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Abstract

Recent work in salient object detection has considered
the incorporation of depth cues from RGB-D images. In
most cases, absolute depth, or depth contrast is used as
the main feature. However, regions of high contrast in
background regions cause false positives for such meth-
ods, as the background frequently contains regions that are
highly variable in depth. Here, we propose a novel RGB-D
saliency feature. Local background enclosure captures the
spread of angular directions which are background with re-
spect to the candidate region and the object that it is part
of. We show that our feature improves over state-of-the-art
RGB-D saliency approaches as well as RGB methods on the
RGBD1000 and NJUS2000 datasets.

1. Introduction
Visual attention refers to the ability of the human visual

system to rapidly identify scene components that stand out,
or are salient, with respect to their surroundings. Early work
on computing saliency aimed to model and predict human
gaze on images [13]. Recently the field has expanded to in-
clude the detection of entire salient regions or objects [1][3].
These techniques have many computer vision applications,
including compression [11], visual tracking [20], and image
retargeting [19].

The saliency of a region is usually obtained by measuring
contrast at a local [13] and/or global scale [8]. The major-
ity of previous approaches compute contrast with respect to
appearance-based features such as colour, texture, and in-
tensity edges [14][7]. However, recent advances in 3D data
acquisition techniques have motivated the adoption of struc-
tural features, improving discrimination between different
objects with similar appearance.

RGB-D saliency methods typically incorporate depth
directly, or use depth in a contrast measurement frame-
work [26][12][27] [16][24], where contrast is computed as
the difference between the means or distributions of fore-
ground and background depth. Use of depth contrast in
conjunction with colour contrast, various priors, and refine-

(a) RGB (b) Depth (c) Ground Truth

(d) Our Method (e) GP

(f) ACSD (g) LMH

Figure 1. Saliency output on a depth image where foreground
depth contrast is relatively low. Our method measures background
enclosure of the object to overcome this problem.

ment schemes produces state-of-the-art results [26]. How-
ever, depth contrast is prone to false positives from back-
ground regions with large depth difference. Figure 1 illus-
trates some examples in which the foreground has relatively
low contrast, making it challenging to detect using existing
depth features. Contrast in background regions is unavoid-
able, and in general contrast in depth scenes can be depen-
dent on random factors such as object placement and view-
point. Although Ju et al. [16] has started to investigate the
depth contrast for whole object structures, false positives
still appear due to nearby regions with large depth differ-
ence as shown in Figure 1(f).

Aiming to address this issue, we propose the Local Back-
ground Enclosure feature, which directly measures salient
structure from depth. We note that salient objects tend to
be characterised by being locally in front of surrounding
regions, and the distance between an object and the back-
ground is not as important as the fact that the background
surrounds the object for a large proportion of its boundary.
The existence of background in a large spread of angular
directions around the object implies pop-out structure and
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thus high saliency. Conversely, background regions are less
likely to exhibit pop-out structure. Thus we propose a depth
saliency feature that incorporates two components. The
first, which is proportional to saliency, is the angular den-
sity of background around a region, encoding the idea that
a salient object is in front of most of its surroundings. The
second feature component, which is inversely proportional
to saliency, is the size of the largest angular region contain-
ing only foreground, since a large value implies significant
foreground structure surrounding the object. This is the first
time angular distributions of background directions have
been explicitly incorporated for depth saliency. This feature
is shown to be more robust than existing depth contrast-
based measures. Further, we validate the proposed depth
feature in a saliency system. We demonstrate that our depth
feature out-performs state-of-the-art methods when com-
bined with a depth prior, spatial prior, background prior,
and Grabcut refinement.

2. Related Work
RGB-D saliency computation is a rapidly growing field,

offering object detection and attention prediction in a man-
ner that is robust to appearance. Early works use depth as a
prior to reweight 2D saliency maps [31][4][19]. These ap-
proaches do not consider relative depth, and work best when
the range of salient objects is closer than the background.

More recently, the effectiveness of global contrast for
RGB salient object detection [8] has inspired similar ap-
proaches for RGB-D saliency. Many existing methods mea-
sure global depth contrast, usually combined with colour
and other modalities, to compute saliency [26][12][27]
[16][25][23]. While the majority of previous work com-
putes depth contrast using absolute depth difference be-
tween regions, some methods instead use signed depth dif-
ference, improving results for salient objects in front of
background [9]. Ju et al. [16] observe that while a salient
object should be in front of its surrounds, patches on that
object may be at a similar depth. However, as with other
depth contrast methods, the primary feature of [16] is the
depth difference between the foreground and background.
Depth contrast methods are unlikely to produce good re-
sults when a salient object has low depth contrast compared
to the rest of the scene (see Figure 1).

