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Figure 1: The pipeline of the proposed method. From left to right: Input image of water drops. Estimated 3D water drop shape. Estimated
depth. Geometric Rectification.

Abstract

This paper introduces depth estimation from water drops. The key
idea is that a single water drop adhered to window glass is totally
transparent and convex, and thus optically acts like a fisheye lens. If
we have more than one water drop in a single image, then through
each of them we can see the environment with different view points,
similar to stereo. To realize this idea, we need to rectify every wa-
ter drop imagery to make radially distorted planar surfaces look flat.
For this rectification, we consider two physical properties of water
drops: (1) A static water drop has constant volume, and its geomet-
ric convex shape is determined by the balance between the tension
force and gravity. This implies that the 3D geometric shape can be
obtained by minimizing the overall potential energy, which is the
sum of the tension energy and the gravitational potential energy. (2)
The imagery inside a water-drop is determined by the water-drop
3D shape and total reflection at the boundary. This total reflection
generates a dark band commonly observed in any adherent water
drops. Hence, once the 3D shape of water drops are recovered,
we can rectify the water drop images through backward raytracing.
Subsequently, we can compute depth using stereo. In addition to
depth estimation, we can also apply image refocusing. Experiments
on real images and a quantitative evaluation show the effectiveness
of our proposed method. To our best knowledge, never before have
adherent water drops been used to estimate depth.

Keywords: Water drop imagery, single image surface construc-
tion, minimum energy surface, stereo

Concepts: •Computational Geometry and Object Modeling→
Physically based modeling; •Enhancement → Geometric cor-
rection; •Scene Analysis→ Stereo;
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1 Introduction

Depth from real images is crucial information for many applica-
tions in computer graphics. A numerous methods have attempted
to extract depth with various cues ( e.g., shading [Ikeuchi and Horn
1981], multi-views [Hartley and Zisserman 2004], defocus [Favaro
and Soatto 2005]). In contrast to all existing methods, in this pa-
per, we explore a new possibility of using water drops adhered to
window glass or a lens to estimate depth.

Water drops adhered to glass are transparent and convex, and thus
each of them acts like a fisheye lens. As shown in Fig. 1.a, wa-
ter drops’ locations are normally scattered in various regions in an
image. If we zoom in, each of the water drops displays the same
environment from its own unique point of view. Due to the proxim-
ity to each other, some have similar visual content, but some can be
relatively different, particularly when the water drops are apart in
the image. Therefore, if we can rectify each of the water drops, we
will have a set of images of the environment from relatively differ-
ent perspectives, opening up the possibility of extracting the depth
from the water drops, which is the goal of this paper.

To be able to achieve the goal, we need to rectify each water drop,
so that planar surfaces look flat. Rectifying water drops, however,
is problematic. In contrast to existing work in catadioptic imaging,
which assumes the geometry of the sphere is known a priori, water
drops shapes can vary in a considerable range and highly non-axial.
To resolve this problem, we need to examine two physical proper-
ties of water drops. First, a static water drop has constant volume,
and its geometric 3D shape is determined by the balance between
the tension force and gravity. Because the water drop is in balance,
it minimizes the overall potential energy, which is the sum of the
tension energy and the gravitational potential energy. Based on this
property, we introduce an iterative method to form the water-drop
geometric shape. However, from a single 2D image, the volume
cannot be directly obtained, since we do not know the thickness of
the water drop. To solve this, we use the second physical property,
i.e., water-drop appearance depends on their geometric shape and
also the total reflection. The total reflection occurs near the water
drop boundaries and triggers a dark band. We found that a water
drop with a greater volume will have a wider dark band. Thus, we
introduce a volume-varying-iteration framework that estimates the
volume that best fit to the appearance. Having known the com-
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Figure 2: Image formation.
(a) The light path model assuming a pinhole camera. (b) Appearance of the environment when the camera focuses on the environment. (c)
Appearance of water drops. (d) Image obtained by the camera.

plete 3D shape of water drops, we perform the multiple view stereo
through backward raytracing and triangulation. Finally, we rectify
the warped images. Having obtained the depth and rectified im-
ages, one of our applications is image refocusing. Figure 1 shows
the general pipeline of our proposed method.

Contributions In this paper, we introduce a new way to recover
depth using water drops from a single image. We also propose a
novel method to reconstruct the 3D geometry of water drops by uti-
lizing the minimum surface energy and total reflection. Aside from
estimating depth, we also apply image refocusing through the infor-
mation provided by water drops. Furthermore, the proposed non-
parametric, non-axial algorithm can be generally applied to cata-
dioptic imaging system.

