

Introduction to Compiler Design: optimization and backend issues

Andy Pimentel

Computer Systems Architecture group andy@science.uva.nl

Compilers: Organization Revisited

- Optimizer
 - Independent part of compiler
 - Different optimizations possible
 - IR to IR translation

Flow graph

- Nodes are basic blocks
 - Basic blocks are single entry and single exit
- Edges represent control-flow
- Abstract Machine Code
 - Including the notion of functions and procedures
- Symbol table(s) keep track of scope and binding information about names

- 1. Determine the leaders, which are:
 - The first statement
 - Any statement that is the target of a jump
 - Any statement that immediately follows a jump
- 2. For each leader its basic block consists of the leader and all statements up to but not including the next leader

Partitioning into basic blocks (cont'd)

Structure within a basic block:

- Abstract Syntax Tree (AST)
 - Leaves are labeled by variable names or constants
 - Interior nodes are labeled by an operator
- Directed Acyclic Graph (DAG)
- C-like
- 3 address statements (like we have already seen)

Directed Acyclic Graph

Like ASTs:

- Leaves are labeled by variable names or constants
- Interior nodes are labeled by an operator
- Nodes can have variable names attached that contain the value of that expression
- Common subexpressions are represented by multiple edges to the same expression

Suppose the following three address statements:

1.
$$x = y$$
 op z
2. $x = op y$
3. $x = y$
 $if(i \le 20)$... will be treated like case 1 with x undefined

- If *node*(y) is undefined, create leaf labeled y, same for z if applicable
- Find node *n* labeled *op* with children *node*(*y*) and *node*(*z*) if applicable. When not found, create node *n*. In case 3 let *n* be *node*(*y*)
- Make *node*(x) point to n and update the attached identifiers for x

CSA Computer Systems

Architecture

- On basic blocks in the intermediate representation
 - Machine independent optimizations
- As a post code-generation step (often called peephole optimization)
 - On a small "instruction window" (often a basic block)
 - Includes machine specific optimizations

Examples

- Function-preserving transformations
 - Common subexpression elimination
 - Constant folding
 - Copy propagation
 - Dead-code elimination
 - Temporary variable renaming
 - Interchange of independent statements

Transformations on basic blocks (cont'd)

- Algebraic transformations
- Machine dependent eliminations/transformations
 - Removal of redundant loads/stores
 - Use of machine idioms

- If the same expression is computed more than once it is called a common subexpression
- If the result of the expression is stored, we don't have to recompute it
- Moving to a DAG as IR, common subexpressions are automatically detected!

 $x = a + b \qquad x = a + b$... $\Rightarrow \qquad \dots$ $y = a + b \qquad y = x$

- Compute constant expression at compile time
- May require some emulation support

$$x = 3 + 5 \qquad x = 8$$

...
$$\Rightarrow \qquad \dots$$

$$y = x * 2 \qquad y = 16$$

Ň

University of

Amsterdam

- Propagate original values when copied
- Target for dead-code elimination

$$x = y \qquad x = y$$

...
$$\Rightarrow \qquad \dots$$

$$z = x * 2 \qquad z = y * 2$$

- A variable x is dead at a statement if it is not used after that statement
- An assignment x = y + z where x is dead can be safely eliminated
- Requires live-variable analysis (discussed later on)

t1 = a + b		t1 = a + b
$t^2 = t^1 * 2$		t2 = t1 * 2
•••	\Rightarrow	•••
t1 = d - e		t3 = d - e
c = t1 + 1		c = t3 + 1

- If each statement that defines a temporary defines a new temporary, then the basic block is in normal-form
 - Makes some optimizations at BB level a lot simpler (e.g. common subexpression elimination, copy propagation, etc.)