While depth contrast measurement forms the foundation
of many approaches, it is common practice to enhance the
resulting saliency maps by applying various priors and other
refinement steps. The use of spatial and depth priors are
widespread in existing work [25][16][6][12][27]. Ren et al.
[26] explore orientation and background priors for detecting
salient objects, and use PageRank and MRFs to optimize
their saliency map. Peng et al. [25] incorporate object bias,
and optimize their saliency map using a region growing ap-
proach. Ju et al [16] apply Grabcut segmentation to refine

Figure 2. Illustration of the local background sets (blue) for four
different candidate regions (green). In this example the neighbour-
hood radius is r = 200 pixels, and the depth cutoff is t = σ/2.
Note that patches lying on salient objects tend to be enclosed by
the local background set.

the boundaries of the generated saliency map.

3. Local Background Enclosure
In this section we introduce the Local Background En-

closure feature, denoted S, that quantifies the proportion of
the object boundary that is in front of the background. S
consists of an angular density component, F , and an angu-
lar gap component, G. The salient object detection system
will be described in Section 4. Given an RGB-D image with
pixel grid I(x, y), we aim to segment the pixels into salient
and non-salient pixels. For computational efficiency and
to reduce noise from the depth image, instead of directly
working on pixels, we oversegment the the image into a set
of patches according to their RGB value. We denote the
patches as P ⊂ I . We use SLIC [2] to obtain the superpixel
segmentation, although our method is flexible to the type of
segmentation method used.

3.1. Local Background Enclosure

Salient objects tend to be locally in front of their sur-
roundings, and consequently will be mostly enclosed by
a region of greater depth, as shown in Figure 2. We pro-
pose the Local Background Enclosure feature denoted by S
based on depth. This is achieved by analysing angular den-
sity and gap statistics, denoted by F and G respectively, in
order to quantify the proportion of the object boundary in
front of the background.

3.1.1 Angular Density Component

We wish to measure the angular density of the regions sur-
rounding P with greater depth than P , referred to as the
local background. We consider a local neighbourhood NP
of P , consisting of all patches within radius r of P . That is,
NP = {Q | ‖cP − cQ‖2 < r}, where cP and cQ are patch
centroids.

We define the local background B (P, t) of P as the
union of all patches within a neighbourhood NP that have
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Figure 3. Illustration of the background enclosure feature com-
puted at image locations marked by the green points with neigh-
bourhood boundaries marked by a green line. The blue fill denotes
angular regions containing points with greater depth than half a
standard deviation from the center depth, with the maximum gap
between these regions marked in red. The values of the angular
density component f , the angular gap component g, and the final
background enclosure saliency S are marked.

a mean depth above a threshold t from P .

B (P, t) =
⋃
{P ′ ∈ NP |D (P ′) > D (P ) + t} (1)

where D (P ) denotes the mean depth of pixels in P .
We define a function f (P,B (P, t)) that computes the

normalised ratio of the degree to which B (P, t) encloses
P .

f (P,B (P, t)) =
1

2π

∫ 2π

0

I (θ, P,B (P, t)) dθ (2)

where I (θ, P,B (P, t))) is an indicator function that equals
1 if the line passing through the centroid of patch P with
angle θ intersects B (P, t), and 0 otherwise. Note that we
assume that P is compact. A visualisation of f is shown in
Figure 3.

Thus f (P,B (P, t)) computes the angular density of the
background directions. Note that the threshold t for back-
ground is an undetermined function. In order to address
this, as frequently used in probability theory, we employ
the distribution function, denoted as F , instead of the den-
sity function f , to give a more robust measure. We define
F as:

F (P ) =

∫ σ

0

f (P,B (P, t)) dt (3)

where σ is the standard deviation of the mean patch depths
within the local neighbourhood of P . This is given
by σ2 = 1

|B(P,t)|
∑
Q∈B(P,t)

(
D(Q)−D

)2
where D =

1
|B(P,t)|

∑
Q∈B(P,t)D(Q). This implicitly incorporates in-

formation about the distribution of depth differences be-
tween P and its local background.

