+2£)k_£WF(u+B+2£-I)
= )
PHBF2L=2 ) pyep (a+€) T (8+L)

£,m



PROOF. Tn the case £ # m apply (1.13). In the case £ =m (1.13) can also be

used in order to rewrite the left hand side of (1.17) as

m
cﬁfgﬂ’8+ﬂ)(1) J cﬁfzz’3+ﬁ)(ei¢)(sin¢)“+5+2£‘2ei(B““‘k+£)¢d¢ )
0

By (1.7), (1.8) and [4,1.5(29)] this becomes

lin(a-
LHLT(B ﬂ)(u+8+2£)kﬁ£(Btﬁ)k_zﬂr(a+8+2£ht)
2@+B+2€‘2

(k=€) L (k=€) T (a+L) T (B+L)

2F1(-k+£,-6—£+1;—B-k+1;l).

Finally apply [4,2.8(46)]. [J

The above proposition tells us that the functions ¢ b (sin¢)£CégE£’B+£)

(el¢) (£ = 0,1,...,k) form an orthogonal basis on [0,n] for the space of

trigonometric polynomials f of degree < k satisfying f(4¢+7) = (—l)kf(¢).

1.3. Integral representations

ISMAIL [11] derived the following Laplace type integral representation:

3

(a,B), 1¢
CTETD) )

(1.18) =
BBy T

J (cos¢+isin¢cosw)k-
0

. (sinéw)za_](cos%w)zs-ldw, Re o > 0, Re B > 0.

For the proof note that

(cos¢+isin¢cosw)k = (ei¢c052§w+e—i¢sin2%w)k,

write down the binomial expansion of the right hand side, use the beta in~
tegral and apply (1.3).

More generally we have

m

(1.19) Ilatg)

F(O‘.)F(B) J (COS¢+iSin¢COSI‘D)k Péa_l’s—l)(coslb) .

0
(sinéw)za_l(COS%w)ZB_ldw =



ki (U) (R) .
£ +£,8+L
2——————. o+ ) (21smqb) (a : )( ¥y, Re a > 0, Re 8 > 0,
where PEG—I’B_I) is a Jacobi polynomial. For the proof substitute the

Rodrigues type formula for the Jacobi polynomial into the left hand side of
(1.19), perform integration by parts and reduce to (1.18).

From (1.19) we obtain the Jacobl series expansion

(1.20) (cos¢+isin¢cos¢)k =

k  (2€+a+p-1)k! (a+p)
0 (ﬂ+0t+8—1)(a+6)k+£

ei¢)Péa—1,B—

’6 (O.'I"'E,B""E—)( l)(COSlp).

(2ising) C
For a = B these three formulas reduce to well-known formulas for Gegenbauer
polynomials.

Because of Prop.1.5, the right hand side of formula (1.20) can be viewed
as a double orthogonal expansion of the left hand side, with respect to the
measure (sin¢)a+8—2ei(8_a)¢d¢ on (0,7) in the ¢-variable aund with respect
to the measure (sinéw)zu—l(coséw)zgmldw on (0,n) in the y-variable. Hence,
by (1.17) the following formula is also an integrated form of (1.20):

i

o+B=2
2 T{a)T(B) J (COS¢+iSin¢)COS¢J)k

1.21) T
e " (B-a) T (a+B-1)

CLE?C"’"E,B""E) (el¢) (sin¢)d+8+£—2ei(g_a)¢d¢ =

(“k)ﬂ(a+8_1)£

= 7 PEQWI’B_I)(cosw),
(2)" () (8
A Mehler-Dirichlet type integral representation
(a,B)
(1.22) J1(Ba)¢ (sing)” #8-1¢.7" (e 19,
. I'(a+R) (Q‘-,B)
C. (D

¢ o-1 B—1
i, J (sin(p=8))" ~ (sin6)” i(k+}(a+B)) (20-¢)

) T (8) de,

0
0 <¢<mw, Rea >0, Re 8 >0,

can be derived from (1.18) as follows. First make the substitution



z = cosp+isindcosy in (1.18), next deform the contour to an arc from e1¢ to
~-i¢ —i¢e2i9

e and finally put z = e . Note that, in a sense, (1.22) is dual to

{(1.3): the réle of k and ¢ is interchanged. Reduction te the case a = B

again gives a2 familiar formula for Gegenbauer pulynomials.

1.4. Bilinear generating functions

Appell’s hypergeometric function F1 is defined by the double power

series

w (a) (B) (B')
(1.23) FI(OL,B,B','Y;X,Y) = Z (Y) 2 men$ Y ?é 03“13_2)---5

m n'
m,n=0

which converges for |x|,|y| < 1. By the integral representation [4,5.8(5) ],
valid for Re o > 0, Re(y-a) > 0, the function F (a,B,B" ,Ys ,-) has an ana-
lytic continuation to a one-valued function on {(x,y) < € ]x,y ¢ [1,=)}.

LEMMA 1.6. If Rey > 0, z ¢ €, lz| < 1 then

© ),

(u BY , i¢y _ ¢ “B¢1 ~i¢, -a
(1.24) kZO T§I§7; (e ®) = (1+ze* (1+ze ) .
-i¢ ig
. F]<Y,a,8,2Y; 2ze_- R 2ze )-
1+ze e ]+ze1¢

PROOF. We prove (1.24) for z = r with 0 < r < 1. Then the general case
lz] < 1 follows by anmalytic continuation in view of (1.11). An easy calcu-

lation yields

3 t
k T(y+$) 2 2.y-1 2k
(1.25) T?¢¥“;‘r ?T§%TTTT J (r"-p") p o dp.

r

Thus, again in view of (1.11), the left hand side of (1.24) equals

1=2v L o ;
Iy 2_ 2.y~ 2, (0,8, id
F(Y;F(z) J (xr"=p") kZO Cop” (e )do,

-r
which, by the use of (1.!), can be written as

1=2vy z . .
T(y+} 2 2.y-t —-i¢, -~ -8
“%%%%%%ET_”'J (r%=0 Y (1rpe ™) T (140

g 9

dp.