The rest of the paper is organized as follows. Section 2 discusses
related work in depth estimation, water modeling and shape from
transparent objects. Section 3 explains the theory behind the water-
drop physical properties. Section 4 introduces the methodology of
the 3D shape estimation, stereo, as well as water-drop image rec-
tification. Section 5 shows the three applications on stereo, image
refocusing and image stitching. Section 6 shows the experimental
results and evaluation. Section 7 concludes this paper.

2 Related Work

Three dimensional reconstruction of opaque objects from a sin-
gle image have been explored for decades: Shape from shading
[Ikeuchi and Horn 1981], shape from texture [Malik and Rosen-
holtz 1997], shape from defocus [Favaro and Soatto 2005] and
piece-wise planarity [Horry et al. 1997]. A few approaches using
silhouettes have been proposed to reconstruct a bounded smooth
surface [Terzopoulos et al. 1988; Hassner and Basri 2006; Prasad
and Fitzgibbon 2006; Joshi and Carr 2008; Oswald et al. 2012;
Vicente and Agapito 2013]. The method of [Prasad and Fitzgibbon

2006] reconstructs a surface with minimum area, and [Oswald et al.
2012] proposes its speed-up version. However, none of these meth-
ods directly aim to model water or other transparent liquid from a
single image.

Methods of [Garg and Nayar 2007; Roser and Geiger 2009; You
et al. 2013; You et al. 2015] introduce airborne and adherent rain-
drop modeling. Their goal is to detect and remove raindrops, and
not to reconstruct 3D structure from raindrops. [Roser et al. 2010]
exploits water drop surface fitting using B-splines and silhouettes
using 1D splines. [Morris 2004; Tian and Narasimhan 2009; Or-
eifej et al. 2011; Kanaev et al. 2012] exploit underwater imaging.
They assume water surfaces are dynamic and dominated by transi-
tions of waves, which do not suit to our specific problem.

Stereo and light field using perspective cameras with extra mir-
rors and lenses have also been explored. [Baker and Nayar 1999;
Taguchi et al. 2010] propose algorithms using sphere mirrors.
[Levoy et al. 2004] introduces arrays of planar mirrors. [Swami-
nathan et al. 2001; Ramalingam et al. 2006] address the use of axial
cameras, and [Taguchi et al. 2010] extends the work to axial-camera
arrays. Later, [Agrawal and Ramalingam 2013] proposes methods
to automatically calibrate the system. All of these methods, how-
ever, assume radial or planar symmetry of the media (mirror/lens),
which are not satisfied in the case of water drops, since water drops
are highly non-axial.

3 Modeling

Theoretical background and modeling of water drops are discussed
in this section. We first explain briefly the image formation, show-
ing the correlations between the environment, water-drops and the
camera. Subsequently, we model the raindrop 3D geometry, partic-
ularly the concept of minimum energy surface. Based on the im-
age formation and the raindrop geometry, we study the total reflec-
tion inside water drops, which is necessary to determine the water-
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Figure 3: Parameters of a water drop.
(a) In the global coordinates, the geomertic shape is determined by
the gravity. (b) The parameters in the camera coordinates. Point A
is a two phase point (water-air), where the tensor force balances the
pressure. Point B is a three phase point (water-air-material).

drop’s volume. All these aim at water-drop image rectification.

3.1 Image Formation

Fig. 2 illustrates our image formation. Rays reflected from the en-
vironment pass through two water drops before hitting the image
plane. Unlike in the conventional image formation, the passing rays
are refracted by water drops, where each water drop acts like a fish-
eye lens that warps the images. Assuming we have a few water
drops that are apart to each other, the imageries of the water drops
will be slightly different to each other, even though the environment
is identical, as shown in Fig. 2.

From the illustration in Fig. 2, we can conclude that the image cap-
tured by the camera through water drops is determined by three
interrelated factors: (1) the depth of the environment, (2) the 3D
shape of water drops, which determine how light rays emitted from
the environment are refracted and, (3) camera intrinsic parameters,
which are assumed to be known. Therefore, to be able to recover
the depth of the environment, we need to obtain the 3D shape of
water drops.

3.2 Minimum Energy Surface

For the purpose of exploring the minimum energy surface to esti-
mate the 3D shape of a water drop, we introduce a local coordinate
system of the camera, which is illustrated in Fig. 2.a and d. In the
coordinates, water drop 3D shape can be parameterized as:

S = {z(x, y), (x, y) ∈ ΩR}, (1)

where ΩR indicates the raindrop area attached to glass. (x, y) is
any point in the raindrop area and z is the height.