- There are many possible algebraic transformations
- Usually only the common ones are implemented

$$x = x + 0$$

$$x = x * 1$$

$$x = x * 2 \Rightarrow x = x << 1$$

$$x = x^2 \Rightarrow x = x * x$$

Machine dependent eliminations/transformations

- Removal of redundant loads/stores
 - 1 mov R0, a
 - 2 mov a, R0 // can be removed
- Removal of redundant jumps, for example
 - 1 beq ..., Lx bne ..., Ly2 j $Ly \Rightarrow Lx$: ... 2 U
 - 3 \$Lx:
- Use of machine idioms, e.g.,
 - Auto increment/decrement addressing modes
 - SIMD instructions
- Etc., etc. (see practical assignment)

- Global optimizations
 - Global common subexpression elimination
 - Global constant folding
 - Global copy propagation, etc.
- Loop optimizations
- They all need some dataflow analysis on the flow graph

Code motion

- Decrease amount of code inside loop
- Take a loop-invariant expression and place it before the loop

while
$$(i \le limit - 2) \Rightarrow t = limit - 2$$

while $(i \le t)$

University

Amsterdam

Induction variable elimination

- Variables that are locked to the iteration of the loop are called induction variables
- Example: in for (i = 0; i < 10; i++) i is an induction variable</p>
- Loops can contain more than one induction variable, for example, hidden in an array lookup computation
- Often, we can eliminate these extra induction variables

Strength reduction

- Strength reduction is the replacement of expensive operations by cheaper ones (algebraic transformation)
- Its use is not limited to loops but can be helpful for induction variable elimination

i = i + 1		i = i + 1
t1 = i * 4	\Rightarrow	t1 = t1 + 4
t2 = a[t1]		t2 = a[t1]
if $(i < 10)$ goto top		if (<i>i</i> < 10) goto top

Architecture

Introduction to Compiler Design – A. Pimentel – p. 24/127

Induction variable elimination (2)

- Note that in the previous strength reduction we have to initialize *t*1 before the loop
- After such strength reductions we can eliminate an induction variable

i = i + 1		t1 = t1 + 4
t1 = t1 + 4	\Rightarrow	t2 = a[t1]
t2 = a[t1]		if $(t1 < 40)$ goto top
if $(i < 10)$ goto top		

Dominator relation

- Node A dominates node B if all paths to node B go through node A
- A node always dominates itself

We can construct a tree using this relation: the Dominator tree

Dominator tree example

- A loop has a single entry point, the header, which dominates the loop
- There must be a path back to the header
- Loops can be found by searching for edges of which their heads dominate their tails, called the backedges
- Given a backedge $n \rightarrow d$, the natural loop is d plus the nodes that can reach n without going through d


```
procedure insert(m) {
  if (not m \in loop) {
    loop = loop \cup m
    push(m)
stack = \emptyset
loop = \{d\}
insert(n)
while (stack \neq 0) {
  m = \text{pop}()
  for (p \in pred(m)) insert(p)
}
```

CSA

- When two backedges go to the same header node, we may join the resulting loops
- When we consider two natural loops, they are either completely disjoint or one is nested inside the other
- The nested loop is called an inner loop
- A program spends most of its time inside loops, so loops are a target for optimizations. This especially holds for inner loops!

Our example revisited

Our example revisited

Natural loops:

- 1. backedge $10 \rightarrow 7$: {7,8,10} (the inner loop)
- 2. backedge 7 -> 4: {4,5,6,7,8,10}
- 3. backedges 4 -> 3 and 8 -> 3: {3,4,5,6,7,8,10}
- 4. backedge 9 -> 1: the entire flow graph

CSA

- A flow graph is reducible when the edges can be partitioned into forward edges and backedges
- The forward edges must form an acyclic graph in which every node can be reached from the initial node
- Exclusive use of structured control-flow statements such as if-then-else, while and break produces reducible control-flow
- Irreducible control-flow can create loops that cannot be optimized

- Irreducible control-flow graphs can always be made reducible
- This usually involves some duplication of code

Dataflow abstraction

- Unbounded number of execution paths
- skip loop, 1 iteration etc..
- So abstract details