By making the change of integratiomn variable t = %ﬁ? this equals

2y-1
2 I (y+1) -
OO

l -1f ore 14 \ " orel? \_B
. J (t(]‘““t))Y \]“'t ‘I-—'""-:"J'-&;} \l—t '-*—'—"—iaj dt.
l+re ~7/ l+re 7/

)79 are®) T8 L

0
Now (1.24) follows by the use of [4,5.8(5)]) and [4,1.2(15) 1. {]

Because of [4,5.10(1) ], formula (1.24) can be simplified in the case

Y = 4(a+R):

o (1) )
k 2k, (a,B) , i¢, _
(1.26) kzo TETEiéiTTTE‘Z Cop (e™®) =

i¢)—a(1+zei¢)%(G"B)(l_zei¢)"%(a+8).

= (l+ze

2z(eui¢—ei¢) \
(l—zel¢)(1+ze_l¢)/

{1 e
" ZF]\E(Q-"B) ;aaa+B,
Refa+B) > 0, z ¢ €, |z| <1,

Next we derive a bilinear generating function involving Céa’B) and

the Gegenbauer polynomial Cl.

THEQOREM 1.7. If Re y > 0, z e €, |z| < 1 then

© A4 CY(cos¢)
(1.27) j 2K cﬁ“’s)(el?) L FI(Y,H,B,zY;
k=0 Cl(l) :
. 2ize_iesin¢ 2izeiesin¢\(I_Ze'i(9+¢))“ﬂ(l_zei(e—¢))‘8_

’ l—ze_i(8+¢) ’ l—zei(e_¢)}

PROOF. We prove (1.27) for |zl < j. Then the more general case |z| < 1 will

follow by analytic continuation in view of (1.11). We will start the proof
with an additional parameter & (Red>0) and, at a certain stage, we will put

§ = v. It follows from (1.18), (1.11) and (1.1) that



12

C(Y95) (e1¢)

T k.(a,B), iB, k Tk (a,B), i, T(y+8)
] =¢ "y L= ] 2% (etty Llr+é)
k=0 X CéY’S)(I) k=0 K SOANCY
m
. J (cos¢+isin¢cos¢)k(sin%w)ZY_](cos%q‘g)za_1 dy =
0
™
= %%%gg%gj-J (I—ze_la(cos¢+isin¢cos¢))_a -
0

. (l~zeie(cos¢+isin¢cosw))_B(sin%w)ZY—](cos%w)26_l dy =

- T (126 e0ss) ™ (12 cos) -

K ~-ig - ig -8
J /1 ize “singcosy) a(l ize  singcosy)

. f - v - g .
5 N l-ze 8cos¢ l—zelecos¢

. (Sin%w)zY_l(COS%w)ZSWI dy =

_ _D(y*8) (I_Zédfkos¢)'“(1—zeiecos¢)_8 .

T(y)T(3)

- (a)k(s)ﬂ {izeniesin¢ \k/ izeiesinqa)£
T G { -
Kp=g  KE \

i

l-ze_lecos¢’ \l—zelecos¢
' J (cos) (sint) 7 (cosh) B! 4y
0

Now assume vy = §. Then
m
. 2= -
J (60s¢)k+£(31n%w) Y I(COS%\P)ZY tay =
0

2 I D (el 1)) T ()
T Ty +)

if k+f is even,

0 if k+f is odd.
Hence, by [4,1.2(15)1, the left hand side of (1.27} equals

(]“ze_lecos¢)—u(l—zelecos¢)_8.



o (a)k (B)E (%)é(k+£) [ize—iesin¢ \k/izeiesin¢ \ﬂ _
ki £ (y+D), i b
2

k,£=0 (k+£) \1_23-16COS¢} \l—zelecos¢‘
k+f even

= (1—-ze_18cos¢)wa(f—zelecosq&)_B .

©®  2p (8), (&) (1)
£ " 2p-t
. p P

-zzsin2¢ \p
Y —pN T T
oo et TT @D T\

1*22cos¢cose+zzcos2¢
-1 L 2p-
. /eiefl—ze lscosda\z\zE 2p
| | .
\l—zelecos¢ 4o

By substitution of (1.3) this equals

hal—

. _ . L ® (H 2,2 P
(1-ze lecos¢) a(1—2818005¢) 8 S { +L§ zsin 9 2 2 \ )
p=0 L p ‘l-2zcosécosf+z cos ¢/

1

. Céa,B){eiefj—ze?iecos¢)i\.
p

]—zelecos¢

Finally, substitution of (1.24) leads to the right hand side of (1.27). [J

COROLLARY 1.8. 7f Re(a+8) > 0, z ¢ €, |z| < | then

3 (a+g)
= . c? (cosg¢)
(1.28) IO kl(a+s) -
k=0 ¢z

) fl—zeiee_i¢ \%(Q-B)

2) _% (0“""8)
~i8_-i¢ /

{(1-2zcos (¢+8) +z
I-ze

4zsingsing \

(|
* JFiz(atB),aza+8; .
z I\ 1—22cos(¢+6)+22 }

PROOF. Use [4,5,.10(1)71, [0

REMARK 1.9. Formula (1.28) has the following significance. As will be ap-
parent later in this paper, the main obstruction to finding the Poisson

kernel for the Dirichlet problem on the Heisenberg ball is the fact that an

explicit kernel for the transform sending E:=O ckCéu’B)(ele) to

el

I 2 c® ey (1a1<n)
k=0



is not available. Formula (1.28) gives an answer to a related question. Due

to the orthogonality property of the Gegenbauer polynomials it provides the
3 (a+R)
CZ

k=0 1%k {cosd) to

kernel for the transform which sends E

L e (e ! o8 (olty
k=0

REMARK 1.10. C.F. Dunkl (personal communication, unpublished) obtained a
dual formula to (1.26):

C(a B) )C(Y,G)( e)ElG(e_ﬂ/Z)Slnk_l

n 6 de,

O e 3

with a+f = y+§ = ), expressed in terms of a balanced 4F3 of unit argument.

