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1. Introduction
By now the theory of Jacobi polynomials is rather well settled cf.

Askey [5] and Gasper [24]. The surprising richness of this theory is
closely tied up with the group theoretic interpretation of jacobi polynomi-
als for certain values of the parameters. Hardly any comparable results
have been obtained for orthogonal polynomials in two or more variables,
probably because people did not study the right classes of polynomials.

" Most emphasis was laid on certain biorthogonal systems, while some re-
markable orthogonal systems of polynomials in two variables, scattered
over the literature, did not get as much attention as they deserved.

Analogues in severable variables of the Jacobi polynomials seem
to be highly nontrivial generalizations of the one-variable case. There-
fore, it is a good approach to restrict oneself first to the case of two vari-
ables. In this paper a number of distinct classes of orthogonal polynomi-
als in two variables will be introduced for which many properties hold
which are analogous to properties of Jacobi polynomials. The polynomials
belonging to these orthogonal systems are eigenfunctions of two algebra-

ically independent partial differential operators. In the Chebyshev cases
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(i. e. if all parameters are equal to *}) these polynomials can be inter-
preted as quotients of two eigenfunctions of the Laplacian on a two-di-

mensional torus or sphere, which satisfy symmetry relations with respect

to certain reflections. For two of the classes which will be considered

and for certain values of the parameters the polynomials can be interpreted
as spherical functions on certain compact symmetric Riemannian spaces
of rank 2.

This paper is an extended version of the survey given in the

author's thesis [47, sections 8,9,10,11]. 1t also includes some new

material, see in particular sections 4. 4 and 4. 5. Most results are given
without proofs.

96 Proceedings of this Advanced nginar include three other papers
dealing with orthogonal polynomials in several variables, cf. James [35]
and Karlin and McGregor [40], [41]. The present paper has some re-
lationship with [40], cf. section 3.7. 3, and an important relationship

with the zonal polynomials and the generalized Jacobi polynomials.con-

sidered by James, cf. sections 4.4 and 4. 5.

Notation. Throughout this paper ¢ denotes a constant factor, which is

usualh}z{ nonzero. The symbol BX denotes the partial derivative

5 1% %
Bxlaxz. .. Bxk

2. Jacobi polynomials

The classical orthogonal polynomials in one variable are the Jacobi
polynomials, the Laguerre and the Hermite polynomials. Since Laguerre
and Hermite polynomials are limit cases of the Jacobi polynomials, we
shall restrict ourselves to Jacobi polynomials and their two-variable
analogues, i.e., to the case of a bounded orthogonality region.

Two-variable analogues of the Jacobi polynomials may be related
to Jacobi polynomials in several different ways:

(a) It may be possible to express them in terms of Jacobi poly-

nomials.

(b) They may occur in certain formulas for Jacobi polynomials.
4137
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(c) Their properties will be analogous to the properties of Jacobi
polynomials.
(d)" The methods of proving these properties may be analogous to

the proofs in the Jacobi case.

We shall briefly consider those properties of the Jacobi polynomi-

als which we want to generalize. For standard results about Jacobi poly-

nomials the reader is referred to Szegd {68, Chap. 4] and Erdélyi [17,
Chap. 10]. '

2.1. Simple analytic properties
let a,p>-l.

orthogonal polynomials with respect to the weight function (l-x) (l+x)‘3
(Q, p)(l) =

Jacobi polynomials P( ’ﬂ)(x) n=0,1,2, are

on the interval (-1,1) . They are normalized such that P,

(a+1)n /nt .

The pair of differential recurrence relat1ons

a

(a+1 B+l
I= (%)

(2.1) ("”ﬁ)(x) = —(n+a+ﬁ+1) P

b

)p+1 (a+1 p+1) ()] = an(a,ﬂ)(x)

2.2) (1-%"% 1+x)P ad; [-x" (L4x

can immediately be derived from the definition. There are three important

corollaries of (2.1) and (2.2). Combination of (2.1) and (2. 2) gives the

second order differential equation

2
(2.3) [(1-x )d— + (B-a-(a+B+2)X) dx]P ’mx)- -n(n+at+p+l) P(“ )

X

(%) .

Iteration of (2. 2) leads to the Rodrigues formula

n
(2.4) P(a’p)(x) G 1) (1-x)"% (L+x) P -—n [1-x)%" Q+x
2 n! dx

P
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We shall often use the notation R(a’ ﬁ)(x) P(a’ #) x)/P;a’ ‘3)(1) ‘

nomial of degree n in cosg.

CLASSICAL ORTHOGONAL POLYNOMIALS
Finally, repeated application of (2.1). together with the value of P("‘: ﬁ)(l)
gives the power series expansion

n (-n)k(n+a'+;3+1)k lox

(2. 5) R(a’,ﬂ) -
MAED) @, KT (—) =

Fl (-n, n+a+f+l; a+l; 11-x))

Orthogonal polynomials p {x) with respect to a welght function
w(x) are called classical if th
ey satisfy one of the following th
alent conditions; T

(a) The pol
polynomials pn(x) are eigenfunctions of a second order
linear differential operator.

(b) The system of
y of polynomials dp 1(x)/dx n=0,12,

orthogonal system. ey isan

(c) There is a polynomial
p(x) such that Py (X) is given b
Rodrigues formula Ve

P (x)=c- (w(x))'l

dn
"y [(p(x)" w(x)] .

For Jacobi polynomials these three properties are contained in
formulas (2. 3), (2.1) and (2. 4), respectively,

2.2. Chebyshev polynomials

Consider the unit circle parametrized by the angle ¢

H

and let the functions £ (e), n=0,12,
functions of d /de

let 0 =%1,
-, be the successive eigen-
which satisfy the symmetry relation

£7(-0) = v £ (6)

Then f 0) = 1oy =
n(8) = cosne, f (0) = sin(n+l)e, and f:(e)/fg(e) is a poly-

In this way we obtain the special Jacobi

polynomials
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-

_gl® -2 cos 8) = cosn®
T, (cos 6) = R ( ) ,

(2. 6)
14 _ sin(n+l)®
(2.7)  U_(cos0) = (n+]) R’ *(cos 0) = T

which are called Chebyshev polynomials of the first and second kind,

respectively. e
i i ; £77°(8) (o, T=%1
In a similar way we can consider eigenfunctions N (9 (o, ,

n=0,1,2 )y of dz/d 62 which satisty symmetry relations
- t g4 b .

ST oy = ot T(0), £ T(m-0)=TE27(6)

fn (-8) = oty ’ 'n n

o, T
i = £ (0)/
with respect to the reflections in =0 and O = w/2 . Then n (0)

£7 7 Thus we obtain (2. 6) and (2.7) with
0
0 replaced by 289,

(6) is a polynomial in cos 26 .
and, furthermore, the special Jacobi polynomials
L

(L _%) _ sin(2n+1)6e
(2.8) (2n+l) R *7 #7(cos28) = 5y ’
F W 01 _ cos(2n+1)8
(z.9) Rf.l # % (cos28) = To5p

1 1y ijs a
This interpretation of Jacobi polynomials of order (3, £3) 1

motivation for the study of Jacobi polynomials of general order (e, B) -

i f
Many simple formulas for Jacobi polynomials of general order (a,B) (for

" i inuations" of
instance the differential equation (2. 3)) are "analytic contin

i ive ft formulas in the
a,p = t% . So we may first derive these

then predict the formulas in the general case,

the cases
Chebyshev cases,

finally give a formal proof.

and

i ic
2.3 Jacobi polynomials as spherical functions and deeper analyti

properties
First we give some definitions and results ’abou-t h
For further details we refer to

omogeneous

spaces and spherical functions.
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Helgason [26, Chap. 10] and Coifman and Weiss [10, Chap. 1 and 2].

Let G be a compact group acting transitively on a compact

Hausdorff space M, fix ee¢ M and let K be the subgroup of

G which leaves e fixed. Then M = G/X

Let a function

is called a homogene-

ous space of G . I on M be calléd zonal if f

is invariant with respect to K . It is possible to decompose LZ(M)
as the orthogonal direct sum of finite dimensional subspaces which

are invariant and irreducible with respect to G . The functions be-
longing to these irreducible subspaces are continuous on M . Each
G-invariant subspace of LZ(M) of nonzero dimension contains zonal
functions which are not identically zero. The class of zonal Ll-

functions on M can be considered as a subalgebra of the convolu-

tion algebra of Ll-functions on G'.

Theorem 2.1. The following four statements are equivalent:

(@) In each subspace of LZ(M) which is irreducible with re-
spect to G, the class of zonal functions has dimension 1 .

(b) The decomposition of LZ(M) into irreducible sﬁbspaces
with respect to G is unique.
(c) The reoresentation of G in LZ(M) contains each irreduc-

ible representation of G &t most once.

(d) The convolution algebra of zonal Ll-functions on M is

commutative.

Definition 2.2. Let M = G/K have the equivalent properties of
Theorem 2.1. -

(a) A function f on M is calléd a harmonic if f belongs to an
irreducible subspace of LZ(M) with respect to G .

(b) A function f on M is called a spherical function if (i) f is

a harmonic, (ii) f is zonal, (iii) f(e) = 1.

Unless otherwise stated, the homogeneous spaces considered in

this paper will satisfy the equivalent properties of Theorem 2.1.
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Sometimes it is possible to parametrize the set of K-orbits Kx in
M such that the spherical functions expressed in terms of these param-
eters become well-known special functions. On the other hand, new
special functions may be obtained in this way. 1If special functions can

be interpreted as spherical functions then certain deeper analytic results

immediately follow from the group theoretic interpretation. Among these

results are an integral representation, a product formula, a positive con-

volution structure and, sometimes, an addition formula. A related, but

more elementary result is the inequality

(2.10) lfyl<fe)=1, xe M,

for spherical functions f on M.
For certain discrete values of (a,p) (see Figure 1) Jacobi poly-

;a’ B)(x) can be interpreted as spherical functions on two -point
homogeneous spaces or, equivalently, symmetric spaces of rank 1, cf.

nomials R

Helgason [27] and Gangolli [21]. The most elementary case is the unit

1 .1
circle S1 = 0(2)/0(1) with spherical functions cos né = R;' 2 2)(cos ) -

Gegenbauer polynomials R;q/2_3/2’ q/2'3/2)(x), q=34,..., canbe

interpreted as spherical functions on the sphere Sq'1 = O(q)/0O(a-1) .
The harmonics on this homogeneous space are the well-known spherical
harmonics, cf. for instance Miiller [59]. The other cases aré the real
projective space 80(q)/0(a-1) (a= q/2-3/2, B = -3), the complex pro-
‘jective space SU @)/ U(a-1) (= q-2, p = 0), the quaternionic pro-
jective space 5 p(a)/Spta-1) xSpl) (a= 2q-3, p =1) and the Cayley
projective plane (@ =7, P = 3). Jacobi polynomials of order (3,4) can
also be interpreted as the characters on the group SU(2) .