- Possible values and definitions of variable a at point p.
- Abstraction:
 - Values of a at point p: {1,243}
 - Definitions reaching $p: \{d_1, d_3\}$

• Check if:

- Variable *x* is reached by one definiton
- Definition assigns a constant to x
- Abstraction: a is not a constant at p (NAC)

CSA

Computer Systems Architecture

Dataflow analysis example

<pre>int foo(int x, int y) {</pre>											
			if	(x)							
				y +=	2;						
			el	se							
				y +=	3;						
			re	turn y	;						
		}									
No dataflow analysis (-O0)					With dataflow analysis (-O1)						
	sw	\$4,8(\$fp)	#	x			move	9	\$2,\$5	#	У
	SW	\$5,12(\$fp)	#	У			beq	\$4,\$	30,\$L14		
	lw	\$2,8(\$fp)					addu	ı	\$2,\$2,2		
	beq	\$2,\$0,\$L2					j	\$L15	5		
	lw	\$2,12(\$fp)				\$L14:	addı	ı	\$2,\$2,3	#	return val
	addı	ı \$3,\$2,2				\$L15:	j	\$31			
	SW	\$3,12(\$fp)									
	j	\$L3									
\$L2:	lw	\$2,12(\$fp)									
	addı	ı \$3,\$2,3									
	SW	\$3,12(\$fp)									
\$L3:	lw	\$2,12(\$fp)	נ #	return	val		I	ntroductio	n to Compiler Desi	gn –	A. Pimentel – p. 37/127

- Data analysis is needed for global code optimization, e.g.:
 - Is a variable live on exit from a block? Does a definition reach a certain point in the code?
- Dataflow equations are used to collect dataflow information
 - A typical dataflow equation has the form $out[S] = gen[S] \cup (in[S] - kill[S])$
- The notion of generation and killing depends on the dataflow analysis problem to be solved
- Let's first consider Reaching Definitions analysis for structured programs

- A definition of a variable x is a statement that assigns or may assign a value to x
- An assignment to x is an unambiguous definition of x
- An ambiguous assignment to x can be an assignment to a pointer or a function call where x is passed by reference

- When x is defined, we say the definition is generated
- An unambiguous definition of x kills all other definitions of x
- When all definitions of x are the same at a certain point, we can use this information to do some optimizations
- Example: all definitions of x define x to be 1. Now, by performing constant folding, we can do strength reduction if x is used in z = y * x

- During dataflow analysis we have to examine every path that can be taken to see which definitions reach a point in the code
- Sometimes a certain path will never be taken, even if it is part of the flow graph
- Since it is undecidable whether a path can be taken, we simply examine all paths
- This won't cause false assumptions to be made for the code: it is a conservative simplification
 - It merely causes optimizations not to be performed

Architecture

The building blocks

- The in-set to the code inside the loop is the in-set of the loop plus the out-set of the loop: $in[S1] = in[S] \cup out[S1]$
- The out-set of the loop is the out-set of the code inside: out[S] = out[S1]
- Fortunately, we can also compute out[S1] in terms of in[S1]: $out[S1] = gen[S1] \cup (in[S1] - kill[S1])$

- I = in[S1], O = out[S1], J = in[S], G = gen[S1] and K = kill[S1]
- $I = J \cup O$

$$O = G \cup (I - K)$$

●
$$O^1 = G \cup (I^1 - K) = G \cup (J - K)$$

■
$$I^2 = J \cup O^1 = J \cup G \cup (J - K) = J \cup G$$

■
$$O^2 = G \cup (I^2 - K) = G \cup (J \cup G - K) = G \cup (J - K)$$

• $O^1 = O^2$ so $in[S1] = in[S] \cup gen[S1]$ and out[S] = out[S1]

Reaching definitions example

CSA

Computer Systems Architecture In reality, dataflow analysis is often performed at the granularity of basic blocks rather than statements