A static water drop has a constant volume, and its 3D shape S̃ min-
imizes the overall potential energy E, which can be written as:

E(S̃) = minE(S) = min(ET (S) + EG(S)),

V (S) = constant,
(2)

where ET is the tension energy, and EG is the gravitational poten-
tial energy, V is the volume. Therefore, to solve the geometry of a
raindrop, we need to find the surface S̃.

Figure 3 illustrates the 3D shape of a water drop. Point A is a two-
phase (water-air) balanced point, where surface tension T balances
pressure P . Point B is a three phase point (water-air-material),
where the tension is from both water Tw and adhesion surface Tm.
These two types of tension balance the gravity, G.

(a) Area of water attached to the adhesion material

(b) Minimum energy surface with a small constant volume

(c) Minimum energy surface with a greater constant volume

Figure 4: Minimum energy surfaces given the area and volume.
(b) The minimum energy surface when the volume coefficient α =
0.10, defined in Eq. (16). (c) α = 0.35. Assuming the gravity is
along z axis.

With the parameterized surface, we can write the surface tension
energy as:

ET (S) =

∫
ΩR

σdA =

∫
ΩR

σ
√

1 + |∇z|2dxdy, (3)

where σ is the surface tension index for water, dA denotes a unit
surface area and∇ is the gradient [Feynman et al. 2013]. As we can
see, the tension energy is proportional to the area of the surface.

The gravitational potential energy can be expressed as:

EG(S) =

∫
ΩR

dxdy

∫ z

0

(x cos θx + y cos θy + z cos θz)gρdw,

(4)
where θx, θy and θz denote the angles between the x, y, z coordi-
nates and the gravity correspondingly. g is the gravity and ρ is the
density of water, which are generally known. Moreover, we can add
a constraint that: ∫

ΩR

zdxdy ≡ V. (5)

Therefore, the parameterized surface S is estimated by minimizing
the overall potential energy determined by Eq. (2), (3) and (4) with
the constraints of constant volume in Eq. (5). Figure 4 shows some
examples of the surface estimated by using the technique. We will
discuss the algorithm in detail in Section 4.

Note that, to uniquely determine the geometry of a water drop, we
need to know both the 2D area where the water drop attached to
glass, ΩR, and the volume V . While the former can be directly
inferred from the image, the latter is not straightforward to obtain.
The subsequent section will discuss how we can possibly determine
the volume.

3.3 Water-Drop Volume from Dark Band

As we can see in Fig. 2.c, the basic idea of our volume estimation is
based on the dark band at the boundary of a water drop. We found
that the wider the dark band the larger the volume of the water. This
section discusses this idea further.
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Figure 5: Refraction by a water drop.
(a) A ray coming from the environment is refracted twice before reaching the cameraC. (b) Backward ray tracing, where a virtual ray emitted
from the camera passes through the same path as in (a). For simplification, we remove the refraction between flat surfaces by moving the
camera position to C′. (c) When θw is greater than the critical angle, light will not be transmitted but reflected inside. (d) Two polarized
components, Rs and Rp, of the incidence ray.

Refraction model Fig. 5.a illustrates a ray coming from the en-
vironment is refracted twice before reaching the camera. Since, we
are only interested in the rays that can reach the camera, we can
use backward raytracing to know the paths of the rays. Moreover,
we assume that the glass is so thin that we can ignore the refraction
due to the glass. Because we are mostly interested in the refraction
on the curved surface, to further simplify the model, we remove
the refraction between the flat surface by moving the camera from
position C to C′, as shown in Fig. 5.b. For approximation, when
the incident angle is small, we can consider that the perpendicular
distance from the camera to the refraction plane, denoted as Cz ,
is changed to C′z = nw

na
Cz , where nw and na are the refractive

indices of water and air, respectively. Detailed derivation of the
position of C′ is discussed in Appendix A.

Dark Band and Total Reflection The dark band at the boundary
of a water drop is caused by light coming from the environment
reflected back inside the water, instead of being transmitted to the
camera. This phenomenon is known as the total reflection, and ap-
plies to all light rays whose relative angles to the water’s surface
normal are larger than the critical angle, denoted as θW .

To analyze the correlation between the critical angle with the water-
drop 3D shape S : z(x, y), we refer to Snell’s law, which indicates
the critical angle:

θ̃w = sin−1 na
nw

. (6)

As indicated in Fig. 5.c, we denote the surface normal as N, which
can be derived from z as: N = (Nx, Ny, Nz)

> = N′

‖N′‖ where,
N′ = ( ∂z

∂x
, ∂z
∂y
, 1)>, and ‖ ‖ denotes the `2 norm.