Among the deeper analytic properties of Jacobi polynomials are the

inequality

e IROPl<y, lxlgl azp> ol ez

(cf. Szegd [68, §7. 32]), the Laplace type integral representation, the
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product formula and the addition formula for Jacobi polynomials (cf

Ko ‘s
ornwinder [42]), and a positive convolution structure for Jacobi series

(cf. Gasper [22], [23]). For the values of (a,B) given in Figure 1 these

resu
sults follow from the group theoretic interpretation. If it is known that

a certain result fOl laCObi polyllomlals holds fOI SpeCIBl Values Of (Q, ﬂ)
h y Y
then it is easier to obtain SUCh a Iesult in the gene!al case elthet b
ana yt C Iﬂanipulation Of the kllown cases or by first pr ed ct ng the ge
lyti h ses icti h n

e
ral result as an "analytic continuation" of the known cases and next
giving some new analytic proof.

In i
section 2. 2 we pointed out that the analytic structure of elemen-

tary formulas for Jacobi polynomials can already be predicted from the

Cheb v i
yshev cases. This is no longer true for the deeper results, since
3

these formulas may become degenerate if a = f or g =1 For instanc
=3. e
the formula expressing the product R(a’ ﬁ)(x) R(a’ ﬁ)(y) ,
e ' n n as an integral
polynomial of the same degree and order, is a sum of two

t -— -
erms if @ =$ = -}, a single integral if ¢ =p or B = -1 and a double
2

integral 1
gral if o« > B > -3 . Hence, SU(3)/U(2) is the least complicated

homoge i
ogeneous space on which the product formula is nondegenerate
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3. Methods of constructing two-variable analogues of the Jacobi
polynomials

3.1. General orthogonal polynomials in two variables

For the few things which are known about general orthogonal poly-

nomials in two wvariables the reader is referred to Jackson [32], Erdélyi

[17, Chap. 12] and Bertran [8). Some further results have been obtained

in connection with numerical cubature problems, cf. Stroud [671.

2
Let @ be an open subset of R™ and let w(x,y) be a nonnegative

1
L -function on . For convenience we shall always suppose that the

region Q is bounded and that the function w(x,y) is strictly positive
and continuous on €. The set vn’ n=0,1,..., oforthogonal poly-
nomials of degree n with respect to the weight function w{(x,y) on the
region £ is defined as the (n+l)-dimensional set of all polynomials

p(x,y) of degree n with complex coefficients such that

[ [ pix, ) a(x, y) wix, y) dxdy =0
. 2

if qg(x,y) isa polynomial of degree less than n .

For a special region © and a special weight function w(x, V) it

may be possible to find an explicit basis of polynomials pn k(x, Y),
$

In particular, it is of interest to find an orthog

k=0,1,...,n, for wn

onal basis for yn There are infinitely many possibilities to choose an
orthogonal basis for 5/ One evident method for constructing such an
orthogonal basis is to defme p k(x y) as the polynomial with highest

term C - n k yk obtained by applymg the Gram-Schmidt orthogonaliza

tion process to the sequence of monomials
2 2 3 2 n
(3.1) LX,V,X ,XV,Y ,X ,X ¥V,...,X X Vy..0,

However, this is not a very canonical method, since the transformation

(%, y) ~ (v, %) generally does not map the thus obtained orthogonal basis

{pn, o®¥) P

and wi(x,v)

(x VA R p (x, v)} of N onto itself, even if Q

are invariant under this transformatlon

444
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Sometimes it is possible to preserve the symmetry in x and Y by

choosing a nonorthogonal ba
e ° sis P, k(x, v, k=0,1,...,n, for &,
another nonorthogonal basis q (X y), k=0,1, n, for yn
’ L ] ) b
such that p k(X, y) 1is orthogonal to q (x y) if k#1¢ Then thr;

syste
ystems {p k(X y)} and {q k(x v)} together are called a biorthogonal
system (cf. Erde1y1 [17, Chap. 12] and Schleusner [65]).

It is the author's opinion that if a general theory of sufficient depth

i .
s possible for orthogonal polynomials in two variables then it probably

will be given for the classes n{ rather than for some basis of y

Howeve
r, for certain special regions and weight functions there are quite

inte
resting properties for polynomials belonging to some explicit basis of

Ko

Let us return to th
e polynomials p k(x y) which are obtained by

or
thogonalizing the sequence of monomlals (3.1). Let us arrange the pairs

of v
integers (n, k), n>k > 0, by lexicographic ordering, i.e. (m 1) <
. 2’

(n, k) if either m<n or m =
=n d
and £ <k . Then pn’ k(X, y) has a

power series expansion

clm, £;n, k) x4

(m, £)<(n, k)

(3.2)

’

pn, k(x’ y) =

and there are recurrance relations

(n+l, k)
(3.3) xp_ L (X,v) =
, k'™ a(m, £;n, k
" (m, £)=(n-1, k) ) P, g 5 7)
and
(3.4) (n+1, k+1)

Yy =
pn, ]?(x’ ¥) b(m, 2 He k) pm ) (X, y)
’

(m, £ )=(n-1, k-l)

Note that the llunlbel of te ecomes arbi-
f rms in the recurrence relations b o S
trarily lal e if n—+-oo , is i C W € one-var able
g Th.l 1S in Strlklng ontrast ith th i

case, where i
, the recurrence relation contains at most three terms, inde-

- pendent of n .
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e trivial example of a direct product of two systems

Let {pn(X)} and {qn(y)} be

Next consider th

of orthogonal polynomials in one variable.

orthogonal systems with respect to the weight functions wl(x) and wz(y),

respectively. Define

(3.5) P (% Y) = P, (¥ 9 )

ined by orthogonalizing the sequence (3.1)

en p (x,y) can be obta
" Dot Now the formulas (3.2},

with res{)ect to the weight function wl(x) wz(y) .

(3. 3) and (3.4) can be simplified, since c(m, £;n, k) can only be non-

zero if m-£ <n-k and £ < k, a(m,f;n,k) vanishes except for (m, 2) =

= (n+l, k), (n,k) or (n-1, k), and b(m, £;n, k) vanishes except for

(m,2) = (n+l, k+1), (n, k) or (n-1,k-1) . "
We shall meet less trivial examples of orthogonal polynomials

p (x,y) for which certain coefficients in (3.1), (3.2) and (3. 3) vanish,
y

sr:l::;that the number of nonvanishing coefficients in the recurrence re-

lations remains bounded for n— © . It is worthwhile to consider system

i i troyed.
having these properties, even if the symmetry in X and y is destroy

in some examples which will be considered in this paper, there is

th
a partial ordering < of the pairs of integers (n, k), n >k > 0, such thi

(m, £) < {n, k) implies that (m,2) < (n, k) _and such that

1

m-£ A
(3.6) p. L (XV)= c(m, £;n, k) * y
n, k (m, £)< (n, k) -
The following useful lemma gives some consequences of this prop-
erty.

1y independent sequence of
Lemma 3.1. Let tbl, 4>2, ¢3, ... be alinearly

i zero polynomial with
polynomials in x and vy and let pn be a non

&_ which is obtained by orthogonalizing the sequer
n

n weight function on a certain re

vhighest" term C .

t to a certai
¢1, ¢2, ceey ¢n with respec

Let < be a partial ordering of the set IN of natural numbers sw

gion.
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that i < j implies i <] and such that for each ne IN pn is a linear
combination of polynomials ¢m, m< n. Then;
(a) For each n, ¢n is a linear combination of polynomials pm ,
m< n.

(b) If g is a linear combination of polynomials ¢m’ m < n, and
if g is orthogonal to ¢m for m<n and m#n, then g=c¢ - pn .
(¢) If not m>n then 1 is orthogonal to ¢m .

The easy proof is left to the reader.

3.2. The definition of classical orthogonal polynomials in two variables

It seems natural to look for some two-variable analogue of the one-
variable criterium for classical orthogonal polynomials that the polynomi-
als must be eigenfunctions of a second order differential operator. Krall

and Sheffer [53] and independently Engelis [16] considered the case that
the classes Mn, n=0,1,2,..,, oforthogonal polynomials of degree n
with respect to a certain weight function w(x,y) on a certain region @
are eigenspaces of a second order linear partial differential operator.
They classified all partial differential operators having this property. The
only bounded regions occurring in their classification are the unit disk
with weight function (l-x2 -yz)a and the triangular region {(x,y) | 0<y<
<x<1} with weight function (1-x)% (x-y)‘3 vY.

In the present paper we shall consider examples of orthogonal sys-
tems {pn, k(x, y)}, such that the polynomials pn, k(x, y) are the joint
eigenfunctions of two commuting partial differential operators D1 and
Dz’ where D1 has order two and D2 may have any arbitrary order, and
where D1 and D2 are algebraically independent, i.e., if Q isa
polynomial in two variables and if Q(Dl’ DZ) is the zero operator then
Q is the zero polynomial. If the eigenvalue of pn’k(x, y) with respect
to D1 only depends on the degree n then we are back in the situation
studied by Krall and Sheffer [53]. In that case the operator D2 provides
us a canonical method to choose an orthogonal basis for wn’ i.e. by
taking the eigenfunctions of D2 .
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1t does not yet seem to be the time to make a final decision, which
systems should be called two-variable analogues of the classical orthog-
onal polynomials. Rather than trying to classify all orthogonal systems
which are eigenfunctions of differential operators, we shall emphasize
the methods by which such systems can be constructed. These methods,
which are suggested by the results for Jacobi polynomials stated in sec-
tion 2, are the following:

(a) Consider orthogonal polynomials in two variables which can be
expressed in terms of Jacobi polynomials in some elementary way.