- Programs in general need not be made up out of structured control-flow statements
- We can do dataflow analysis on these programs using an iterative algorithm
- The equations (at basic block level) for reaching definitions are:

$$in[B] = \bigcup_{P \in pred(B)} out[P]$$

 $out[B] = gen[B] \cup (in[B] - kill[B])$


```
for (each block B) out[B] = gen[B]
do {
   change = false
  for (each block B) {
     in[B] = \bigcup
                      out[P]
             P \in pred(B)
     oldout = out[B]
     out[B] = gen[B] \cup (in[B] - kill[B])
     if (out[B] \neq oldout) change = true
} while (change)
```


Reaching definitions: an example

Block B	Ini	tial	Pas	ss 1	Pass 2		
	in[B]	out[B]	in[B]	out[B]	in[B]	out[B]	
B1	000 0000	111 0000	000 0000	111 0000	000 0000	111 0000	
B2	000 0000	000 1100	111 0011	001 1110	111 1111	001 1110	
B3	000 0000	000 0010	001 1110	000 1110	001 1110	000 1110	
B4	000 0000	000 0001	001 1110	001 0111	001 1110	001 0111	

CSA

- An expression e is available at a point p if every path from the initial node to p evaluates e, and the variables used by e are not changed after the last evaluations
- An available expression e is killed if one of the variables used by e is assigned to
- An available expression *e* is generated if it is evaluated
- Note that if an expression *e* is assigned to a variable used by *e*, this expression will not be generated

Instruction sequence	Available expressions		
	Ø		
a = b + c			
	$\{b+c\}$		
b = a - d			
	$\{a-d\}$		
c = b + c			
	$\{a - d\}$		
d = a - d			
	Ø		

- e_gen set for B:
 - Loop through instructions in B in order
 - For every instruction i: x = y + z
 - Add expression y + z to e_gen set
 - Remove all expressions containing x from e_gen set
- e_kill set for B
 - All expressions containing variables defined in B.

Available expressions are mainly used to find common subexpressions

Dataflow equations:

$$out[B] = e_gen[B] \cup (in[B] - e_kill[B])$$
$$in[B] = \bigcap_{P \in pred(B)} out[P] \text{ for B not initial}$$

 $in[B1] = \emptyset$ where B1 is the initial block

- A variable is live at a certain point in the code if it holds a value that may be needed in the future
- Solve backwards:
 - Find use of a variable
 - This variable is live between statements that have found use as next statement
 - Recurse until you find a definition of the variable

University

Amsterdam

- Using the sets use[B] and def[B]
 - *def*[B] is the set of variables assigned values in B prior to any use of that variable in B
 - *use*[B] is the set of variables whose values may be used in B prior to any definition of the variable
- A variable comes live into a block (in *in*[*B*]), if it is either used before redefinition or it is live coming out of the block and is not redefined in the block
- A variable comes live out of a block (in *out*[B]) if and only if it is live coming into one of its successors

University

Amsterdam

$$in[B] = use[B] \cup (out[B] - def[B])$$
$$out[B] = \bigcup_{S \in succ[B]} in[S]$$

Note the relation between reaching-definitions equations: the roles of *in* and *out* are interchanged

_

_

	Reaching definitions	Available expressions	Live variables
Domain	Set of definitions	Set of expressions	Set of variables
Direction	Forward	Forward	Backwards
Transfer function	$gen[B] \cup (x - kill[B])$	$e_gen[B] \cup (x - e_kill[B])$	$use[B] \cup (x - def[B])$
Boundary	$OUT[entry] = \emptyset$	$OUT[entry] = \emptyset$	$IN[exit] = \emptyset$
Meet operator	U	U	\cap
Initialize	$OUT[B] = \emptyset$	OUT[B] = U	$IN[B] = \emptyset$