2. THE KELVIN TRANSFORM ON THE HETISENBERG GROUP

W. Thomson (Lord Kelvin) proved in 1847 the following fact: If U is
harmonic on‘]R3 then the function V defined by

V(x,v,2) := ar 'U(a rqzx,azrnzy,azr~zz)

P —
(r := /;2+y2+zz,a>0) is harmonic on If3\{0} {cf. KELLOGG [ 14,p.232]). For
this reason the transformation U » V is called the Kelvin transform. In
Looking at DUNKL's [3, Theorem 1.6] expansion of the translated fundamental
solution for LY on the Heisenberg group the authors of the present paper
conjectured, by analogy to the corresponding case for the Laplace operator,
that this double expansion involves, beside harmoncis on the Heisenberg
group, certain Kelvin type transforms of these harmonics, which should

also be LY"harmonic. Tndeed, in the case of L0 on H1 we were able to give

the formula for the Kelvin transform explicitly. Independently, KORANYI

{17] obtained the Kelvin transform for general LY on a Heisenberg group H

of arbitrary dimension. He was guided by considering H as the nilpotent
factor in the Twasawa decomposition of a noncompact semlslmple Lie group G
and by looking at the action of the Weyl group of G on Hn. Thus he could
guess the general form of the formula for the Kelvin transform and by a cal-~

culation he could next prove it.
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In the following we will present a proof of the Kelvin transform which
is even more conceptual and less computational than Koranyi's proof. We will
consider Hn as a boundary of a symmetric space and obtain LY as a limit case
of a Laplace~Beltrami type operator on this symmetric space. Thus LY will
inherit the symmetries of the Laplace-Beltrami type operator.

As a side result we now have a canonical way of introducing LY on Hn
for all vy, rather than only for v = n,n-2,...,-n+2,-n by an interpretation

using Db {cf. FOLLAND & STEIN [6,851).

For n = 1,2,... consider the group

[

:= {T ¢ SL(n+2,¢) | T70T = 71},

0 0
where J := 0 I and T* means
0

(ST
[

adjoint of T. Then G is a noncompact connected semisimple Lie group iso-
. . + . .
morphic to SU(n+1,1). The group G acting on ¢® 2 with coordinates
2 2 - . .
(wo,wl,...,wn+l) leaves the form |w | +...+|w]| ~Im(w0wn+1) invariant.

The differential operator A on En+2 defined by
n
d . 3 .
(2.1) A = -~ E e VS oo 21
is G-invariant,
We now consider some structural facts about G (cf. HELGASON [10,Ch.6,

9] for general structure theory). Let

[T e | T€i,0,...,0,1) = e¥(1,0,...,0,1)

K :=
for some real ¢} = S(U(n+!1)xU(1)),
. s -5
A = {as = diag(e ,1,...,1,e 7) | s ¢ R}l = R,
/1 wiz L.ziz t+i|z|2
1 n H
_ _ 1 ¢ 2z
N o:= {nz,t - . ! (z,t) ¢ €'xR}

¢ ' =
\ 1 2 Zn
1
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Then G = KAN 78 un Iwasawa decomposition of G. Note that

nz,tnz',t' = nz"’t" with
(2.2) (z",t") = (e+z" ,t+t"+2Im z.2"),
where z.z' := Z?=] zj z.'. Thus N is isomorphic to Hn’ the Heisenberg group

of real dimension 2n+l.
Let M and M' be the centralizer and normalizer, respectively, of A in

G. Then

=1
(detT) * 0 ©
M= {m, = 0 T O T e U{n)}
—1
¢ 0(detT) *?

-l
(note that (detT) °?, and hence m,_, can assume two different values). Fur-

T
thermore, M is a normal subgroup of M', the Weyl group W := M'/M has order
two and M' = M y mwM with
0 0 =1
m = |0 I 0 .
W n
+1 0 0

Now G = MAN u MAN m  MAN (disjoint union), a Bruhat decomposition of G.
Hence the action of G as a trausformation group is completely determined by
the actions of M,A,N and m .

Let N := m;.wa. A fact related to the Bruhai_decomposition is that
NMAN is open and dense in G. If N is considered as NMAN/MAN, open and dense
in the flag manifold G/MAN, then G acts locally on N. Similarly, if NA is
considered as NAK/K = G/K then G acts on NA. We will construct a G-space
which includes the G-space NA as an open G-orbit and the G-space N as the
boundary of NA.

n+2

Introduce new coordinates gO""’Cn+l on ¢ :

(j=0’15'~°’n), 4 =W .

g =Wyl n+l n+l

] 1 n+l
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. . 2 .
Write [ :='(c0,g1,...,gn). Then the action of G on Cn+ » expressed 1n terms

of the new coordinates, takes the form

(2-3) g'(C’Cn+]) = (g'C)U(Esg)Q )9

n+l

. n+l , . .
where the action of G on the z-space C 1s a group action and u is a
multiplier with respect to this action, i.e., a complex-valued function on

En+l * G satisfying

(2.4) u(C,glgz) = u(gz-c,gl)u(a,gz)-

. + . .
The G-action on €" ] and u are completely determined by the data in the

following table:

g g.7 w(z,e)
! -}
m (ao,(detT) T.(c],-.-,cn)) (detT)
2s s s -3
aS (E Cose C1s~-'se Cn) e
. 2 .. vn —
nz,tl (C0+t+1|zI +21 yj=1 cjzj,€1+z],--.,Cn+Zn) i
i
; z c
i 1 1 n
m b —, o G
v S0 %o %0 0
Table 1

In terms of the coordinates EO""’Cn+1 the differential operator A
{(cf.{2.1)) takes the form

2 2 2

-2 v/ 3 . 3 .= 37

(2.5) R [ (R RN P SR PI S b

1L z.at, 3C.9 3z .9

n LA\ 69T j 8Lty ity %o/

- 32 - 52 32

+ 2i{z =) =——= + 2i I —————— = 2ir -—-——_—].
0 ~0 agoaco n+l 3;n+]ac0 n+l a€n+1350

Then, for o,8 in € and f a smooth function on the r—-space €n+l:
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-8 — --B—]_.“O."']A £
(2.6) Az n+l n+1 f(C)) = cn+l Z’-n+1 oy B @,
where
n 2 2 2
9 : 3 .= \
(2.7) A = E (— = 421 [, ——— 21 . —= +
a8 L\ Bryery j a9t i 8giag,)
2
. - ] . 3 . 9
+ 2i(g. 5. ) ——w— +21 B —=— - 2iaq ——
0 ~0 BEOBCO CO BCO

For fixed g in G and for (c,cn+]) in Gn+1 x ¢ write

(z',p! ) =g.(t,t__ ).

n+l n+l

Let A" denote the operator (2.4) with gj replaced by Cj, and similarly
L
Aa 8"
LEMMA 2.1. For smooth functions f on e and with ' = g.z, where g in G
is fized, we have

(2.8) by, (BTGB @) = ue,e PTG T f@.