(b) Consider orthogonal polynomials in two variables which are
analogous to Chebyshev polynomials, i.e., which can be expressed as
elementary trigonometric functions in two variables or as spherical har-

2
monics on the sphere 8 satisfying symmetry relations with respect to

certain reflections.

(c} Consider orthogonal polynomials in two variables which can be
iﬁterpreted as spherical functions on homogeneous spaces of rank 2. In-
formally stated, a homogeneous space M = G/K has rankr if G and K
are Lie groups and the set of K-orbitson M is a manifold of dimension
r (except possibly for a set of measure zero). B

(Ei) Construct new orthogonal polynomials in two variables by
performing quadratic transformations on known ones.

(e} Construct new orthogonal polynomials in two variables from

known ones by doing " analytic continuation®” with respect to some param
eter.

3.3. Examples of two-variable analogues of the Jacobi polynomials

Below we introduce seven different classes of orthogonal polynomi

als in two variables.

Class 1. For a>-l, z=x+1y, z = x - iy, the polynomials
3 ) plao™Mo: """ if m>n,
(3.7) ,P (z,2) =
I'm,n Pi:’n-m)(ZzE-l) 2™ 4f m<n ,

448
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are orthogonal with respect to the weight function (1 - x2 - yz)a
unit disk.

on the

Class II. For a > -1 the polynomials
3.8 @ _ platk+d, atk+3 3k
(3.8) RANCSES Al RN RS

(a, a 2 -1

PO Na-xh)3y), nxk>0,

are also orthogonal with respect to the weight function (l-xz-yz)a on the

unit disk.

Class III. For a,Pp > -1 the polynomials
3, ) B (a' p+k+1) ’
G900y = BOP e i Pty nzio

are orthogonal with respect to the weight function (1 - x)a (x-y )ﬁ
2
on the region {(x, y) Iy <x< 1}, which is bounded by a stralght line

and a parabola.

Class IV For a,B,y > -1 the polynomials
(3.10) p% P Y vy = Px(l""kﬁ””k“)(z;{-l)xk

4 nk

-1
P](f’ Vexlyy, n>k>0 ,

are orthogonal with respect to the weight function (1 -x)m(x—y)Fi yy on the

triangular region {(x,y)|0 <y <x<1}.

For a,B,¥, 5 > -1 the polynomials

Pa’ B, Y, 8

OB Y8y < B P ol

(3.11)
, n>k>0
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are orthogonal with respect to the weight function (1-x)a'(l+x)‘3(1-y)y(1+y)6

on the square {(x,y)| -1<x<1, -1<y<l1}.

B+y+3/2>0. Let
n-k_k
v

Class VI. let o, B,y>-l, a+y+3/2>0,

o, B, Y >k >
6Pn,k (u,v),v n>k >0, 1
obtained by orthogonalization of the sequence L,u,v,u,uv,...

be a polynomial with highest term c-u
with re-

spect to the weight function
(1-u+v) (1+u+v)p (u - 4v) Y
on the region {(u,v)| ful < v+ 1, u2 -4v >0}, which is bounded by

two straight lines and a parabola touching these lines. In particular we

have
o, B, '%
(3.12) 6Pn X (x+Y, xY) =
t

_ (@, B) (e, B) (o, B} (2, B)

=c- [Pn (x) By (y) + B 7 TN(x) P ]
and
(3.13) 6 Pn’ i’ x4y, xy) =

ey 2% P 2 Py - 2 P 2P ]
ClassVII Let a>-5/6, z=x+1iy, z=x -1y, mn>0. Let K
2P oz Zy=c - 2™ 2™ + polynomial in z,z of degree less than m +n
,

such that (z z) is orthogonal to all polynomials d(z, z) of degree

7 m
less than m + n with respect to the weight function

[0+ v2+ 9% + 8 - 3xy°) +108)°

on the region bounded by the three-cusped deltoid (or Steiner's hypocy-
cloid)

-(x2+yz+9)2 + 8(x3 - 3xy2) +108 =
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i < z = ,...,n
1t can be proved that the polynomials 7Pn-k,k(-z’ z), k=0,1, ,n,

i i to this weight
form an orthogonal basis for the class yn with respect to g

i =x1 licit expression. Let
function and region. For a = *3 we have an exp P

+ (@, 7) = ei(m«r+n‘r) + ei((m+n)o-—n‘r) +

m, n

(3.14) e

i i(-nog-mT
+ e1(-(m+n)o-+m'r) + el( o ) +

ei(no- -(m+n)T) . ei( -me +(m+n)T)

and
- i(-o 4+ T)
(3.15) z=e16+e1T e(
Then

_% - +
(3.16) 7Pm,n(z,z) =c- em, n(cjr,T)
and

EY - - -

(3.17) 7P;l, pB2 =C ey s T)/el,l(u, )

: s se
in Figure 2 we give pictures of the orthogonality regions for the e
seven classes.

At this stage it is useful to make a remark about the notation chos

in this paper. The author believes that the theory of special orthogonal

polynomials in several variables is not yet developed far enough in orde

to make a final decision about the notation. The notation introduced

above is therefore only intended for the present paper. We shall write

if the Coefficient of the highest term of the ortho

pn " instead of Pn X

: : i i P will b

onal polynomial equals 1. The notation Rn, Kk instead of n, k

used if the orthogonal polynomial equals 1 at a vertex of the orthogona
ed if nc

ity region. The left under index denoting the class will be delet

confusion is possible.
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In the classes I and VII the polynomials have the form c. zm 2" +

+ a polynomial of degree less than m + n . This is an important differ-
ence with the polynomials of the other classes, which are obtained by
orthogonalizing the sequence 1, x; Y, xz, Xy, ... . The polynomials of the
classes I-V have a simple explicit expression in terms of Jacobi polynomi-
als. However, in the classes VI and VII such elementary expressions only
exist for certain special values of the parameters. It can therefore be ex-
pected that the study of these last two classes is much more difficult than
the study of the other classes. On the other hand, the theory of the
classes I-IV is by no means a trivial corollary of the theory of Jacobi
polynomials. It is helpful to consider the classes VI and VII as more dif-

ficult analogues of thc-;“classes IV and 1, respectively.

3.4. Some references and applications

Orthogonal polynomials on the disk of class I were introduced by
Zernike and Brinkman [74]. Zernike [73] used the case a = 0 for the
study of diffraction problems. For further applications in optics see the
references in Myrick [62], cf. also Marr [58]. If a=q-2, g=2,3,4,

., then these polynomials are the spherical functions on the sphere
SZq-l
$apiro [70], [64], Tkeda and Kayama [30], [31], Koornwinder [43], Boyd
[9], Folland [19], [20], Dunkl [13], and Annabi [2].. From this group theo-

retic interpretation there follows an addition formula for the polynomials

considered as homogeneous space U(q)/U(g-1), cf. Vilenkin and

of class I (cf. Sapiro [64]), which implies the addition formulas for
Jacobi polynomials and for Laguerre polynomials (cf. Koornwinder [44]
and [50], respectively). A related result is a positive convolution struc-
ture for polynomials of class I, cf. Annabi and Trimeche [3], Trimeche
[69] and Kanjin [37].

Orthogonal polynomials on the disk of class II were introduced by
Didon [12] in the case a = 0 and by Koschmieder [51] in the general case.
A generating function is given by Koschmieder [52]. Using this class of
polynomials Koornwinder {49] obtained a new proof of the addition formu-~

la for Gegenbauer polynomials. Hermite and Didon introduced a well-
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known biorthogonal system of polynomials on the unit disk with respect
to the weight function (1 sz -yz)a, cf. Erdélyi [17, sections 12.5 and
12. 6].

Orthogonal polynomials of class III are implicitly contained in
Agahanov [1]. The addition formula for Jacobi polynomials can be con-
sidered as an orthogonal expansion in terms of the polynomials of class
111, cf. Koornwinder [48, §3].

Orthogonal polynomials of class IV on a triangular region were in-
troduced by Proriol [63].
Schrddinger equation for the Helium atom, cf. Munschy and Pluvinage
[61], [60].

McGregor [39] in view of applications to genetics.

They were applied to the problem of solving the

The same class was independently obtained by Karlin and
Appell's polynomials
on the triangle (c¢f. Erdélyi [17, §l2.4]) provide a nonorthogonal basis for
the class g{n with respect to the weight function and region considered
in class IV. In the case of order (a,p, 0) Appell extended this basis to

a biorthogonal system. Engelis [15] and independently Fackerell and
Littler {18] obtained a biorthogonal system in the case of general order.

The polynomials of class VI were introduced by Koornwinder [45].
The motivation was that for special values of the parameters and in terms
of suitable coordinates these polynomjals are eigenfunctiqns of the
Laplace-Beltrami operator on certain compact symmetric spaces of rank 2,
cf. section 5. A further analysis was given by Sprinkhuizen [66], see
also section 4.3. For y=0 and n =k these are the generalized
Jacobi polynomials of 2 X2 matrix argument introduced by Herz [29],
cf. section 4.4. TFor the interpretation of polynomials of class VI as
spherical functions the reader is referred to section 5.

The author [46] also introduced the polynomials of class VII, moti-
vated in a similar way as in the case of class VI. These polynomials
were independently considered by Eier and Lidl [14], [54] for n=0. The
sgmnllletric (or antisymmetric) polynomials generated by the monomial

1

Xl 2 _X3

nomials in.three variables by using the polynomials of class VII of order

can be expressed in terms of the elementary symmetric poly-
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+1 . Zonal polynomials of 3 X3 matrix argument (cf. James [35]) can
be expressed in terms of polynomials of class VII of order 0. For all
these results we refer to section 4.5. Section 5 contains references

about the interpretation by means of spherical functions.

3.5. Two-variable analogues of the Chebyshev polynomials

The best way to bring more systematics in the examples of section
3.3 is to look at the Chebyshev cases, i.e. when the parameters are

equalto +1 or -1.

‘For these cases there exist interprétations analo-
gous to the interpretation of Chebyshev polynomials given in section 2. 2.
It turns out that the classes I-IV are related to symmetries on the sphere
S2 and the classes V-VII to symmetries on certain two-dimensional tori.
The results below are just observations which can be verified for our
examples. However, these observations sugéest the existence of a
general theory.