The angle between the surface normal and the z-axis denoted as
θN is the sum of the incidence angle of water, θw, and the angle
between the incidence ray and z-axis θC′ :

θN = θw + θC′ . (7)

where θC′ is determined by the position of the camera and the
position of the refraction. Considering the z component of the
normal Nz , also defined as: Nz = cos θN , we know that when
Nz ≤ cos(θ̃w + θC′), the corresponding water drop area is totally
dark. For instance, when θC′ is 0, and na

nw
is approximately 3

4
, we

(a) (b) (c)

(a’) (b’) (c’)

Figure 6: Dark bands.
(a) Water drop 3D geometry. (b) The z component of surface nor-
mal. (c) The dark bands. Second row: A greater water drop volume,
wider dark band.

have
Nz ≤ Ñz ≈ 0.661. (8)

Where Ñz is the denotation for the critical value. Figure 6 shows
some examples of synthetically generated dark bands. As we can
observe, a greater volume of the water drop indicates a wider dark
band. Therefore, to infer the water drop volume from the dark band
is possible.

Dark Band and Fresnel Equation While the dark band can be
theoretically inferred from the water-drop geometry, detecting them
from an image is nontrivial. Due to the sensor noise and the leak
of light1, dark bands are not totally dark. Moreover, there are tex-
tures in the environment that can be darker than dark bands. To

1Back light from camera side which is reflected by the glass plate and
goes into the camera; and the interreflection inside a water drop.
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Figure 7: Selecting water drops from a single image.
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Figure 8: Iteration of water drop 3D shape with a fixed volume.

resolve the problem, we employ the Fresnel equation and formulate
the brightness values near the critical angle.

The refraction coefficients, denoted as Ts and Tp, for two orthog-
onal polarized components for the light rays traveling from air to
water are written as:

Ts = 1−
(

sin(θw − θa)

sin(θw + θa)

)2

(9)

Tp = 1−
(

tan(θw − θa)

tan(θw + θa)

)2

(10)

where θw and θa are depicted in Fig. 5.d. In our case, we assume
the light from the environment is not polarized, and thus the overall
refraction coefficient is

T =
1

2
(Ts + Tp). (11)

Concerning the dark bands, we are interested in two critical condi-
tions. First, when the incidence angle θa is close to 0. In such a
condition, sin θa ≈ θa, cos θa ≈ 1, and consequently:

T =
4nanw

(nw + na)2
. (12)

Substituting the value for water gives us na
nw

= 3
4

, and thus we have
T ≈ 0.980.

Second, when incidence angle θa is close to π
2

, (the locations near
the dark band). Hence, sin θa ≈ 1, cos θa ≈ π

2
− θa, as a result:

T = 2

√
1−

(
na
nw

)2(
na
nw

+
nw
na

)(π
2
− θa

)
(13)

Similar to the first condition, substituting the value na
nw

= 3
4

, we
obtain:

T ≈ 2.76(
π

2
− θa). (14)

Considering θa is connected with θw by Snell’s law, and the con-
nection between θN and θw (Eq. (7)), we establish the connection

between the z component of surface normal Nz = cos θN and the
refraction coefficient:

T ≈ 7.68(Nz − Ñz). (15)

This relation between the image brightness and surface normals
give us a constraint of a contrast between the dark band and other
parts inside the waterdrop image. Using this, the water-drop volume
can be inferred using the brightness close to the dark band region.
Details are provided in Sec. 4.1

4 Methodology

In this section, the detailed algorithm for rectifying images of water
drops and estimating depth is introduced. As illustrated in Fig. 1,
it has three main steps: (1) water drop 3D shape reconstruction by
minimizing energy surface, (2) Multi-view stereo and (3) Image
rectification.

Water Drop Detection Water-drops appearance is highly depen-
dent on the environment, and thus detecting them is not trivial. For-
tunately, in our case, we can assume water drops are in focus, and
thus the environment image is rather blurred. Hence, we can utilize
edge detection to locate water drops, as illustrated in Fig. 7. Hav-
ing located water drops, we select those that are sufficiently large
(e.g., the diameter is greater than 300 pixels). This is to ensure that
rectified images are not too small.

4.1 Water Drop 3D Shape Reconstruction

Mesh representation and Initialization To reconstruct the 3D
shape of water drops, we first represent the water surface using a
parameterized mesh. Referring to Eq. (1), we can describe a surface
as: S = {z(i, j), (i, j) ∈ ΩR}, where (i, j) are the location of a
pixel in the water drop area. Accordingly, the area of ΩR is defined
as: B =

∑
(i,j)∈ΩR

1, where 1 is the unit for a pixel’s area.