PROOF. The G-invariance of A can be expressed by the formula

= AT ' 1
BF(CT,z ) = A'F(LY, 00 ).
Hence
[ “B—y— -0 ' _ AT t “Brv— -o '
(%) AT Ly Cpey ECE) = AT(El ol E(ET).

The right hand side of (%) equals

o TR
' B=l—y— O'.IA f(cf)’

() Z;n-i-I n+l a,B

by the use of (2.6). The left hand side of (*) equals
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..._B_

AP TS uLe) e ),

by the use of (2.3), and, by (2.6), this can be written as

~B-1=—a-1

() En+1 nt!

Au,8<u(c,g)‘Bift,g)‘af(c')).

Now formula (2.8) follows by (2.3) and the equality of (%x) and (#%%). []

n+l
Let Dn h {r ¢ €

2 2
+ 1 IC]| +...+|§n| < Imz, }.

0

Then G acts transitively on Dn and the stabilizer of (1,0,...,0) in G is K.

+1

Hence Doy = G/K. Also G acts transitively on 3D U {~} and the stabilizer

n+l
el Y {=} = G/MAN.

Introduce new coordinates (£,X,2.,...,Z2 ) ¢ R x R x ¢ on the -
1 i}

+
space Gn : by

of (0,...,0) in G is MAN. Hence 3D

(et yseat) = (e+illz) 20,2 002 )

Write z = (z .»2 ). Note that 7 « D = x > 0; £ « 3D = x = 0.
n n+ n

1* 1 +1
Also:
(2.9) (t+i(lz]%%),2 ,...,z ) = n a (i,0 0)
) O A Y z,t slogx "7 i
. P
(2.10) (t+ilzl"yz ,...,2z ) = n_ (0, ,0)

1> n’ z, t

This identifies Dn with NA and BDn with N =~ Hn and the local ac-

+1 +1
tion of G on 3D can be transplanted to H .
n+] n

The operator Aa expressed in terms of the coordinates t,x,zl,...,z

sB n

takes the form

n 2
LN R~ it ACE R o)E
? S - . -
1=l j R T S R
2 2 2
- |z|2 jL§'+ i(B-a) g%—- x(jL§-+ jif) + (n-a-B) g%—.
at gt Ix/
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If
(2.12) a = 3(n-y), B = i(n+y), vy e L.
then the restriction LY of Aa 8 to x = U will be a differential operator on
. ;
8Dn+]:
n 2
(2.13) S Y GO TP N G SRS T
Y j=1 \ aZja-Z—j ot \7) aZj J azj,,r
2
—_— 'zfzi_-[- i-Y_?_.
1 8t2 At

Now we cptain from Lemma 2.1 and Table 1:

THEOREM 2.2. For smooth functions £ on H and for g in G we have

(2.14) LYcu(z,t;g>'B 1z, ) * £(g.(z,1)) =
=l —a~1

= u(z,t;g) 8 uiz, t;g) (LYf)(g-(z,t)),

where the local action of G and u are specified by:

g g-(z,t) [ ulz, t;g)
r
i
5 ’ —1
m ({detT) Tz, t) | {(detT) ?
2 ! z
ag (esz,e St) | enxs
T L} I
e o (2", t") (z,t) ! 1
z t ) f . Z2
m s T | t+l|Z;
W ‘pri|z)? t2412]® J

Table 2
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In other words, LY is left Hn—invariant and invariant under the action

T. (z,t) = (Tz,t} of U(n),

(2.15) LY(f(Rz,th)) - RZ(LYf)(Rz,th)
and
2, - 2 . -B.f 2 t \
(2.16) L /(Izl +it) (lz! -it) 7f y — ,
W\ \t+i|z!2 t2+Tz|4 %
= (21210 (21 in B @ -2 t ),

\trilz] 2 e2e(a1d/

We call the function Kyf defined by

(a7 (KD (z,t) = (|ZI2+it)—a(!zl2-it)_8f( e 4)
! t+ilz]" t4|z|/

the Kelvin transform of f.

COROLLARY 2.3. If LYf =0 on Hn then Ly(KYf) =0 on Hn\{(0,0)}.

3. HARMONICS ON THE HEISENBERG GROUP

Throughout assume (2.12) and *v # n,n+2,nt4,... . Define
(3.1) 8 (2,t) := cy(lz!2+it)_a(lez—it)_B,
where
(3.2) ¢, i= Fla)r(g) 2™

Then ¢Y is a fundamental solution of J'_Y at 0 (with respect to standard

normalisation of Lebesgue measure):

3.3 Lo =
(3.3) VO T 6

cf. FOLLAND & STEIN [6,86]. Actually, the fact that LYQY = 0 outside 0
follows from (2.16). By the use of the analyticity of @Y outside 0
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and the left Hn~invariance of LY it now follows that LY is hypoelliptic
and real analytic hypoelliptic, cf. FOLLAND & STEIN [6,§7]. In particular
if f is a distribution on an open subset of Hn containing 0 and if f is

LY-hanwonic, i.e.
(3.4) L £f=0,
Y

then f is real analytic, so it can be expanded as a power series arcund

zero. Because of (2.15) this power series can be rearranged such that
(3.5) £f= 5 £,

with absolute and uniform convergence in some neighbourhood of 0 and

where fm is a (solid) Heisenberg harmonic of degree m:

DEFINITION 3.1. A function f on B is called Hn—homogeneous of degree m
if

(3.6) £(Rz,R%t) = R®(z,t), R > 0.

DEFINITION 3.2. A (solid) Heisenberg harmonic of degree m on Hn is a poly-

NOMidl 1IN Z,35:c03Z 32, 5000sZ t which is H -homogeneous of degree m and
] >“n’ 71 *“n’? n

LY—harmonic.