On the sphere S2 we use spherical coordinates 6 (0 < 6 <7) and
¢ (mod 27) such that the mapping (8, ¢) -~ (sin8cos¢, sin@sind, cos 8)
gives the natural embedding of S2 as a subspace of ]R3, cf. Fig. 3.

A two-dimensional torus is obtained by choosing two linearly in-
dependent vectors e1 and e, in ]R2 and by identifying points in ]RZ

2

whose difference is ke1 + lez,

. . , 1
ically equivalent with S X Sl, but they are different as Riemannian

k, £ integers. All such tori are topolog-
spaces. We shall consider two partic_:ular tori for which the group of all
isometries is sufficiently rich for our purposes. The first one is the

2
square torus denoted by T, where e, = (2w, 0), e, = (0, 2nv) and each

. 1
sy s 2

point in IR~ has one and only one representative in the square region

{(s, t)| -m<s<m, -w<t ﬁ"}’ cf. Figure 4. The other one is the

hexagonal torus denc;ted by H, where e = (m, ENEY ), e, = (my, -wN3)

and each point in R~ has one and only one representative in the hexa-

gonal region
{s,t)} -m<s<m -wm<is+iN3t<m -m<is-iN3t<m},

cf. Figure 5.
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Corresponding with each of the seven classes introduced in sec-
tion 3. 3 we shall choose a Riemannian manifold M (one of the spaces
SZ, TZ or H), agroup G of isometries acting transitivelyon M (not
necessarily the group of all isorhetries), a polygonal region R in M
which is bounded by geodesics such that the reflections in these'geodes-
ics generate a discrete subgroup I of G having R as a fundamental
region, and finally a Cw-mapping F from M onto the orthogonality re-
gion Q of the polynomials such that F(Tg) = F(§) forall Te I" and F
restricted to R is a diffeomorphism. By using the mapping F any orthog-
onal system of polynomials belonging to one of the seven classes can be
considered as an orthogonal system of functions on R with respect to a
certain measure p(£) d§, where d§ is the measure on M induced by
the Riemannian metric (d¢ = sin9 d6d¢ on Sz, d¢ =ds dt on T2
H).

The choices of M, G, R and F corresponding to the different

and

classes, and the resulting weight function p are listed in Table 1. The
Table contains references to the Figures 3, 4 and 5.

After having made these choices the following results can be ob-

‘tained by inspection.

(a) The manifold M as a homogeneous space of the group G
satisfies the equivalent statements of Theorem 2.1. Hence the harmonics
on M with respect to G are well-defined by Definition 2. 2.

(b) The two coordinates of the mapping F are harmonics which are
invariant with respect to I".

(c) Let ¢ be a one-dimensional representation of the group I .
Then o(T)= £1 foreach Te I". Call a function f on M of type ¢
if £(TE) =o(T) £(£) foreach Te .

(d) If an orthogonal system‘of polynomials as given in Table 1 has
Parametefs +1 then the corresponding weight function p on R is the
square of a harmonic on M of certain type ¢ which is strictly positive
on R. If all parameters are equal to -} then p is the constant func-

tion on R and if all ‘parameters are equal to +% then p(§) is the square
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of a harmonic which equals the Jacobian 8F(£)/d¢ and which changes
sign with respect to any reflection in a boundary of R.

(e) There is a one-to-one correspondence between the one-dimen-
sional representations ¢ of T' and the Chebyshev cases of the class
of orthogonal polynomials under consideration. In factg, for fixed values
i% of the parameters, the polynomials considered as functions of £ can
be written as a quotient of two harmonics of type ¢, where the denomi-

nator equals (p(g))2 ‘

Let us illustrate these rather abstract statements by means of a few
examples. The harmonics on S = O(3)/0(2) are the well-known spher-
ical harmonics of degree n = 0,1,2,... . If the class of spherical har-
monics of degree n is decomposed into irreducible subclasses with re-

spect so Of{2) then we obtain the functions

(3.18) (k k)(cos o) (sin 8)° (Acoské + Bsinkd) ,
=0,1,2,...,n, where A and B are constants. A further decomposi-
tion into irreducible subclasses with respect to § O(2) gives the func-

tions

P‘k %) ko tike g,

(3.19) (cos 8)(sinB) e

Examples of Chebyshev cases for the classes 1-IV are, for instance:

1 i .
(3.20) [PTE (sino e singe?) -
d ]
=c- P(ZTl'n’ m'n)(cos ) (sin g " ei(m'n)¢ ,
m>n ,
-1_ --
(3.21) 1P2 plsinoe 1 sinee i,
P(Zﬁ;llq’ q}'n)(cos 0)(sin e)m-n ei(mfn)‘i}
cos © ’
m>n ,
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1
(3.22) : anz, k(cos 0, sin@ cos¢) =

(k+1, k+1
Pk )cos 6)(sin )X sin(k+1)é
c .
sin @ sin¢ ’
11 2
(3.23) 3P;:; (sin” @, sin@ cos¢) =
(k+1, k+1 K+
PZn-2k+1) (cos 8) (stn )" sin(k+1)é
cos 6 sin @ sin¢ ’
111
(3.24) 4Pn,21’< 2% (sin? 6, sin°0 cos ) =

(2k+1, 2k+l
-2k ) (cos 8) (sin 9)2k+1 cos(2k+1)d

sin 6 cos ¢

The harmonics on the square torus T2 with respect to the group

generated‘by 0O(2) xO(2) and the reflection (s,t)— (t,s) are the linear

combinations of §cOSnS|  [coskt cosks| [ cosnt
sinns sin kt and sinks sinnt{’ where

(n,k), n>k >0, isfixed. We have, for instance

)

[V

’ P W N §
(3.25) 6Pn,l; 22 (coss + cost, coss cost) =

cos(n+l)s coskt - cosks cos(n+l)t
cost - coss ’

111 :
(3. 26) p2 "2 2
6 nk (cos2s + cos2t, cos2s cos2t) =

sin(2n+3)s sin(2k+1)t - sin(2k+l)s sin{2n+3)t
sin 3s sint - sins sin 3t

Finally let us consider the hexagonal torus H as a homogeneous

space of the group generated by SO(2) X SO(2) and the reflections in
OA and OB . In terms of new coordinates
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c=s+tN3, T=5s -tA3

the harmonics on H are the linear combinations of

ei(mo-+n-r)’ ei((m+n)o- - n'r‘), ei(-(m+n)<r+m-r) ,

ei(-no--mT)’ ei(na--(m+n)-r) and ei(-ma-+(m+n)-r) ’
where m and n are integers > 0. Now the formulas (3.14), (3.15),
(3.16) and (3.17) give an interpretation of the Chebyshev cases of class
VII.

Observe that the groups I' are abelian in the cases 1-V but non-
abelian in the cases VI and VII. If the classes of harmonics on M are
decomposed into irreducible subclasses with respect to nonabelian T
then some of these subclasses do not correspond with one-dimensional
representations ¢ of I' . The harmonics corresponding with higher di-
mensional irreducible representations of I do not fit in our picture. It
is not clear how to express such harmonics as orthogonal polynomials.

In the cases V-VII each one-dimensional representation « of T
occurs at most once in each class of harmonics on M . This is no
longer true for the cases I-IV. There we first have to split up the spher-
ical harmonics with respect to O(2) or SO(2) in order to get uniqueness
with respect to the one-dimensional representations ¢ of T" .

The reader may observe some missing cases in Tablel. If M is
the hexagonal torus H, if G 1is the group of all isometries of H (i.e.
the reflection in OC included) and if R is the region OCA (cf. Figure
5), then probably the Chebyshev cases of another interesting class of
orthogonal polynomials can be obtained. On the sphere S2 we may take
for the region R a spherical triangle with angles {n/2, n/3, n/3} or
{n/2, n/3, n/4} or {n/2,v/3, w/5} . It is not clear at all whether the
approach of this subsection applied to these regions will give new classes

of orthogonal polynomials.

461




TOM KOORNWINDER

3.6. Partial differential operators for which the orthogonal polynomials

are eigenfunctions

It follows easily from the results of section 3.5 that for the
Chebyshev cases of the classes I-VII the polynomials are eigenfunctions
of certain partial differential operators. In this subsection it will be dis-
cussed how these differential operators can be generalized for other
values of the parameters.

The harmonics on the sphere SZ are eigenfunctions of the Laplace-
Beltrami operator

-2
(3.27) 8ee+cot9 ae+(sin9) 9

¢

The harmonics on SZ_ belonging to irreducible subclasses with respect
to SO(2) are also eigenfunctions of 8¢ (cf. (3.19)), and the harmonics
belonging to irreducible subclasses with respect to O(2) are also eigen-
functions of 3¢¢ (cf. (3.18)).

The harmonics on the tori T and H are eigenfunctions of the

Laplace operator B + 9 In case V the harmonics on T2 with re-

et
spect to the symmetry group O(Z) X O(2) are also eigenfunctions of 9 ss
In’ case VI the harmonics on T with respect to the group of all isometries

of T are also eigenfunctions of 8 In case VII the harmonics on

sstt *
H with respect to the group generated by SO(2) X SO(2) and the reflec-

tions in OA and OB are also eigenfunctions of the operator

(3.28) B, (N3 3+ 93 8, + )

It follows that in each case of Table 1 the harmonics are eigenfunc-
tions of two algebraically independent partial differential operators, one
of which is the Laplace-Beltrami operator on M .

Fix one of the classes I-VII and let D be a partial differential
operator for which the harmonics are eigenfunctions. Fix the parameters

of the orthogonal system of polynomials equal to :f:% . By using result
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(e) of section 3.5 it follows that each polynomial of the system con-

sidered as a function of £ is an eigenfunction of the operator

1 1
(P(E)) 2 D = (p(EN?