3.1.2 Angular Gap Component

In addition to the angular density F , we introduce the angu-
lar gap statistic G. As shown in Figure 3, even though (c)
and (b) have similar angular densities, we would expect (c)
to have a significantly higher saliency since the background
directions are more spread out. To capture this structure, we
define the function g (P,Q) to find the largest angular gap
of Q around P and incorporate this into the saliency score.

g (P,Q) = max
(θ1,θ2)∈Θ

{|θ1 − θ2|} (4)

where Θ denotes the set of boundaries (θ1, θ2) of angular
regions that do not contain background:

Θ = {(θ1, θ2) | I (θ, P,Q) = 0 ∀θ ∈ [θ1, θ2]} (5)

A visualisation of g is shown in Figure 3.
Again, we use the distribution function of g, denoted by

G:

G(P ) =

∫ σ

0

1− g (P,B (P, t))

2π
dt (6)

The final Local Background Enclosure value is given by:

S(P ) = F (P ) ·G(P ) (7)

Figure 8 shows the generated saliency map on some ex-
ample images. Note that the pop-out structure correspond-
ing to salient objects is correctly identified. Depth contrast
features fail to detect the objects, or exhibit high false posi-
tives.

4. Saliency Detection System
We construct a system for salient object detection us-

ing the proposed feature. Specifically, we reweight the Lo-
cal Background Enclosure feature saliency using depth and
spatial priors, and then refine the result using Grabcut seg-
mentation. An overview of our system is given in Figure
4.

4.1. Depth, Spatial, and Background Prior

Studies report that absolute depth is an important com-
ponent of pre-attentive visual attention, with closer objects
more likely to appear salient to the human visual system
[17]. Accordingly, scaling saliency by depth is a com-
mon refinement step in previous work [23], [6], [16], [28],
[10], [5], [32][25][16][12][26]. We perform absolute depth
reweighting using a depth prior D(x, y) to modulate the
saliency of pixels with depth greater than the median depth
of the image [16].

Another widely used prior is spatial bias, based on the
tendency of the human visual system to fixate on objects
near the center of an image [29]. A large number of ex-
isting saliency methods incorporate a center bias term to

3
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Segmentation

Depth

RGB

Input

Local Background
Enclosure

Depth, Spatial and
Background Prior

Grabcut Refinement

Figure 4. Overview of our saliency detection system. Given an
RGB-D image and superpixel segmentation, we first compute our
Local Background Enclosure feature, then apply depth, spatial,
and center priors, and finally refine the result using Grabcut seg-
mentation.

model this effect [25][16][6][12][27]. We incorporate this
idea into our system, applying a Gaussian G(x, y) to re-
weight patch saliency based on the distance between the
pixel (x, y) and the image center.

Recent works also incorporate a background prior based
on some measure of boundary connectedness to improve de-
tector precision [24][26]. We use the background prior map
B(x, y) described in [33] to reweight saliency.

The low-level saliency map with priors applied is thus
given by:

Sb = S · D · G · B (8)

4.2. Grabcut Segmentation

The saliency map Sb may contain inaccurate foreground
boundaries for parts of the object that do not exhibit strong
pop-out structure. Boundary refinement is a common post-
processing step employed in existing salient object detec-
tion systems (e.g. [6][25][21][26][12]). Similar to [22], we
use Grabcut based boundary refinement to improve object
boundaries using appearance information. The foreground
model is initialized with a binary mask obtained by apply-
ing a threshold α0 to Sb. The output Grabcut segmentation
maskA is used to prune non-foreground areas from Sb. The
refined saliency map is thus given by

Sg = A · Sb (9)

4.3. Implementation Details

The discrete version of the angular density function f is
implemented using a histogram-based approximation, de-
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Figure 5. Performance of our depth feature (Ours[F]) plotted
against performance of contrast-based depth features: depth con-
trast (DC), signed depth contrast (SDC), and ACSD [16] on
RGBD1000. Also plotted is our feature using the density func-
tions f and g with t = σ/2 (Ours[f]).

noted as f̃ . Let h (i, P,B (P, t)) be an n bin polar occu-
pancy histogram, where bin i is 1 if the corresponding an-
gular range contains an angle between the centroids of P
and a patch in B (P, t), and 0 otherwise. We set f̃ to be
equal to the fill ratio of h.

f̃ =
1

n

n∑
i=1

h (i, P,B (P, t)) (10)

The distribution function F is computed numerically us-
ing F̃ by sampling f̃ at m equally spaced points across the
integration range such that:

F (P ) =
1

m

m∑
i=1

f̃

(
P,B

(
P,
i · σ
m

))
. (11)

Similarly, we define G̃ to evaluate G:

G̃(P ) =
1

m

m∑
i=1

1− 1

2π
· g
(
P,
i · σ
m

)
. (12)

5. Experiments
The performance of our saliency system is evalu-

ated on two datasets for RGB-D salient object detection.
RGBD1000 [25] contains 1000 structured light depth and
RGB images. NJUDS2000 [16] contains 2000 disparity and
RGB images computed from stereo image pairs.