Because of the U(n)-invariance of LY and property (3.6), the class of
Heisenberg harmonics of degree m can be decomposed as a direct sum of sub-
spaces on which U(n) acts irreducibly. These subspaces were obtained ex-
plicitly by GREINER [9] in the case n = 1 and by DUNKL [3] in the general
case, later also by KORANYI [17] with a different proof. Here we will ob-
tain these subspaces in yet another way, somewhat related to Kordnyi's ar-

gument .,

DEFINITION 3.3. The space Hk ? of complex (solid) spherical harmonics of
-]

bidegree (k,L) on ¢" consists of all pelynomials P in =z ..,zn,E],...,E s

17
homogeneous of degree k in the zj's and homogeneous of degree £ in the Ej's

and satisfying
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n 32
(3.7) ) —=—P =0.
j<1 9z 9%,
J ]
PROPOSITION 3.4 (cf. KOORNWINDER [15], RUDIN [19,812.20).
(a) The group U(n) acts frreducibly on each space H ) (k,£=0,1, .e3 If
n = 1 then, moreover, k or £ = 0).

(b) Representations of U(n) on different spaces Hk g are inequivalent.

2, 2n~-1

(c) L°(S Y= & H | w2n~1
Lg e ! sim
s _ (n+k+€-1) (n+k=2) " (n+f~2) !

(@ g = dim H p = KT (o~ (n-2) !
(e} If {Y],...,YNk E} is an orthonormal basis of Hk,£ | g2n-1 then

N

k, £ o -1 n-2 2n-1

El LY () = 5, ;I N R g (55 Eun e S ,

i

where the disk polynomial R K, 2 i8 defined in terms of Jacobi polynomials
(oc 8)
by

(a [k~ f,l)(2
Q® (re dJ) - k/\f_
k,£ ) plas [k ﬂ])(})
kAﬁ

(£) If F is a bihomogeneous polynomial of bidegree (k,L) on € then

}knﬂlei(k—£)¢.

kAL
F(z) = ] lz2!“¥Y.(2) with Y. ¢ H

3=0 i j k~j,&-3"
THEOREM 3.5. The space of Heisenberg harmonics of degree m on H 18 spanned

by the functions

(a+f,B+k)

(3.8) (2, 0) # ¢ B (erilzl D) v(2),

where m—k-£ > 0 and even and Y ¢ Hk Iz

PROOF. First we show that the function (3.8) is a Heisenberg harmonic of
degree m, Clearly, it is a Hn—homogeneous polynomial of degree m, so it is
left to prove that the function is Ly—harmonic. By (2.13) and (3.7) LY Y =
= 0, where Y(z,t) := ¥(2). Tt follows from Corollary 2.3 and the biho-..
mogeneity of Y that
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(o]
1]

Lo (Cemilzl ) M erilz) D P -

t+ilz]|

LY((t—i|z£2)'““£(t+i|zlz)‘e‘kY(z>>.

By the left N-invarliance of LY and by (1.1) we obtain

0 = LY(<1+tui!z12)‘“'2(1+t+i|z|2>'5'kyk 2(2)) =
= LY( y (-t)rc§”+ﬂ’6+k)(t+i|z12)Yk ORI
=0 *

The result follows by use of (2.13).
Conversely, let F be a Heisenberg harmonic of degree m. Then F must be
a linear combination of functions

(z,t) » t F(z),

where F is a bihomogeneous polynomial of degree (p,q) and 2r+p+q = m. Hence,

by Prop.3.4 F must be a linear combination of functions
T 2s
(z,t) b t lz| Y(z),

where Y ¢ Hk ¢ and 2r+2s+k+f =m, i.e.,

2
(%) F(z,t) = ) Y E (e 1zlDY , (2),
K, £ j k,L3] k, £33
m-k—£>0
and even
where, for each k,f, the Yk,ﬂ;j—s form a basis for Hk,ﬂ and fk,E;j is a

homogeneous polynomial of degree }(m-k-£). Now, again by Prop. 3.4 and by

the U(n)-invariance of LY’
L(E, 5. . (t,121DY, , .(2)) = (¢, 121Dy, , .(2)
y Uk, 35000 kL3 B, ;500 kL33
for some homogeneous polynomial gk,ﬂ;j

of degree i(m—k—-£)~-1. Since LYF = 0, it follows that each of the terms in
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the right hand side of (x) is L -harmonic, so we are left to prove that, if
the function (z,t) » f(t,]z] )Y(z) is LY—harmonlc with Y ¢« H K, 0’ f a homo-
geneous polynomial of degree r, then f is unique up to a constant factor.

We prove this by complete induction with respect to r. It is clearly true
for r = 0. Suppose it is proved for degree (f) = —l Suppose f (t | z| )Y(z)
is LY—harmonic for i = 1,2, degree (fi) = r. Then - (f (t,]z] )Y(z)) is
LY-harmonic of degree 2r-2+k+f (cf. (2. 13)), so, by the induction hypothesis
there are A,u, not both zero, such that (Af +uf ) = 0. Hence

M (e 2l Dt (e, 121 D) = el

S0 c[zlzﬂYr S(z) satisfies (3.7). Thus, by Prop. 3.4, ¢ = 0. Hence fI and

f2 are proportiomal, [}
4, THE HETSENBERG BALL

4.1. The Dirichlet problem

The region

| 4 2

4.1 B = {(z,0) « Hn lz] "+t% < 1}

H
n

is called the Heisenberg ball. We are interested in the Drrichlet problem

for LY(iy%n,n+2,...) on the Heisenberg ball:

For given f in C(SB ) does there exist a unique function u in Cm(BH ) on

n
n C(B } such that
Hp

(1) L. u=0on3B_,
Y Hy
(i1) u=f on B, ?
Hpy

For y = 0 the problem was solved by GAVEAU [8], who used probabilistic
methods, and by JERISON [12], who used analytic methods. For certain vy # O
the problem was solved by JERISON [13], to some extent.
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In particular, we are interested in solving the Dirichlet problem by
finding an explicit Poisson kermnel PY on B, x 9B, such that the desired
n n
solution u 1s expressed in terms of f by

(4.2) u(z,t) = I f(z',t')PY(z,t;z',t')ds(z',t:').

BBH

n
This problem is still open for all y.