1 :
Since (p(£))® is a harmonic (cf. result (d) in section 3. 5), the polynomi-
als of the system are also eigenfunctions of the operator

1
2

1 s 1
(3.29) © (p(E) T Z D e (p(E)) ~ (p(E)) 2 (D(p(EN?) ,
which is a partial differential operator without zero order part.
Let us next consider an orthogonal system of polynomials of arbi-
trary order belonging to one of the classes I-VII and let p be the corre-

sponding weight function on the region R as given in Table 1. Then, if

‘the partial differential operator D has order ! or 2, the polynomials of

the system considered as functions of £ are still eigenfunctions of the
operator (3.29). This can be proved by first observing that the operator
(3.29) is selfadjoint on. the region R with respect to the measure p(€)dE .
Next, for each individual class one has to rewrite the operator (3. 29) in
terms of coordinates x,y (or z,z) and one has to verify that this op-

n-k_k . n-k_k
erator maps Xx y to a polynomial with "highest" term X\ kx y
’

(or Z7 2" to a polynomial with highest term )‘m, n 2"z n) Then )‘n, K
is the eigenvalue of the eigenfunction Pn, K For the classes VI and VII
(with D = ass + att) the detailed proof has been given in Koornwinder
[45, §4] and [46, §5], respectively. Note that the operator (3.29) is
the unique analytic continuation of the Chebyshev cases such that it de-
pends linearly on the parameters.

In the cases VI and VII there are partial differential operators of
order 4 and 3, respectively, for which the harmonics are eigenfunctions.

In these cases it is much more difficult to find the generalization of (3.29)
Pa’ B, v

,k
(cos2s + cos2t, cos2s cos2t) is an eigenfunction of the fourth order

for arbitrary values of the parameters. It can be proved that

operator
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(3. 30) p'l(a °p, 0 +9 op 8 ).
s 2t t 2 s
° 1o op 8+ 3
Py Py (05 2P, 0+ 8, 00,0,

where pl(s,t) = (sin s sin t)zaﬂ(cos s Cos t)ZpH, pZ(S, t) = (sin(s+t) -

. sin(S-t))ZY+1 and p = PPy cf. Koornwinder [45, (5.15)]. It can also
be proved that 7P‘;, n (F(s,t)) is an eigenfunction of the third order op-
erator

-1
3. 1
(3.3) XXX+ (a+d) o7 [(Kp)X, X, + (K,PIX X + (X p)X K ] +

2 -1
tlatd)” e XX, 00Xy + (XX, 00X + (XX 0)K,]

where FP(s,t) and p(s,t) are given in Table 1 and

cf. Koornwinder [46, §6].

Summarizing our results we have for each of the classes I-VII and
for each choice of the parameters two partial differential operators (say
D1 and DZ) for which the polynomials of the system are eigenfunctions.
The operator D1 has order 2 in all cases and the operator D2 has
order 1,2,2,2,2,4 or 3, respectively. It can be proved that the oper-
ators D1 and D2 commute, that they are algebraically independent and
that they generate the algebra of all differential operators which have the
polynomials of the system as eigenfunctions (cf. Koornwinder [45, §6}
and [46, §7] for the classes VI and VII, respectively). It can also be
proved that two distinct polynomials belonging to the same orthogonal
system cannot have the same pair of eigenvalues with respect to D1 and
D2 .
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3.7. General methods of constructing orthogonal polynomials in two

variables from orthogonal polynomials in one variable

There are known some rather general classes of orthogonal poly-
nomials in two variables which can be expressed in terms of orthogonal
polynomials in one variable in some elementary way. Many of the speci-
al classes considered in section 3. 3 are included in these general
classes. We shall discuss three general classes. For each of these
classes certain coefficients in the expansions (3.2), (3.3) and (3.4) will

vanish.

3.7.1. Rotation invariant weight functions

Let w(x) be a weight function on the interval (0,1) . For each in-
k
teger k >0 consider polynomials pn(x) of degree n which are orthog-
onal with respect to the weight function xk w(x) on the interval (0,1).

Define for integers m,n >0 and for z =x + iy, z=x-1y, Xye R,

p:_n(zi)zm-n if m>n ,
(3. 32) P n(®2) = o
P (zzyz ~~ if m<n
m
Then
(3.33) szz pm, l,l(x+1y, x-1y) pk’l(x+1y, x-iy) -
X +y <1

- w(x® +y%)dxdy = 0 if (m,n) # (k,£) ,
and pm’ 1_1(z, z) -c¢c: 22" isa polynomial of degree less than m +n .
Hence, the polynomials pn-k, k(z, z), k=0,1,...,n, form an orthogonal
basis of the class vn with respect to the rotation invariant weight func-
tion w(xZ + yz) on the unit disk. This method of constructing orthogonal
polynomials in two variables is due to Maldonado [57]. Clearly, the

polynomials of class I (cf. section 3. 3) have the form (3. 32). Since
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3.34 z) = z
(3.34) P, n(®2) =Py 1(22),

(3. 35) e rl(e”’z, ewz ) = ei(m-n)d) P

’ (2 2)

’

the orthogonal basis {p n} of ¥ is essentially

n, 0’ pn-l,l’ L
invariant with respect to orthogonal transformations of the (x,y)-plane.

The power series expansion of p (z, E) only contains terms

Lm-d 5n-
c- J j, j=0,1, , min(m, n) . The recurrence relations express
i m n(z z) as a linear combination of p m+l, n and pm,n-l’ and
zZp z, z 1
m n( ) as a linear combination of P  n+l and pm-l,n .

3.7.2. Weight functions of the form w, (%) wz((p(x))'ly)

Let wl(x) be a weight function on the interval (a,b) . Let p(x)
be a positive function on (a,b) which is either a polynomial of degree

r r=0,1,2,...) orthe square root of a polynomial of degree 2r

1 3
(r = 3 1, Z - .} . For each integer k >0 let the polynomials pi(x) ’
n=0,1,2,..., be orthogonal with respect to the weight function

2k+l
(p(x)) wl(x) on (a,b). Let w (y) be a weight function on the in-

terval (c,d). If p(x) isnota polynom1a1 then suppose that ¢ = -d
and that wz(y) is an even function on (-d,dy. Let the polynomials

qn(y) be orthogonal with respect to-the weight function wz(y) on (c,d).

Define

(3. 36) P (% V) = p K (p(x))* 9 (=5 (x) n>k>0

Then P k(x, y) is a linear combination of monomials xmd yl such that
t

£ <k and m+ (r-1)4 <n + (r-1)k, and for (n,k) # (m,£) we have

b dp(x)

(3. 37) f

k(x Y) P (x,Y)
X=28 y=cp(x)

n’

< W (0) w, () 'y) dxdy = 0
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If p(x) =1 then (3. 36) reduces to (3..5). If‘ r=0, 1 orl then the poly-
nomial pn’ k(x, y) has degre; n and it can be obtained by orthogonaliz-
ing the sequence 1}, %, v, X , Xy, ..., butfor r>1 this is no longer
true. '

In the special cases that p(x) = (l-xz)%, (a,b) = (-1, 1), (c,d) =
(-1,1), r=1, or p(x)= x%, (a,b) = (0,1), (c,d) = (-1L,1), r=4 or
p(x) = x, (ab)=(0,1), (c,d)=(0,1), r=1, this method of constructing
orthogonal polynomials in two variables has been described by Agahanov
[1]. Further specialization of the weight functions leads to the classes
II, III and IV, respectively (cf. section 3. 3).

Let us make some further remarks about the case r =1. Introduce
a partial ordering < such that (m,2) < (n,k) ifm<n and 2 <k. For
this partial ordering and for pn’k(x, y) defined by (3";36) with r =1, the
power series expansion (3.6) is valid, cf. Figure 6. By using (for in-
stance) Lemma 3.1 it can be proved that x pn’ k(x, y) is a linear combin-
ation of the three polynomials pn-l, Kk’ pn, X’ pn+1, K (cf. Figure 7) and
that ypn, k(x, y) is a linear combination of the nine polynomials pm, P

such that (n-1,k-1) < (m,£) < (n+l, k+l) (cf. Figure 8).

T [ x X X
. ,(n:k) x ® x x ® x
n X X X
=
Figure 6 Figure 7 Figure 8

3.7.3. Symmetric and antisymmetric products

Let the polynomials pn(x) be orthogonal with respect to the weight

function w(x) on some interval. Then both the system of symmetric poly-

nomials
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(3.38) P, (X} PL(¥) + P, (x) P, (¥), n>k>0,

and the system of antisymmetric polynomials

(3. 39) P P =P e (y), n>k>0,

n+l
are orthogonal systems with respect to the weight function w(x) w(y) ,
v < x . The system (3. 39) is a special case of the systems considered
by Karlin and McGregor [38], [40].

Let u=x+y, v =xy and define

1
(3.40) Pnfk (W, v) =P (X) P (¥) + P (X} P (¥), n>2k>0,
(x)p, (V) -p (X)D_,, (V)
(3. 41) PP (4 v) = Tnn ™ B k ol a>k>o,
n k X-y -~z

(3.42) ' Wiy, v) = w(x) w(y), x>y.

Note that PE’ n (x+v, xy) denotes the Christoffel -Darboux kernel (up to
a constant factor) for the orthogonal polynomials pk(x), k=0,1,...,n.

Since any symmetric polynomial in x and’ vy is a polynomial in
the elementary symmetrlc polynom1a1s u=x+vy, v=xy, it follows that
the systems {P B (u v)} and {P2 k(u v)} are orthogonal systems with
respect to the we1ght function (u2 - 4v) -2 Wi(u, v) and (u -4v)2 W(u, v},
respectively.