At this initialization, we do not know the volume of the water drop,
and make an initial guess based on:

V = αB
3
2 , (16)



where α is the volume coefficient and set to 0.30 as default. Based
on the equation, with α fixed, when the area B increases in square
rate, the volume will increase in cubic rate. This means when per-
forming scale change for the water drop surface, α remains the
same value. Figure 4 gives some examples how α is related to the
reconstructed surface.

We initialize the mesh as a cylinder by defining:

z(i, j) = αB
1
2 , (i, j) ∈ ΩR. (17)

Figure 8 shows an example of the initial surface.

Iteration with fixed volume We solve the constrained minimum
energy surface using the iterative gradient descent. For iteration t
we update the mesh in three steps: tensor energy update, gravity
update, and volume update. This strategy is an extension of the
smooth surface reconstruction proposed by [Oswald et al. 2012].

• Step 1: Tension energy update. It attempts to construct the
surface as smooth as possible:

zt+1 = zt − τσ ·
dE(S)

dzt
, (18)

where τ controls the update speed with τ = 0.5 as default, σ
is the tension coefficient in physics. We define:

dE(S)

dzt
= −div

(
1√

1 + |∇zt|2
∇zt

)
, (19)

where div is the divergence.

In our settings, a water drop has size around 3mm or approx-
imately 500 in pixel, and thus the size of a unit pixel is about
6µm. Tension coefficient for water in room temperature is
73, 000N/m.

• Step 2: Gravity update. It intends to increase the height for
the mesh points that lower the potential energy:

zt+1(i, j) = zt(i, j)−τρg((yg−i) cos θy+(xg−j) cos θx),
(20)

where (xg, yg) is the geometry centroid of the water drop and
defined as:

xg =
1

B

∑
(i,j)

z(i, j) · j, yg =
1

B

∑
(i,j)

z(i, j) · i. (21)

Substituting ρ = 1Kg/L and g = 9.8m/s2, we found when
the adherent surface tilt is small, the waterdrop geometry is
mainly dominated by the tension energy.

• Step 3: Volume update. Having updated the tension and grav-
ity in the previous two steps, this step checks the current vol-
ume and compares it with the targeted volume V, and then re-
adjusts the volume by adding the same value to all the mesh
points:

zt+1 = zt +

(
V −

∑
(i,j)∈ΩR

zt(i, j)

B

)
(22)

After each iteration, we check the absolute change of volume:∑
(i,j) |zt+1(i, j)− z(i, j)|, and set the convergence threshold to

1e − 6V as default, where V is the targeted volume. We run the
iterations up to 4000 times. Figure 8 shows the progress of the es-
timated volume.

(a) Estimated geometry with varying volume

(b) Estimated band of critical angle

Figure 9: Estimating the width of a dark band
Left: Underestimated volume where the darkband(shown in blue)
is mostly covering the dark pixels. Middle: Correctly estimated
volume, where the darkband cover about the same proportion of
dark and bright pixels. Right: Overestimated volume, where the
darkband is mostly covering bright pixels.

Iteration with varying volume Having estimated the surface
with fixed volume, we can obtain the surface normals and evalu-
ate the brightness values near the dark band and gradually adjust
the volume.

In Section 3.3, we have built the relation between the surface nor-
mal and the luminance (Eq. (15)). According to Eq. (8), when the z
component of surface normal is smaller than the critical value NZ ,
the pixel brightness should be close to 0. Yet, when z is slightly
greater than NZ , the pixel brightness should follow Eq. (15). Thus,
if we compute the average refraction coefficient, denoted as Tr , for
pixels whose normals are within the rangeNz = NZ ± Ñz , we can
do local linear expansion of Eq. (14) and obtain:

Tr = 3.84Ñz. (23)

Specifically, we set Ñz = 0.02π, and thus Tr = 0.241. Conse-
quently, the average brightness of the band, Ir , is:

Ir = 0.241Ib, (24)

where Ib is the average brightness of the non water-drop areas.

In Fig. 9, we sample the brightness of the estimated band. As shown
in Fig. 9.a, when the volume is underestimated, the dark band is
wider than the real one, resulting less bright pixels. On the contrary,
when the volume is overestimated, the dark band is narrower than
the real one, resulting in brighter pixels. With the above analysis,
we update the volume every 400 iteration (as default) for the fixed
volume algorithm introduced previously:

Vt+1 = Vt + τr · Vt · (1−
It
Ir

), (25)

where It is the sampled brightness, Ir is the targeted brightness
value, and τr is a weighting coefficient which controls the updating
speed and is set to 0.5 as default. We demonstrate the accuracy of
the estimation by experiments in Sec. 5.1.