Let us introduce "spherical" coordinates p,¢,& adapted to the
Heisenberg ball by

1 -
(4.3) (z,t) = (p sin2¢£,p2cos¢), p 20, 0<4 =7, £c¢ S2n ].

In terms of the coordinates p,¢,E the special Heisenberg harmonics

(3.8) take the form

(a+f,p+k

%(m—kwﬂ)) (el¢)Y(E) -

1
(4.4) (028,8) = p"(sing) 2 & D¢

4.2, Green's formula for L

The differential operators Zj’zj (j =1,...,n) and T on Hn’ defined by

P
ZJ = ez, T lzj st ’
J
b d . o
(4.5 V4, 1= — - ilz. —
) J az. J at 2
aJ
T .=a—t,

form a basis for the left invariant vector fields on Hn' LY can be expressed

in terms of these operators by

(4.6) L = -} (Z:Z,+7.2,) + iyT.
y F 5y

If we introduce real coordinates xj, yj (3 =1,...,n), t by zj = xj+iyj then
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o 5 5., 9 5
= -1 9 Oy 9 9.

4.7 Ly =~ J.El [(ij P a0 G Y 3 ¢t

9 _ oy, Oy, B _ 2. i, 9

* Gy T 2 at)(Byj 5Pt iy o
Hence LY has principal symbol
o 2 2

(4.8) P ((x+iy,t), (E,n, 1)) = =1 § [(g.+2y.7) +(n.-2x.1) 71,

(x+iy,t) e H ,(E,n,1) ¢ R"x R%x R
n

which shows that L is not elliptic. An associated bilinear form on vector

fields (&,n,1),(E",n',1") on Hn is defined by

(4.9) ((&,n,1) | (a',n',r'))Hn (x+iy, £)
n
-1 2y 4oy ! .=2x. =2x.1') 7.
} jzi [ g*2yym) €52y ety + (ny=250) (0] x1') ]

Now let @ be a nonempty open connected bounded subset of R" with smooth
boundary and let v = (vx,vy,vt) denote the ocutward normal at a point of 30
in terms of the (x,y,t) coordinates. Write dx dy instead of

dx],...,dxndyl,...,dyn. Let ds be the surface element on 3Q. Let
-
u,v e C(Q) n C (). Let

Tu := (Bu cu 2u u Egb
A e REET 5;;—,-55; 3oy 5;; Jrve

Then Green's formula for LY reads:

(4.10) J (ul_v-vL u)dxdydt =
Y Y
Q
= J [u(Vvlv)Hn - v(Vu Iv)Hn + 1yuvvt]ds
an
{cf. GAVEAU [8, Corollaire aprés Lemme 4] if vy = 0).

Let us rewrite the right hand side of (4.10) in terms of spherical

coordinates in the case @ = p BH . Then:
T
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4,1-1 4
(4.11) v= 170D VK,
(4.12) |V(p4)|_1ds = %pzn_z(sin¢)n_ld¢dg
2n—1,
(d¢ surface element on § )N
4 _ 112 Ju ju au
(Vu|v(p ))IH = =lz|"} (xk %" Y ey 2t 20)
n k k
Ju Ju
-ty (y, = - x 22y,
Lk By *x 3y,

Define

ou _ 3 i0
(4.13) 55—(z,t) =58 ufe z,t)|e=0.
Then:

4 3 . Ju 2 Ju
(4.14) (Vu|V(p ))IHn- p~ singd 50 + 07 cos ¢ 55
Hence, (4.10) takes the form
T
v 2n . av ou

(4.15) {ul v-vL u)dxdydt = ip [psing{-u — + v =) +

: oo n-1 90 e

pBH 08

n av Ju n—1
+ cosp(u 55 v 559+Ziy cos ¢ uv]{sing) dods .

Now apply (4.15) to the case of two Heisenberg harmonics of type (4.4):

1 .

u(o,8,8) = p " (aing) HIPD (BrE 0 By y iy
T 1 1 [

W(0,0,8) = 07" o (ging) 10D M D) ibyry

where 0 £ Y ¢ Hk Then we obtain

e
T

J ((—m"+m)sing + i{v+f-Kk)cos4).
O
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n+k+ﬂ-lc(%(n+Y)+ﬂ,%(n-Y)+k)
m

+ (sing) (ei¢)‘

[y 1 i
- CncllZ(n Y)+k92(n+Y)+’E)(e1¢')d¢ = 0-
By application of Carlson's theorem (cf. TITCHMARSH [20,55.811) we conclude
that:

a+R-1

(4.16) ({-m'+m)sing + i(a—-B) cosé)(sing)

O

. Céa,B)(ei¢)Cé§’a)(ei¢)d¢ = 0, Refa+p) > 0.

Unfortunately, this does not provide a biorthogonality for the functions
Cﬁa’s) since the weight function depends on m,m'. Only in the case o = B,
(4.16) reduces to the ortheogonality for Gegenbauer polynomials (cf. (1.9)).
Formula (4.16) was also obtained by Dunkl (personal communication, un-

published).

4.3, Remarks on the Poisson Kernel

In [ 9] the spherical harmonics on Hl and the functions Céa,B) were
derived in an attempt to construct the Poisson kernel for LY on BH . This
1

is analogous to the construction of the classical Poisson kernel in the unit
ball in R" . The next step is to obtain ortheogonality relations among the
Cﬁa’a)—s. This we have not been able to do vet. For instance, Lz(Sn_I)
splits uniquely into a direct sum of O(n)-irreducible subspaces (spaces of
spherical surface harmonics of a fixed degree), while L2(BHn) contains

each irreducible representation of Uf{n) occurring on some Hk,ﬂ’ countably
many times (cf.(4.4) and Theorem 3.5). Furthermore, an application of
Green's formula shows that the classical spherical surface harmonics of
different degree are orthogonal, while in the Heisenberg case we obtain
(4.16) only. These difficulties probably have connection with the fact that
there is no natural group acting transitively on the Heisenberg unit sphere.
Another related fact may be that the equation LYu = lu probably does not

separate in any coordinates adapted tco the Heisenberg ball. (However, ob-

serve that LYu = 0 does separate in the sense of [16, Definition 2.1].)
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A well-known method of obtaining the Poisson kermel for A on the unit
ball uses the Kelvin transform, Green's formula and the fundamental solu-

tion. However, in terms of the coordinates p,¢,£, formula (2.17) reads:
-2n i 2- -1 -i

(4.17) (K D) (0,6,8) =p e Y2 £ (71 g, e Ty

Hence, in general we have

(KYf)(1,¢,E) # £(1,4,8)

and the method used for the unit ball fails here.