Note that Pr-l%k(x+y, xy) is a linear combination of terms (xm yz +

’ 1
i ym), m>¢ >0, m<n, £<k, andthat P?  (x+y; xy) is a linear

n, k
combination of terms (x- y)'1 m+l l - xl ym+1), m>¢ >0, m<n ,

2 <k . Letus define the polynomials Z k(u v), n>k>0, by

1 n
-2 2 Y TX Y
(3.43) Zn, k(x+y, xy) = 173 ,
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ntl kX k n+l
-X Y

1
2
(3.44) O
1 tn+l t-n-l 1
since 1¢t" +t™") = T (Jt+t7)) and ————=U (t+t7), of.
-t
(2.6) and (2.7), it follows that t
-1 2 1(n+k) -1
(3.45) Zn,zk(u’ v) = E_-é-—k ve Tn-k(%v 2y)
’
and
1 1(n+k -1
(3.46) Zl'zl, k(u, v) = v"‘( ) k(1 v 2uy)

i 1
Hence, Z-Zk(u, v) and Zrzl k(u, v) are both linear combinations of mon-
n 2

omlals ufi-k-2t k+1, i=0,1,...,[3(n-k)], cf. Figure 9, and

P -3 (u v) and P2 k(u v) have expansions of the form

1

+1 .
(3.47) k(u v) —120 mzz m,l n, k Zm zl(u v) ,

1
cf. Figure 10. It follows that both P~ 2 (u v) and P (u, v) are linear

n’
combinations of monomials u™ m-4 l, m<n, m+£< n+k, cf. Figure 1l.
L
T 4 T 2 T
X
X
% (n,k) (n,k)
® (n,k)
n m & m
= — -
Figure 9 Figure 10 Figure 11

1 1
The above results imply that the polynomials P;12k(u’ v) and Prz1 k(u, v)
’ ?

can be obtained by orthogonalizing the sequence 1, u, v,u, uv, ...
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For special choices of the weight function w(x) we obtain the
polynomials of class VI of order (e, 8,*3), cf. section 3. 3.
Regarding the recurrence relations it can easily be proved that

u Pn’ k(u, v) is a linear combination of the five polynomials Pn+l,k ,

Pn, K41’ Pn, K’ Pn, k-1? Pn-l, K’ cf. Figure 12, and that an, k(u, v) is a

linear combination of the nine polynomials Pm such n-1<m<n+l,

4
i
k-1<¢ <k+l, cf. Figure 13.

X X X

x ® x X ® X
bS bd x X

Figure 12 Figure 13

4. Differential recurrence relations and other analytic properties

In this section we shall discuss some analytic properties of the
classes I, IV, VI and VII. An important tool for the analysis is certain
differential recurrence relations analogous to (2.1) and (2. 2), which have
been obtained for most of the classes I-VII. Instead of one pair of ordin-
ary differential recurrence relations we now have two pairs of partial dif-
ferential recurrence relations such that all values of (n,k) (or of (m,n)
in the case of Class I) are connected with each other by the recurrence
relations. The partial differential operators may have order more than
one and they may depend on the parameters.

By using the differential recurrence relations we obtain properties
analogous to the properties characterizing classical orthogonal poly-
nomials in one variable (cf. section 2.1):

(a) There exist partial differential operators which map the orthog-
onal system onto another orthogonal system of polynomials in two vari-
ables.

(b) Iteration of differential recurrence relations gives a Rodrigues
type formula.

(c) Composition of two differential operators belonging to the same

pair of differential recurrence relations leads to partial differential equa-
tions as considered in section 3. 6.
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On applying the differential recurrence relations which raise the
degree, it is possible to prove certain properties of the orthogonal poly-
nomials by complete induction with respect to the degree, cf. Sprinkhuizen
[66]. ’

In subsections 4.1, 4.2 and 4. 3 we shall give the differential re-
currence relations for the classes I, IV and VI, respectively. The re-
sults for class III are quite analogous to those of class IV. For class II
probably no satisfactory results exist. In the case of class VII the re-
search has not yet been done. Finally, in subsections 4.4 and 4.5 we
shall discuss the relation of the polynomials of class VI and VII with the

polynomials discussed by James [35].

4.1. Polynomials on the disk

For the polynomials P; n(z, z) of class I there is a pair of first
t]

order differential recurrence relations

o = _ a4l -

4.1) 5, P, AmB e P (z2)
- - -atl _atl -

(4.2) (1-2z2)"% 8- [(1-z2) Pm_l’ (2 2)] =

a -
=c. P zZ. 2
n(® 3

1 :
and a similar pair connecting P; n which can be obtained

, n-1’
from {4.1) and (4. 2) by complex conjugation. Iteration of (4.2) and its

and Pa+
m’

complex conjugate gives the Rodrigues type formula

n a+m+n]

(4.3) P;"n’n(z, Z)=c- (1-22)77 (@) (ai)"‘ [(1-22)

It is of interest to compare (4. 3) with the Rodrigues type formula

2. at+mtn

- 1 2
ey = o - 1 yh) " )" [0y ]

m, n
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(cf. Erdélyi [17, 12.6(11)]) for polynomials U221
’ ] Y m, n (%,y) belonging to a These formulas can be proved by using the second order differential re-

biorthogonal system of polynomials on the unit disk with respect to the

2 2.a currence relations for Jacobi polynomials which are derived in Koornwinder
weight function (1-x"-y") .

[48, (2.4) and (2. 5)].

4.2. Polynomials on the triangle Iteration of (4. 8) gives the Rodrigues type formula
Consider the polynomials Pg’ g’ Y(X, y) of class IV and let
: 4
(4.9) PP Yoo w7 E® Y R )
w (x = o By n, k a, B, Y - Y
o,y Y) = =X (x-v)"y 0<y<x<l,
_ " [Woion.2x, prk, vk )
denote the weight function. There is a pair of first order differential re-
currence relations given by Tt is of interest to compare (4. 9) with the Rodrigues type formula for
(4. 4) @, B,y _ a, B+l y+l Appell's polynomials on the triangle, cf. Erdelyi [17, 12.4(4)] .
8 P =¢c. P
Yy nk n-1, k-1 ’
4.3. Polynomials on.a region bounded by two straight lines and a
“ parabola
(4.5) (w )-1 5 (w a, B+1, y+1) —c. p¥ B,y Consider polynomials Pi’ ﬁ’ Y(u,v) of class VI. Let
2,8, v v @, B+l y+l n-1,k-1 n, k ,
w (W, v) = (@-utv)® (Lurn)® @ - 4v)Y
a, B,y

Define the second order partial differential operator Eﬁ’ Y by

denote the weight function. The differential recurrence relations involve

4.6) EPYoxo 4290 4y +(@rv+2)0 + 5
- XX Xy )24 B+y ) X (v+1) y the two second order partial differential operators

*
Let D denote the formal adjoint of a partial differential operator D . ¢ (4.10) DY - auu +u auv tv aw Fly+ ;— ) av ’
A calculation shows that (Eﬁ’ Y)* = E-B’ v, Now we have the pair of ‘
second order differential recurrence relations (4.1) EP 2 ud  +2(vH) 8 +ud  + (a+p+2) D +(B-)d
- uu uv vv u v
4.7) P Y p® By | o p2t2,8, Y A calculation shows that (DY) =D~ Y and (E™ ﬁf -0 P,
- nk Lk’ - N N .
’ s The first pair of partial differential recurrence relations is given by
-1 -8, - +2
(4. 8) (w ) TEP Yw p¥te By, 1, B+l
a - +2 1,k )7 i Ypu By _ o poth Bty
s By Y at2, B,y n-l, (4.12) D- Pn,k ¢ Pn-l, k-1 ’
=c. p%® ]F:,Y
n A1 -
’ (4.13) (w DY SLELYy oo B By

2,8,y D- Vot ptl,y n-1 k-1 nk
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cf. Koornwinder [45, §5]. If y = *1 then these formulas immediately
follow from (2.1), (2.2), (3.12) and (3.13).

The second pair of differential recurrence relations is given by

2,8 o, B,y _ ., @ B, Yl
@14 E Pk T Bl o
-1 -a, -p a, B, Y+l — a, B, ¥
(4.15) (wa, 8, Y) B_ (wa, 8, v+l Pn-l, K y=c - Pn, K ,

cf. Sprinkhuizen [66, §4]. If y = -1 then these formulas are corollaries
of (2. 3), (3.12) and (3.13).

In the remainder of this subsection we summarize some interesting
consequences of (4.12), (4.13), (4.14) and (4.15), which were obtained
by Sprinkhuizen [66].

Iteration of (4.13) and (4.15) gives the Rodrigues type formula
-a-k, -B-k.n-k

a, B,y _ . -1 =Y,k
(4.16) Pn,k =c (wa’ B,Y) (D_N"(E_ )

" ok, gk, yan-k)

Let (m,f) < (n,k) if m<n and m+{ <n+k. This defines a
partial ordering.

Theorem 4.1. Pﬁ’ i’ Y(u, v) is a linear combination of monomials um'l vl
’

such that (m,£) < (n,k) (cf. Figure 11).
For y = +% this result was already obtained in section 3.7.3. In

the case of general y the theorem is evident if n = k. Complete in-

duction with respect to n - k and use of (4.15) gives the general theorem.

Denote the second order operator (3.29) and the fourth order oper-
ator (3. 30), expressed in terms of u and v, by DT’ By and D;’ BsY
respectively (see Koornwinder [45] for the explicit expressions). Then

75’

the polynomials P Y(u, v) are eigenfunctions of both differential op-

erators with elgenvalues

474

CLASSICAL ORTHOGONAL POLYNOMIALS

(4.17) g,B, = -n(n+a+p+2y+2) - kik+a+p+l)
£
and
@ B,y 1 3
(4.18) b | = k(ktatpilinty+tF)ntatpryt ),
?

respectively. If (n,k)# (m,2) then () ’]E’ y pz’ By ¥ )# ()\a’ B,y ,p.a’ B,y

However, if we only consider ¥ By then degeneracies may occur. Por

3/2, -1/2,0 _ 3/2 -1/2,0

instance, X\ But if (m,£)# (n,k) and (m,£) <

2,2 3 0
%85 ¥, % B Y @ B, Y tonic function of
(n, k) then xm’l > )\n, k0 i.e., )‘n, X is a monotoni

(n, k) with respect to the partial ordering. This result together with

Theorem 4.1 implies:

Theorem 4.2. If a function f(u,v) is an eigenfunction of D‘f’ B Y and if

-2 4
f(u, v) = , € Wty
(m,2) < (n, k) 7
(v 4
for certain coefficients cm, 2 with cn, K # 0, then f(u,v)=c- Pn, k(u, v).
By applying Theorem 4.1 there follow quadratic transformation form-
ulas
@, &y Y Y;‘%,az 2 2 1
Lo Pn+k n_k(u,v) Pn k (2v, u -2v-1)
(4.19) ey = ,
b b H ’
Pn+k, n-k(z’ b Pn, k 2,1)
Y v P:’i’ oy, uZ-2v-1)
(4.20) LR = 2

= 1
Qay Oy Y ZPY:}’,“ 2.1
Pn+k+1, n-k(z’ 2 n, k @1

Application of Theorem 4.1 and Lemma 3.1 gives the recurrence re-

lations

a
a(m, £;n,k) P E’ Y(u,v)

(4.21) u P E’ Y(u,v) =
1, (n-1, k)< (m, £)< (n+l, k) ’
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and

b(m, £;n, k)P ﬁ’ Y(u,v) .
(n-1, k-1)< (m,2)< (n+l, k+1) m, £

a4 By Y
.22 pr =
(.22) v Y,y
These recurrence relations involve nine terms (cf. Figure 14) and fifteen
terms (cf. Figure 15), respectively. However, a calculation shows that

four of the nine coefficients in (4. 21) vanish and that six of the fifteen

coefficients in (4.22) vanish, as is indicated in Figures 14 and 15. Hence,

the recurrence relations have the same structure as in the cases y=%1,

cf. Figures 12 and 13 in section 3.7. 3.