4.2 Waterdrop Stereo

Once the geometry of each water drop is obtained, we perform
multi-view stereo to estimate depth. Unlike multiple view stereo
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Figure 10: Illuminance compensation of water drop images.
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Figure 11: Ray-tracing based triangulation.
For a set of corresponding points xj , the backward raytracing finds
the set of rays Roj in the space. The position p of the point in space
is where the sum of Euclidean distance to all the rays is minimized.

based on perspective or radial catadioptric cameras, where the pro-
jection of each camera can be modeled using a few parameters,
unfortunately the water drops are non-parametric and non-axial. To
overcome this problem, we propose a raytracing based triangula-
tion. (More detail about the implementation could be found in Ap-
pendix B.)

As illustrated in Fig. 11, a point x̄1 has its corresponding points
on other water drops, denoted as x̄j , where j is the index of water
drops. By knowing the geometry of each water drop, we can find
the location where the refraction happens in each water drop, de-
noted as xj . Specifically, to obtain the location of x, we need: (1)
The position of the camera C, which is known a priori, and thus can
be converted to equivalent position C′, as illustrated in Fig. 5.b. (2)
The water drop geometry, which is already estimated.

At each refraction location, the incident angle is obtained using
Ri = x−C′

‖x−C′‖ . The surface normal N is known through geom-
etry estimation. Through Snell’s law, we can obtain the outbound

angle Ro. The outbound ray is formulated as:

x + αRo, α ∈ R. (26)

Hence, now we can perform the classical triangulation as il-
lustrated in Fig. 11. Given a set of corresponding points on
each waterdrop xj , we could obtain its outbound ray of fraction
xj + αRoj , α ∈ R, j = the index of water drops. The triangula-
tion aim to find the position of point p, which minimizes the Eu-
clidean distance to all the rays:

p =

[∑
j

(I −RojR
T
oj)

]−1 [∑
j

(I −RojR
T
oj)xj

]
. (27)

The detailed derivation refers to [Szeliski 2010]. The depth of each
point p is its z component. Figure 14 is an example of the depth
map in water drop image.

4.3 Rectification of Water Drop Image

Having estimated the depth map on each water drop, we unwarp
the distorted water drop image. Referring to the pinhole camera
model (Fig. 2), for each water drop image, a space point Pr with
projection at Pri is projected to Pe. Figure 12 and Figure 13 shows
results of the rectified water drop images.

According to Eq. (9) and Eq. (10), with the water drop geometry
obtained, we can compensate the brightness values according to
the refractive coefficient T . Figure 10 shows an example of the
brightness compensation.

5 Experiments and Analysis

We conduct experiments using both synthetic data and real data to
examine and analyze the performance of our method. In the ex-
periment, we evaluate the estimated 3D shape of the water drops,
and the depth estimation. Without loss of generality, our method
can also be used to handle axial mirror/lens models [Taguchi et al.
2010].

5.1 3D Shape Reconstruction and Image Rectification

To evaluate the accuracy of the 3D shape of water drops, we utilize
synthetic data. We cannot use real data, since automatic 3D acquisi-
tion systems, such as a laser range finder, cannot be used to estimate
the 3D of water. We use real images for the evaluation of the image
rectification. Some of the real images are taken by ourselves and
some are downloaded from the Internet.

Figure 12 shows the generated synthetic water drops with a variety
of boundaries. A quantitative evaluation is performed by compar-
ing our estimation with the ground truth 3D shape. The error is
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Figure 12: Quantitative evaluation of water surface reconstruction and rectification.

normalized to the percentage of the scale of the water drops. As
one can observe, the reconstruction error is less than 3% even for
the most irregular water drops.

Figure 13 shows a collection of the rectified water drop images from
real data. The input image is cropped for better visualization, yet
the camera center is not at the cropped image center.

Without loss of generality, our proposed method can also be used
for axial models, which is considered as a specific case when the
water drop is exactly radially symmetric. The last two rows of
Fig. 13 show the results on spherical mirrors [Taguchi et al. 2010].
Because dark band estimation is not applicable on mirrors, we spec-
ify the volume parameter α = 0.40 for the mirrors. And refraction
is changed to reflection in raytracing.