The proposed Local Background Enclosure feature is
compared against three types of depth-contrast based fea-
tures on RGBD1000. These are: depth-contrast (DC) com-
puted using KDE [25]; depth contrast with signed depth
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Figure 6. Quantitative comparisons of performance over RGBD1000 dataset. (a) PR curves showing the effect of each component of the
saliency system. P and GC refer to prior application and Grabcut refinement respectively. (b) PR curve of our saliency system against
state-of-the-art RGB-D saliency systems. (c) F-measure of the different systems.
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Figure 7. Quantitative comparisons of performance over NJUDS2000 dataset. (a) PR curves showing the effect of each component of the
saliency system. P and GC refer to prior application and Grabcut refinement respectively. (b) PR curve of our saliency system against
state-of-the-art RGB-D saliency systems. (c) F-measure of the different systems.

(SDC) such that patches with lower average depth do not
contribute to the contrast score; and ACSD [13]. Addition-
ally, in order to verify the contribution of using the distribu-
tion functions, we compute the product of the density func-
tions f(P, t) · g(P, t) with fixed threshold t = σ/2.

We then evaluate the contribution of prior application
and Grabcut refinement on our salient object detection sys-
tem on both datasets. Finally, we compare our salient object
detection system with three state-of-the-art RGB-D salient
object detection systems: LMH [25], ACSD [16], and a re-
cently proposed method that exploits global priors, which
we refer to as GP [26]. We also include comparisons with
three state-of-the-art 2D saliency algorithms DSR [18], HS
[30], and MC [15] on RGBD1000.

5.1. Evaluation Metrics

We present the precision-recall curve and mean F-score
to evaluate algorithm performance. The F-score is com-
puted from the saliency output using an adaptive threshold
equal to twice the mean of the image [1]. Note that the F-

score is calculated as:

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

(13)

where β = 0.3 to weigh precision more than recall [1].

5.2. Experimental Setup

We set n = 32 histogram bins and m = 10 evaluation
steps in our implementation of F and G respectively. These
two values were found to provide a good trade-off between
accuracy and efficiency for general use. The radius of the
neighbourhood NP should be set to equal the expected ra-
dius of the largest object to detect, thus we set it to half the
image diagonal for general use. We use SLIC [2] on the
colour image to generate the set of patches, with the num-
ber of patches set to the length of the diagonal of the image
in pixels.

Our saliency method has one parameter - the threshold
α0 used to generate the foreground mask for Grabcut ini-
tialisation. We empirically set this to α0 = 0.8 in the exper-
iments.
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5.3. Results

Figure 5 shows that our method performs significantly
better than the depth contrast based methods. It also demon-
strates that using the distribution function gives improved
results compared to using the density functions evaluated at
fixed threshold t.

Our saliency system gives the highest F-score on both
datasets, with GP providing the second best performance.
We also produce the overall best PR curve on both datasets.
This demonstrates that our feature is able to identify salient
structure from depth more effectively than existing contrast-
based methods.

Figure 8 shows the output of our salient detection sys-
tem compared with state-of-the-art methods. Note that the
other methods tend to have a high number of false posi-
tives due to depth contrast in background regions, for exam-
ple depth change across a flat table is registered as salient
by ACSD in the second row. The angular statistics em-
ployed by our depth feature provide a more robust measure
of salient structure.

6. Conclusion
In this paper, we have proposed a novel depth feature

that exploits depth background enclosure to detect salient
objects in RGB-D images. We incorporate this feature into
a salient object detection system using depth prior, spatial
prior, and Grabcut refinement. Our approach out-performs
existing methods on two publicly available RGB-D salient
object detection datasets.
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Figure 8. Comparison of output saliency maps. Left to right: rgb, depth, groundtruth, ours, GP, ACSD, LMH
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