.4
o<
X P g
. X
X X X
X X
® X ® X
X P4
X X X
P.4
P P g
P
Pigure 14 Figure 15

4.4. Expansions in terms of James type zonal polynomials

It seems difficult to derive some explicit power series expansion
analogous to (2. 5) for the polynomials of class VI. However, some re-
sults can be obtained for expansions in terms of the so-called James
type zonal polynomials, which are explicitly known in the case of two
variables. In particular, the polynomials 6P:”f’ O(u, v) can be identi-
fied with certain hypergeometric functions of 2 X 2 matrix argument.
The results announced in this subsection will be published elsewhere in

more details.
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: -1
It is convenient to introduce new variables £ =1-1u, n = 3({l-u+v),

and to define

p% p,Y
6 n, (2-2€, 1-2¢ +4n)

Pai ﬁ’ Y(Z 1)
6 n,k !

(4.23) R YE, ) =

Then the polynomials R % [3, g, n) are polynomials with highest term

c - gn knk obtained by orthogonahzatlon of the sequence 1,§, n,g En,
z , g3, gz«q, ... with respect to the weight function = (1-g+n)‘3 (gz -
-4m)Y on the region {(,m)|n>0, 1-¢ +n>0, &% -4q>0}, of.

Figure 16. They are normalized such that Rﬁ’ ]E’ Y(0, 0) =
s

Tin

(2,1

(1,0)

Figure 16

It follows from Theorem 4.1 that Ra’ ]E’ Y( ¢,n) is a linear combina-

1 £ such that (m £2) < (n, k) . The recurrence

tion of monomials g
a
relations for ¢ Rg’ ]E’ Y( g, nm) and n Rn’f’ Y(g, n) have the structure of
» 3
Figures 12 and 13, respectively.

For y=%*1 we have

1
.29 ROP ey, xy) -
- )

(a, (@, B) (2, B) (o, B) =
%[Rnd ﬁ)(l-ZX) Rka (1-2y) + Rk (1-2x) Rn (1-2y)]

k n l[(-n)m(-k)l(n-F a+[3+1)m (k+a+6+l)z
2

141
2o s (oz+l)m(oz+l)‘¢ m1!g!

(-k)m(-n)l(k+a+ﬁ+1)m(n+a+[3+1)l:| ' me;z +x1 ym

(at]) (et m 12} N

+
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and
a,p, L
(4.25)  RDLE (xby, xy) =

()R P22 B P2y - R P12z R Plaay)

(n-k+1) (n+k+a+;3+2) (x-y)

k -n- -
- i (-n-1) ., (-k), (n+atp+2) o (ktartpl),
Eo ni (a+D) ) (at]) (m+D)T 2 1
] (-K) g (-0-1), (k+atpsl) | (ntatpt2),
(a+1)m+1 (at]), (mtl) ¥ 11
asl Xm~!—1yz . X;z ym+1
(-n+k-1)(n+k+ot+p+2) X -y

Hence, in view of (3.43) and (3.44), we have explicit expansions of

R ’B’ (ﬁ,'ﬂ) in terms of ZY (§,ﬂ)’ Y‘ *3

As a generalization of (3.45) and (3.46) let us define

2n-2k
(4.26)  2Y (&,m) = Z__(n-k)! 304k ply, v)

_1
- (2y+n-k+1)n_k n-k (3n *

£)

[Z:k)] (-ntk),, n-k-2i k+i
n

T e (.n+k-\(+§)11!tg ’

n>k>0

Note that the coefficient of g“'k nk equals 1 .

Then the coefficients in the expansion

(4.27) RO B Y o) = @By (&, n)
n, k (m, )< (n, k) m, £;n, k m! i

are uniquely determined. It is our purpose to find explicit expressions
for these coefficients. The expansion (4.27) is motivated by formulas

(4.24) and (4.25) and also by the following facts.
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Comparing formula (4.16) with a similar Rodrigues type formula in
o
Herz {29, (6.4')] we can express Rn’ i’ 0(x+y, xy) as a hypergeometric
t4
function of matrix argument;

B0

(4.28) (xty, xy) =

X 0

N|w

3
= ZF]. -n, n+a+§3+-2— H24 + i 0

Herz [29] defined hypergeometric functions of matrix argument by means
of generalized Laplace transforms and their inverses. However,

Constantine [11, (25)] obtained the series expansion

m=0 £=0

°om @y Py
c - ——
(4.29) PFy(esbiesX) = ) @, (it Ome ™

where (a) = (a) (a- i) and the functions C (X) are the so-called
zonal polynomials depending on the eigenvalues o’f the 2 X2 symmetric
matrix X . In fact, the theory was given for hypergeometric functions
depending on the eigenvalues of m Xm symmetric matrices. The zonal
polynomials were introduced by James [33]. The polynomial Cm’z(X) is
the spherical function on GL(2, R)/0O(2) belonging to the irreducible

representation {2m, 2¢} of GL(2,R) . James [34, (7.9)] pointed out

that
x 0 1
2{n+k X+
c. | ATCILR S G >
Moy 2(xy)?
It follows that
x 0 (n+k) !(-;—) k 0
n-
(4. 30) C 2 —_— k(x“'Y, XY)

nkily (n-k)!k!(-g-)n ’

Combination of (4.28), (4.29) and (4. 30) gives
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o, B, 0 _
(4.3 RP U, =
i i (-n)_(-n- )(n+a+;3+ ) p(mtetpl), g)m ,
220 m=2 (a+ ) (e4]), ( I 1 (m-)1

0
l(gy'rl) ’

which gives the coefficients in (4.27) if Yy=0 and n=k.
Let us now consider the general case of (4.27). The operator DY
(cf (4.10)), expressed in terms of the coordinates € and 7, actson

ﬁ, Y (€,n) and z (g, m) in a similar way. We have

(4.32)  DYR®™ ‘3”’ (&, ) =

1 3
k(k+ o+p+1)(n+ y+ = =
(k+ a+p+1)(n y+2)(n+a+5+y+2) R“’“yﬁ*‘l,Y
n-1, k-1 (€,m) ,

4(a+]) (a+y+§ )

4.33 Y g¥ ' LyzY
(4.33) Do 2y x(Eom) =T ktvt3) 24y (65 m)

If k =0 then (4.32) and (4. 33) have to be interpreted such that the
right hand sides become zero. By complete induction with respect to k
formulas (4. 32) and (4. 33) imply that the coefficients in (4.27) can only
be nonzero if ¢ <k and m £n, cf. Figure 10. Using this result and
Lemma 3.1 we can now immediately prove that the recurrence relation for
R ’[3’ Y(g, m) has the structure given by Figure 13.
It also follows from (4. 32), (4.33) and (4. 27) that

1 3
(4. 34) 0(, B,y k(k+a+p+1) (n+Y+E) (l’l+a+ﬁ+y ¥ _2_)
m £;:n, k-

(@+]) (aty + %) ’ (m+y+;—)

car+l, B+l y
m-l,2-1;n-1, k-1 "~
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s @ .
Hence, it is sufficient to calculate the coefficients cm’ i’;{ X if £=0.
b L4
These are also the coefficients in the power series of the boundary value

R ﬁ’ Y, 0):

(4. 35) “"3’ (6,0 =" BBy o m

m=0 m,0;n,k

Using the action of the differential operator Ea’ P (cf. (4.11)) on

z’ B Y(g, n) and ZY g, n) we can obtain a four-term recurrence rela-

o ﬁ a, B, Y
tion expressing cm’+1’ 03n, k as a linear combination of c i, k
atl, B+l, y a, B, Y+l X _ _ ,
. If either n=k or k =0 then this
°m-1,0:n-1, k-1 "% Cr1 0sn-l, k '

reduces to a three-term recurrence relation and then we are able to cal-

culate the coefficients. The results are:

1 3
(4.36) <% By (-n)_(-n-y-3), (n+adpty+3) (n+a+p+l) (Y+2 i

m,{;n,n 3 3 I Y
(a+y+2)m(a+1)£ (Y+2)m1. (m-£)!

1
(-n)m(n+a+[3+2 Y+ Z)m(y + E)m

(4. 37) Cfn’ﬁo’-l 0~ 3
y Mt = 1
(a+y+2)m (2y+1)m m!
Formula (4. 36) was first proved by Sprinkhuizen (unpublished). For y =10
formula (4. 36) is the Herz-Constantine-James result (4. 31). For y= :h%
formulas (4. 36) and (4. 37) imply (4.24) and (4.25) (n=k or k=0).

Finally formulas (4. 36) and (4. 37) give nice explicit boundary values:

+y+ 1
(4. 38) RSB Y, 0) = ROV Pz
n,n
1
-n, nta+p+ 2y+2, Y+E
a
(4. 39) o Ve 0 = F,

oz+y+%, 2y +1

4.5, Polynomials on the deltoid

Consider the polynomials P; e z) of class VII. They have

t
power series expansion
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(4. 40) P (z,z)=c z20z + ¢,  z°z
m,n "’
’ m, n k+2<m+n k, £

Because of the symmetries of the orthogonality region it follows that
ck,l =0 if k-2#m-n (mod3).