We implemented our method in Matlab and measured the computa-
tional time without parallelization. For water 3D shape estimation,
the time varies depending on the water drop volume and the mesh
resolution. Table 1 shows the computation time of varying volume
and fixed mesh resolution. And Table 2 shows the time of vary-
ing mesh resolution. At typical case, the resolution of mesh is set
to 200×200 and the reconstruction time is about 10s. Note that,
because each of the water drop reconstruction are performed sepa-
rately, we can simply parallelize each of the tasks. Thus, the overall
computation time does not increase with the number of water drops.

Table 1: Computation time for water drop 3D reconstruction with
varying volume.

Volume (𝛼) 0.05 0.1 0.2 0.3 

Iterations 1300 1600 2600 3200 

Time (s) 5.5 7.1 11.7 15.1 

The mesh resolution is fixed to 200×200.

Table 2: Computation time for water drop 3D reconstruction with
varying mesh resolution.

Mesh res. 50*50 100*100 200*200 400*400 

Iterations 400 800 2600 5100 

Time (s) 0.4 1.7 11.7 241 

The volume is fixed to α = 0.2.

5.2 Depth Estimation

We use both synthetic and real water drop data to demonstrate
our stereo method. Furthermore, Our non-parametric, non-axial
method could be applied to axial-mirror/lens model as well.

Figure 14 shows the generated synthetic data from the Middlebury



Figure 13: Rectification of real water images.
The first two row are water-drop images taken by ourselves. The first three columns in Row 3 and 4 are downloaded from the Internet. And
the last three images are taken by sperical mirrors by [Taguchi et al. 2010]. There is slant between the background and the water drop in some
data, however the rectified image is not necessary to be rectangles.

data set. As can be seen, the depth estimation result highly resem-
bles the ground truth with only errors occur at object’s boundaries.

The result on the real waterdrop images are shown in the first 4 rows
of Fig. 15. For the first row, the data is taken using a micro-lens,
and the resolution for each waterdrop is more than 600 pixels. The
second and third data is taken by normal commercial lens, the res-
olution for each waterdrop is about 200-300 pixels. As shown, our
proposed method can generally recover the depth structure. How-
ever, we find the bottleneck of our method is in finding the corre-
sponding points between water drop images. Since, when the cam-
era is zoomed-in to focus on the details of water drops, the sensor
noise and the dust on the plate is no longer negligible, which ad-
versely affect the accuracy and stability of both sparse and dense
corresponding methods.

As mentioned previously, our non-parametric, non-axial method
can be applied to axial-mirror/lens model. Fig. 16 shows our stereo
estimation results. Since the image has sufficiently high resolution
and less noise, the dense matching is significantly stable, and con-
sequently it enables us to estimate the depth more accurately.

6 Discussion and Conclusion

In this paper, we had exploited the depth reconstruction from water
drops. In our pipeline, there are three key steps: the water-drop 3D

shape reconstruction, depth estimation using stereo, and water-drop
image rectification. All of these are done using a single image. We
evaluated our method, and it shows that the method works effec-
tively for both synthetic and real images. Nevertheless, there are
still some limitations in it. One of the limitation is the common
perspective camera and lens cannot obtain high resolution image of
water drops. Which degraded the overall performance of the depth
estimation, specifically, the sparse/dense correspondence quality is
degraded because of the low-resolution images. For future works,
we are considering improving the image quality. Furthermore, we
will consider simultaneous estimation of the waterdrop geometry
and depth.
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Appendix A: Equivalent Camera Position for
Flat Air-Water Refraction

Here we prove that we can further remove the refraction from water
to air in Fig. 5.a by moving the camera to its approximated equiva-
lent place at C′, as illustrated in Fig. 5.b.

We assume the camera position is C = (0, 0, zc)
> and the flat

plate is z = 0. Given a point on the plate x = (x, y, 0)> where the
refraction happens, the orientation of the incidence angle is:

Ri =
x−C

‖ x−C ‖ =
(x, y,−zc)>√
x2 + y2 + z2

c

(28)

The parallel and orthogonal components to the surface normalN =
(0, 0, 1)> are:

Ri‖ =(R>i N)N =
(0, 0,−zc)>√
x2 + y2 + z2

c

Ri> =Ri −Ri‖ =
(x, y, 0)>√
x2 + y2 + z2

c

.

(29)

The orientation of angle of refraction, denoted as Ro, can be ob-
tained according to Snell’s law:

Ro> =
na
nw

Ri> =
(x, y, 0)>

nw
na

√
x2 + y2 + z2

c

(30)

Considering Ro is normalized: ‖ Ro ‖=‖ Ro> + Ro‖ ‖= 1, and



thus:

Ro =
R′o
‖ R′o ‖

=
(x, y, nw

na
zc

√
1 +

n2
w−n2

a
n2
w

x2+y2

z2c
)>

‖ R′o ‖
. (31)

Hence, the equivalent camera position is:

C′ = (0, 0, nw
na
zc

√
1 +

n2
w−n2

a
n2
w

x2+y2

z2c
)> when the incidence

angle is close to the optic axis of the camera, i.e., x, y � zc, we
can have the approximation that the equivalent camera position
C′ = (0, 0, nw

na
zc)
>.