Another way of deriving the Poisson kernel for A on the unit ball is
to derive first a Polsson kernel for each O(n)-irreducible subspace of
L2(Sn“1) separately and nmext to sum up all these kernels. The summands are
easily found because f in an O(n)-irreducible subspace of LZ(SnHI) is a
spherical surface harmonic of degree n, which has an harmonic extension f
to the ball given by u(x) := Exlnf(fxl-lx). Let us try to do the same for
the Heisenberg ball. Suppose that the Dirichlet problem is solvable and

allow some formal reasoning. Under the action of U(n) the space C(BBHn)

c

splits into subspaces Ck,E(BBHn) on which U{(n) acts as on Hk(ﬁiﬂ)

ASL
Y(£),

where Y ¢ Hk Ix By the U(n)-invariance of LY, the LY—harmonic continuation

will be spanned by functions of the form (¢,£) » f(¢)(sin¢)i

to the interior of such a function will have the form
1
{(p,d,E) v ue 4 K(p,¢)(sin¢)2(k+ﬂ)Y(£). Hence, in terms of the coordinates
] L]
p,¢,& and for functions f in Ck K(BBHn)’ formula (4.2) will take the form
*

m 1
. 3 (k+£)
) I t pry (sind \: :
(4.]8) U(p,¢,€) = Nk Elszn.—.]i [ 1(2[1—] f(¢ ’E; ) \Si‘nd,)'}
’ 0 s

n_z T '
Pk, (P30 IRy p(E-ET)deTdE".

Here we used Prop.3.4(e). The kernel P will have the property

yik,£
kil

L(n— 1 ig!
(4.19) [ ¢+l f o) 0 ( B0 P p(pr05b a8 =
0
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= 2m+k+‘ecrfl% (n-y) +£, } (nty) +k) (elqb) )

Formula (4.19) defines Py;k,ﬂ if the functions ¢ = Céa’s)(ei¢) are, in some
sense, complete on [0,n]. This is, of course, true in the Gegenbauer case
Céa’d)(y € Z and £ - k = vy in the case (4.19)). In view of (1.10) and
(1.11) {Céa’o)} and {CéO,B)} are also complete: Mergelyan's Theorem (cf.
RUDIN [ 18, Theorem 20.5]) states that every continuous function on
{ei¢|0 < ¢ < 7} can be uniformly approximated by polynomials in one complex
variable,

In section 5 we show that if PY exists then the family
£u+k,3+£)(ei¢)}

o »cC k=0,1,...

is dense for k,£ ¢ Z and o = {{n-vy), B = i(n+y).
5. THE EXPANSION OF THE TRANSLATE OF THE FUNDAMENTAL SOLUTION

Let @Y be the fundamental solution of LY at 0 as defined by (3.1). By
using the left Hn—invariance of LY and the obvious identity

¢ (z,0) - @_Y((z,t)">

we obtain

LY(@Y((Z"t"_](Z’t)’ - 0,

L' (0 (e (z,0) = o,
where (z,t) # (z',t") in both cases. Here LLY means the differential opera-
tor L expressed in terms of the primed variables. The function
@Y((-;ll(z,t)) is analytic in a neighbourhood of 0 ((z,t)#0) and can thus

be expanded in terms of L_Y—Heisenberg.harmonics. The expansion coefficients
will be Ly—harmonic functions of (z,t) (]z|4+t2 large). In fact, Dunkl

[3, Theorem 1.6] explicitly obtained these coefficients. He proved it by

using an addition theorem for Heisenberg harmonics, which he first derived.
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However, the coefficients depending on (z,t) can be recognized as Kelvin
transforms of LY—Heisenberg harmonics. This suggests a new and shorter
proof of Dunkl's formula, which we will present now.

Let KY denote the Kelvin transform with respect to the (z,t) variables.

Then, by (2.17):

(5.1) wY(z,t;z',t') := KY<®Y((z',t'>"(z,t>» = <|z|2+it>'“(|z|2—it)‘8-

v ol Z t _
'é_\{((z )t ) ( s 2 A)) =

. 2
t+i|z} tT+| 2]

= cY(1+it:]2;'[2-it'|z[2+tt'+|zlzlz'|2—2iz'-z)—OL .
itz | Bt 2] Bren + 2| P2 | PH2inez) B,
(|z]4+e2) (|2 [4+e' D) < 1.

In this region WY is real analytic in z,t,z',t' and Ly—harmonic in (z,t),

L Y—harmonic in (2',t"). Also:

(5.2) Wy(RTz,th;Rﬂsz',R—zt'z) = ?Y(z,t;z',t'), R>0,T¢e U(n).

For each k,f choose a basis {Y L33 .} for Hk ) such that its restriction to

I —
g 1 is an orthonormal basis. Then it follows by Prop.3.4, Theor.3.5 and

formulas (3.5), (5.2) that

N
¥ (z,t;z',t") = Z zk’£ a
¥ m=0 k,£=0 j=I

Crfla+£,8+k) (t+1| Z] 2)Y

myk,2

k,E;j(z)

Cu(ﬁ+k,0‘.+£.) (t,+ilz,|2)—~Y -.(Z'),

for certain coefficients a mik, £ (not depending on j). This expansion ab-
solutely and uniformly converges for sufficiently small (|z| +t )(|z'| +(t! )).
It follows from (2.17) that
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£Grys) = (Jw|®+is) " (Jw]®is)® K £ .
s+1 |w! s +|w|
Hence
0 (') (a0 = (z| 210 (2| 210" -
> § ?k 2 kL. 2 . o emef ., 2 -k
) a2ty T (2] i) T .
w=0 k,=0 j=1 Wkt
2,8+ k 12 k, Vr o [T
) c£“+ B 1) (tai]2! )Yk,ﬂ;j(z)CéB+ ) (rii || AN CYR
S0
-1 o D E ?k £
(5.3) & ((z',t") (z,t)) =p ¥ " b, .
T m=0 k,£=0 j=1 m;k, ¢
. D—Zm-khﬁei(—Y+£—k)¢(sin¢)%(k+ﬂ)céﬁ+k,a+ﬂ)(ei¢)Yk’£;j(E)
py2mk+l o (k) (R+k,a+l) , 1¢" o——r
(") (singy 2"l )T @D,
where

_ m+k—€ liyw
myk,f -0 € Ak, 0"

Now we have absolute and uniform convergence for sufficiently small p'/p.

