Adherent Raindrops Detection and Removal from Long Range Trajectories
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Modeling of Blurred Raindrop Methodology
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(a) Imagery model (b) Clear raindrop (c) Blurred raindrop

The pipeline of our method.

(a) Raindrop model. (b) Appearance of a clear raindrop. (c) Appearance of blurred raindrop observed on the image
plane.
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Modeling In Spatio-temporal Space
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tora N (m) Raindrop features and labeling using the features. (a) Accumulated motion consistency MC. (b) Accumulated
: appearance consistency AC. (c) Accumulated sharpness SH. (d) Mixture level estimation A. (e) Binary labeling of the
> b N raindrop area. (f) Multiple labeling of the mixture level.
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(a) Spatio-temporal space (b) Dense trajectories (c) Nodes of a trajectory

Detection

Data 1: synthetic raindrops — thick raindrops — car mounted camera
~ Ground truth Proposed

Spatio-temporal space and dense trajectories. (a) 3D Spatio-temporal space; (b) A 2D slice visualizes the dense
trajectories. (c) A trajectory consists of a number of concatenated nodes.
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Dense trajectories
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(c) Scene with a thin raindrop

Video in rainy scenes and events on the trajectories. (a) A clear day scene. (b) A scene with a thick raindrop. (c) A
scene with a thin raindrop. The clear scene data is from [9] Four trajectory events are labeled as, A: Occluded by a
solid non-raindrop object and drifted. B: Occluded by a thick raindrop and drifted. C: Occluded by a thin raindrop
and drifted. D: Occluded by a thin raindrop but not drifted.
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Appearance Analysis
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Event A: Non-raindrop occlusion and drift
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Event B: Thick raindrop occlusion and drift
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Precision-recall curve on detection for the methods. The detection accuracy is evaluated at a pixel level. Dash lines
indicates the range where no data is available.
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Event C: Thin raindrop occlusion and drift
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- Data O: thick raindrop

Ground truth Proposed Eigen et al. (2013) You et al. (2013)

Event D: Thin raindrop occlusion, no drift
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Appearance of trajectories

Motion Filed Completion

Data O: thick raindrop Data 1: thick raindrops
OF of ground truth OF of input OF of repaired video OF of ground truth OF of input OF of repaired video
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Data 2: thin raindrops Data 3: thick and thin raindrops
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" - - | B - The raindrop removal results.

Comparison on motion field estimation before and after raindrop removal.
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