Appendix B: Detailed Implementation of
Water-drop Multiple View Stereo

Once the geometry of each water drop is obtained, we perform mul-
tiple view stereo to estimate depth. We propose a raytracing based
triangulation. As illustrated in Fig. 11, for two corresponding points
x1 and x2 and their rays of refractions, the triangulation aims to
find the position of point p which minimizes the Euclidean distance
to all the rays. This idea can be directly extended to more than two
water drops.

There are 3 main steps in our multiple view steres: (1) Inverse ray-
tracing, (2) Corresponding points for different water drops, and (3)
Triangulation.

Inverse Raytracing The goal of the inverse raytracing is to find
the orientation of the ray of refraction. We call it inverse raytracing
because we assume the ray is originated from the camera, refracted
by the water drops and arrives at the objects.

As illustrated in Fig. 11, we show the inverse raytracing on the left
water drop. Without loss of generality, we assume the camera posi-
tion is C = (0, 0, zc)

> and the flat plate is z = 0, and the image-
plane has corresponding pixels with the flat plane using rotation and
scaling. According to Appendix A, the equivalent camera position

is C′ = (0, 0, z′c)
> = (0, 0, nw

na
zc

√
1 +

n2
w−n2

a
n2
w

x2+y2

z2c
)>.

For a pixel on the image plane, with a corresponding point on the
flat plate x̄ = (x̄, ȳ, z̄)>, we can find the refraction location, de-
noted as x = (x, y, z)>, by using the constraints:

x

x̄
=
y

ȳ
=
z − z′c
z̄ − z′c

. (32)

In practice, because finding the intersection between a flat plane
and a line is easier than finding the intersection between a line and
a curved surface, we specify x and find the corresponding pixel x̄.

At point x, the angle of incidence is:

Ri =
x−C′

‖ x−C′ ‖ =
(x, y, z − z′c)T

‖ x−C′ ‖ . (33)

The surface normal is obtained according to the water drop geome-
try:

N =
N ′

‖N ′ ‖

N ′ =(
∂z

∂x
,
∂z

∂z
, 1)>.

(34)

.

Then, the orientation of ray of refraction Ro is obtained according
to Snell’s law:

Ri‖ =(R>i N)N

Ri> =Ri −Ri‖

Ro> =
nw
na

Ri>

Ro =Ro> + Ro‖

‖ Ro ‖=1.

(35)

Finding Correspondence Between Water Drops Finding the
corresponding pixels between different warped water drop images
is a challenging task. Compared to the normal cameras, the dis-
tortion between water drop images is significantly worse. Morever,
unlike spherical mirrors/lenses where all the mirror/lenses share the
same distortion, each water drop has its own distortion.

To solve this problem, we try to find the corresponding pixels on the
angular-dewarped images. Note that, since the depth of image is not
yet obtained, we cannot accurately dewarped the image. Thus, we
dewarp the images solely according to the angle of refraction. Nev-
ertheless, we find the angular-dewarping can signficantly recover
the images.

As introduced in the inverse ray-tracing, for a pixel x̄, with ray of
refraction Ro = (rox, roy, roz)

>, we project the pixel to

(
rox
roz

,
roy
roz

)>. (36)

Because the water drop surface is smooth and convex, implying
the Jacobian on the surface is always positive, it means the angular
mapping is one-to-one [Zorich and Cooke 2004]. Thus, we can map
back the dewarped corresponding pixels to the warped image.

The third and fourth columns of Figure 14 show examples of the
angular dewarping results and the dense correspondence on the de-
warped images. Specifically, we use [Xu et al. 2012] for the dense
correspondence estimation.

Triangulation Now we can perform the classical triangulation as
illustrated in Fig. 11. Given a set of corresponding pixels on each
water drop xj , we can obtain its outbound ray of refraction:

xj + αRoj , α ∈ R, j = 1, 2, · · · . (37)

The triangulation’s goal is to find the position of point p, which
minimizes the Euclidean distance to all the rays [Hartley and Zis-
serman 2004]:

p =

[∑
j

(I −RojR
T
oj)

]−1 [∑
j

(I −RojR
T
oj)xj

]
. (38)

The depth is the z component of p.