Let u be a L_Y—harmonic function on pﬁHn of the form
I
u(z,t) := £(]z|%,t)¥(z),

where Y is in Hk 2 with Lz*norm 1. Then, by Prop.3.4, £ is a € -function on
{(x,y)]x2+y2 < p, x 2 0}, Let v(z,t) be given by the left hand side of
(5.3) with |z'|4+(t')2 < pé. Apply Green's formula (4.15). We obtain

(5.4) u(z',t") = } Cm(p'/p)2m0£8+k’a+£)(ei¢')Y(Z'), p' < p,
m=0

where
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m
(5.5) c = %bm;k,ﬂ [ el(_Y+£_k)¢(sin¢)k+£+n_lcéﬁ+k’u+£)(el¢)
0

« [sing (p é%—+2(n+m+k+£))+21(y+k—ﬂ)cos¢] f(pzsin¢,p2cos¢)d¢.

Convergence in (5.4) is still absolute and uniform for p' sufficiently

small. If we make the particular choice
(2170 = 80 (ni)2)%)

then, obviously,

_ Zm
“m T 6m,m'p
Hence (5.5) yields
7w
_ 1 (B+k,a+l) . i¢, (B+k,a+l) , i¢
lSm,m' 2bm;k,ﬂ [ Cm (e )Cm' (e™®)
0

. ei¢(‘Y+£*k)(Sin¢)k+£+n_][(m+m'+n+k+ﬂ)Sin¢+i(Y+k—£)C05¢]d¢-

By applying again Carlson's Theorem (cf. TITCHMARSH [ 20, 5.81]) in the

case m # m' and by applying (1.14) in the case m = m" we obtain for all

a,B in € with Re(a+p) > O:

(5.6) c(®8) (e19)¢ (1B (o 19y (BT (g y) 267!

m

o— .3

[ (mtm'+o+B) sing+i(a—-B)cosdlde =

1:ica—
ezl(B CL)ﬁ"rrl“(owB)(oc+8)m
- 5 .

0B 2r oy T (R m! m,m

This formula was also obtained by Dunkl (personal communication, unpublished).
Like in (4.16), the weight function depends on m,m'. Only if a = R this de-~
pendence on m,m' can be divided out. Formula (5.6) with m-m' even is a
special case of (1.14).

Formula (5.6) with m = m' yields the value of bm in {(5.3):

sk,
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-1 L3 -
5.7 . i 2n+k+ﬂ lezl(Y+k £)HT(8+k)F(a+ﬂ)ml
) msk, & 1 (mtk+f+n~1) !

Formula (5.7) together with (i.11) implies that, for each k,£,j and for each
g€ > 0 the m-sum in (5.3) converges absolutely and uniformly if p'/p < l-¢.
By combination of (5.3) with Prop.3.4(d) we get

(5.8) o (2,6 N z0) = 0 T (o' /iy
! K, £=0

- (sing sin¢')%(k+£)|8

-1 -2,
2n—1| Nk,ER;,E(E'E ) -

'/p)sz£B+k’u+£)(ei¢)C£B+k’a+£)(ei¢')

. b (
mZO mik, L P
with convergence of the m—sums as above. This formula coincides with DUNKL
[ 3, Theorem 1.67.
Now we turn to the completeness question. First we have the interesting

result:

THEOREM 5.1, Let u be a LY—karmanic function on By, which behaves under
U(n) as the irreducible representation of U(n) on Hk 2 Then the expansion
of u in terms of Heisenberg harmonics absolutely and uniformly converges

on each compact subset of By, -
PROOF. Apply (5.4), (5.5), (5.7). (I

THEQOREM 5.2. Suppose that the Dirichlet problem for LY on By is solvable
for some y and n. Then, for each k and for each continuous function g on

[0,m] there 15 a sequence 81s8ps s of fintte linear combinations of func—
(a+£’8+k)(el¢) such that

tions ¢ + €
m

1
lin |g(¢)‘gj(¢)|(sin¢)2(k+£) _ 0.
J‘—)OU

PROOF. The function f defined by

)§(k+£)

£(¢,8) := g(¢) (sin¢ Y (&)
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(0 £ Y ¢ Hk £) is continuous on aBHn. Suppose that Y(EO) = | for some go
in §207!, Let u be its LY—harmonic continuation to By, - Then, by Theorem
5.2,

p2m C(a+£,3+k)(e
m m

u(p,$,8) = ) ¢ i¢)(pzsin¢)%(k+ﬂ)Y(E)

m=0

with absolute and uniform convergence for p in compact subsets of [0,1).

Let £ > 0, For some p < | we have

|£(4,8)~ulp,$,8)| < } & for all ¢,

and for some M we have

3 Cmp2m0£u+£,8+k)(el¢)| < }e for all 6.

m=M+1
Hence
M
lg($) ~ ¥

m=0

Cm02m+k+£céla+£’8+k) (ei¢)| (sinq))%(k%) < e

. a

Since GAVEAU [ 8] and JERISON [123 showed the Dirichlet problem to be

solvable for y = 0 this shows:

COROLLARY 5.3.

sPan{Céa’B)(ei‘)<sin->'“‘3’}

|a—R |

g dense in (sine) C([0,n]) with respect to the uniform norm if

a—R ¢ Z and a A B e {1,1,3/2,...%.

This was earlier conjectured by Dunkl {personal communication). Tn
a recent preprint JERISON [13, Cor.10.2] solves some version of the
Dirichlet problem for LY for certain nonzero values of y. Theorem 5.2
applied to these cases will yield the completeness on [0,m] of the Céa’s)us

for a larger set of parameter values o,B.
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