Let us denote the second order operator (3.29) and the third order
a
1
spectively (cf. Koornwinder [46] for the explicit expressions). Both

operator (3. 31), expressed in terms of z and z, by D, and Dg, re-

differential operators have the polynomials pZ (z, 2) as eigenfunctions.
m, n
The eigenvalues are ’

o4 4 2 2
(4. 41) )‘m n- --i(m +mn+n +3(a+;—)(m+n))
$
and
4.42 ¢z (m- 3 3
( ) p'm,n {m n)(2m+n+3a+2)(m+2n+3a+2) s

respectively. If (k,£) # (m, n) the 2 X @ a a
(k,£) # (m,n) then (\ owy ))# N0, ke ). The

two differential equations for P;ln’ n(z, z) give recurrence relations for
the coefficients in (4.40). From these recurrence relations it can be de-
rived that ck,l # 0 onlyif k + 2¢ <m+2n and 2k +¢ <2m+n, cf.
Figure 17.

k
—

Figure 17
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Theorem 4.3. Let P(z,z) be a linear combination of monomials 2z =z
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Observe that )\E 2 > )\‘:n n if (k,2)# (myn), k+22 <m+2n ,
b b

2k+4 <2m+n . This implies:

)4

such that 2k+2 <2m+n, k+2£<m+2n, k-£=m-n (mod 3) and
the coefficient of z™ 2% is nonzero. If P(z, z) is also an eigenfunc-
. o - o -
tion of D1 then P(z,z)=c - Pm,n(z’ z) .
Lidl [54, §3.c.pB] defines generalized Gegenbauer polynomials

Ci(x, y) by the generating function
4 1-xz + yz° 3'a—z°° c2(x,y) 25
(4.43) (l-xz +yz" - 2)" =), o C (xy

a

By using Theorem 4. 3 it can be proved that Ck(x, y) is a constant mul-
. a-1
tiple of 7Pk, 0 (%, v) .

Let us define

a

(4. 44) z € m L) =
Dp g Mg
1 2
(nl+n2+n3)/3 o 3 -3
=c-t N S N A
172272 73
n-n, n,-n,on,
where ny > n, > n, > 0 and the coefficient of § n L

equals 1. These functions are polynomials in £, n, { and they can be
considered as three-variable analogues of the polynomials defined by
1

(4.26). If a= -IE, 5 or 0 and if

£ = x1+x2+x3, n = XX, + X%, + X %, t = XXX,
are the elementary symmetric polynomials in xl, XZ’ x3, then the poly-
nomials defined by (4.44) have special interpretations.
It follows from (3.14), (3.15), {3.16) and (3.17) that
1 n1 n, n
(4.45) 22 (6;mL)=c- % x5 x x>,
3 1 2 3

nj,n,,n
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where the sum is taken over all permutations (il, 12, i3) of (1,2,3), and
that

1
2
(4. 46) Zn

n +2 n +2 n,+2
X : X ' bl4 : x2 x2 x2
1 2 3 2 3
= n_+1 n_+1 n_+1
x1 X, x3 x1 x2 x3
n3 n3 n3
x1 X, x3 1 1 1

The polynomials satisfying (4.45) and (4.46) in the special case that
n, =n, =0, have been studied by Eier and Lidl [14] and Lidl [54], re-
spectively.
. o
’I'he‘polynomlal Zn ,n.,n
constant factor as a symmetric pol¥(non]1<ial 1]? X

(€, n, &) can be characterized up to a
1 X2 X300 which is a
linear combination of monomials XX, X, such that kj + kp + kg =
n; n, n
- 1,2 3,
=n + >
n +mn, + n, 1 k3 2n, and the coefficient of X TX, "%, is

nonzero, and which is an eigenfunction of a certain second order differ-

<
kl_n

ential operator. By using this characterization and by using the results

in James [34], the case a = 0 of these polynomials can be identified

with the zonal polynomials of 3 X 3 matrix argument considered by James.
It seems probable that, analogous to the results of section 4. 5,

the three-variable analogues of the polynomials of class VI will have. nice

(£, m,0) .

expansions in terms of the polynomials Z
: ny, N, n3

5. Orthogonal polynomials in two variables as spherical functions

In this final section we briefly discuss the known cases in which
polynomials of the classes I-VII can be interpreted as spherical functions.
The importance of such a group theoretic interpretation should be clear

from section 2. 3.
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2 = .
The polynomials, IP:In n (z,2), q=2,3,4,..., arethe spherical
3
functions on the sphere qu'l considered as the homogeneous space
U(q)/U(q-l), cf. the references given in section 3.4. Arelated result
is the inequality

- o
(5.1) | P;’ NCRIES MNUDE lz| <1,

1

which holds for o > 0 . The author proved (unpublished) analogous in-

equalities
a 2 e
5.2 10wl prfan, viexsl exdertis
b - " -
= ?”{i 4 - "’
and
@ B, Y o B, Y
(5.3) [P0 Vel < P2 D, 0y sxsl,

a>lp+y+1l, p>max(y, -3)

A spherical function interpretation and a positive convolution structure
are unknown for the classes III and IV, but formulas (5.2) and (5. 3) sug-
gest t?iat further research in this direction may be worthwhile.

In the case of the classes VI and VII and for certain values of the
parameters the second order differential operator (3.29) (with D= Bss +
+ att and p(s,t) as given in Table 1) is the radial part of the Laplace-
Beltrami operator on certain compact symmetric Riemannian spaces of .
rank 2, cf. Harish-Chandra [25, §7], or Helgason [28, (3. 3)] together
with the volume element ratio given in Helgason [26, Chap. 10, §l. 5].
The spherical functions on these symmetric spaces are eigenfunctions of
the Laplace-Beltrami operator. Since the Laplace-Beltrami operator may
have degenerate eigenvalues, this does not prove that the polynomials
of class VI and VII can be interpreted as spherical functions. Still it

strongly motivated the author to introduce the classes VI and VII.
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In the case of class VI and of order (a,B,y) the restricted root
vectors of the corresponding symmetric space have a Dynkin diagram
0 => 0 and a vector diagram as given by Figure 18, where the restricted
root vectors )‘l’ ZXI and )\2 have multiplicities 2« - 28, 28 +1 and
2y + 1, respectively.

In the case of class VII and of order o the restricted root vectors
have Dynkin diagram 0 - 0 and multiplicity 2a +1.

for this case is given by Figure 19.

Figure 18

Figure 19

A list of all compact symmetric spaces of rank 2 is included in
Helgason [26, p. 354, Table II]. The corresponding Dynkin diagrams and
multiplicities of the restricted root vectors are given by Araki [4, pp. 32,
33] and by Loos [55, pp. 119, 146]. For our classes VI and VII we give
the results in Tables 2 and 3, respectively.

In these tables the tori T2 and H are considered as homogeneous
spaces of the groups given in Table 1. The groups SO(5) and SU(3) are
considered as homogeneous spaces of SO(5) XSO(5) and SU(3) X SU(3),
respectively.

On a symmetric space M ofrank r the class of all invariant dif-
ferential operators is a commutative algebra with r generators, one of
which is the Laplace-Beltrami operator (cf. Helgason [26, Chap. 10, §2]).
The spherical functions on M can be characterized as the zonal func-

tions which are eigenfunctions of all invariant differential operators on
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The vector diagram

homogeneous space a B Y
2 L 1 1
square torus T -3 -3 >
1 1 1
SO(5) 2 "2 2
1.5
0(q)/80(2) X O(qa-2) 0 0 ~a -3
1 5 1 o
0(q)/0(2) X O(q-2) 749-73 -3
1
U(a)/U(2) XU(a-2) a-4 0 >
3
Sp(a)/Sp(2) X Sp(a-2) 2q - 7 1 s
3
SO(10)/T(5) 2 0 >
5
E I 4 0 o)
Table 2
homogeneous space a
1
hexagonal torus H -2
1
SU(3) 5
SU(3)/80(3) 0
3
SU(6)/5P(3) >
7
E IV >
Table 3

487



TOM KOORNWINDER

M. Except for the Laplace-Beltrami operator, the radial parts of the in-
variant differential operators are not known in general. However, it
follows from our results that for each of the spaces M listed in Table 2
(or Table 3) the following two statements are equivalent:

(a) The polynomials 6P:1: El’ Y, v) (or 7P;1,n (z,2z)) as functions
of s and t are the spherical functions on M considered as functions
of the radial coordinates s and t.

(b) The differential operator (3. 30) (or (3.31)) is the radial part of
an invariant differential operator on M .

in several special cases it has been proved that statements (a)
and (b) are true. For the two tori TZ and H it is evident. In the group
cases SO(5) and SU(3) the spherical functions are the characters on
the group. Then Weyl's character formula (cf. Weyl [71, (37)], [72,(29)])
together with formulas (3.26) and (3.17) proves statement (a), and state-
ment (b) follows from Berezin [6]. For complex Grassmann manifolds
U(q)/U(2) X U(g-2) the spherical functions and the invariant differential
operators have been given by Berezin and Karpelevic [71.

In the case of real Grassmann manifolds 0O(q)/0O(2) X O(g-2) Maass
[56] first derived the invariant differential operators and then obtained
the spherical functions as orthogonal polynomials. Another approach was
followed by James and Constantine [36]. They obtained the spherical
functions by using zonal polynomials of 2 X2 matrix argument. More
generally, it follows from their results that our polynomials of class VI
and of order (1(q-p-3), 4(p-3), 0) can be interpreted as functions on
O(q), right invariant with respect to O(2) X 0O(q-2), left invariant with
respect to O(p) X O(q-p), and belonging to some irreducible representg-
tion of O(q) . This also gives a group theoretic explanation for the re-
sults of section 4.4 if y=0 and « and P are integers or half integers.
Recently, the author found yet another approach to the analysis on
Grassmann manifolds of rank two. In this approach the harmonics on the
Grassmann manifold are obtained as restrictions of certain doubly homog-

eneous polynomials which satisfy certain orthogonality properties. These

488

results will be soon available in preprint form.

Deeper analytic properties of polynomials of class VI and VII may

be first derived in the cases, where a group theoretic interpretation 1is

known, and next be generalized to other values of the parameters. A
b ) -1_
study of the most simple case, where all parameters are equal to -3,

already gives an indication of the difficulties which can be expected in

the general case.

Note Added in Proof

Recently 1. Sprinkhuizen together with the author proved that

n o (yvth_ (v -k
@80 =T T e
n, k ’ X (m-k)! (n-m) ! {2y+) o

’ m=

(ntk+ a+pH2y+2) (mik+atr2) o ey d B o)

b

> 5
(mtk+atftyry )m-k (2m+atptyt; )n_m

where RY i”’(g, 0) is defined by (4. 23).
n’
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