Global common subexpression elimination

- First calculate the sets of available expressions
- For every statement *s* of the form x = y + z where y + z is available do the following
 - Search backwards in the graph for the evaluations of y+z
 - Create a new variable *u*
 - Replace statements w = y + z by u = y + z; w = u
 - Replace statement *s* by x = u

CSA

Computer Systems Architecture

Before global common subexpression elimination

After global common subexpression elimination

- Suppose a copy statement s of the form x = y is encountered. We may now substitute a use of x by a use of y if
 - Statement s is the only definition of x reaching the use
 - On every path from statement *s* to the use, there are no assignments to *y*

University

Amsterdam

- To find the set of copy statements we can use, we define a new dataflow problem
- An occurrence of a copy statement generates this statement
- An assignment to x or y kills the copy statement x = y
- Dataflow equations:

$$out[B] = c_gen[B] \cup (in[B] - c_kill[B])$$
$$in[B] = \bigcap_{P \in pred(B)} out[P] \text{ for B not initial}$$

 $in[B1] = \emptyset$ where B1 is the initial block

- For each copy statement s: x = y do
 - Determine the uses of x reached by this definition of x
 - Determine if for each of those uses this is the only definition reaching it ($\rightarrow s \in in[B_{use}]$)
 - If so, remove *s* and replace the uses of x by uses of y

Copy propagation example

CSA

- 1. Mark invariant those statements whose operands are constant or have all reaching definitions outside the loop
- 2. Repeat step 3 until no new statements are marked invariant
- 3. Mark invariant those statements whose operands either are constant, have reaching definitions outside the loop, or have exactly one reaching definition that is marked invariant

- 1. Create a pre-header for the loop
- 2. Find loop-invariant statements
- 3. For each statement s defining x found in step 2, check that (a) it is in a block that dominate all axits of the loop
 - (a) it is in a block that dominate all exits of the loop
 - (b) x is not defined elsewhere in the loop
 - (c) all uses of x in the loop can only be reached from this statement s
- 4. Move the statements that conform to the pre-header

Code motion (cont'd)

Computer Systems Architecture

CSA

- A basic induction variable *i* is a variable that only has assignments of the form $i = i \pm c$
- Associated with each induction variable j is a triple (i, c, d)where i is a basic induction variable and c and d are constants such that j = c * i + d
- In this case *j* belongs to the family of *i*
- The basic induction variable *i* belongs to its own family, with the associated triple (i, 1, 0)

- Find all basic induction variables in the loop
- Find variables k with a single assignment in the loop with one of the following forms:
 - k = j * b, k = b * j, k = j/b, k = j + b, k = b + j, where *b* is a constant and *j* is an induction variable
- If j is not basic and in the family of i then there must be
 - No assignment of i between the assignment of j and k
 - No definition of j outside the loop that reaches k

- Consider each basic induction variable *i* in turn. For each variable *j* in the family of *i* with triple (i, c, d):
 - Create a new variable *s*
 - Replace the assignment to j by j = s
 - Immediately after each assignment $i = i \pm n$ append s = s + c * n
 - Place *s* in the family of *i* with triple (i, c, d)
 - Initialize *s* in the preheader: s = c * i + d

Strength reduction for induction variables (cont'd)

- Consider each basic induction variable *i* only used to compute other induction variables and tests
- Take some *j* in *i*'s family such that *c* and *d* from the triple (*i*,*c*,*d*) are simple
- Rewrite tests if (*i* relop *x*) to r = c * x + d; if (j relop r)
- Delete assignments to *i* from the loop
- Do some copy propagation to eliminate j = s assignments formed during strength reduction

- Aliases, e.g. caused by pointers, make dataflow analysis more complex (uncertainty regarding what is defined and used: x = *p might use any variable)
- Call by reference parameters will also introduce aliases
- Use dataflow analysis to determine what a pointer might point to
- Without alias analysis optimization possibilities will be limited

University

Amsterdam

Alias analysis example

a. Program fragment

 $u \leftarrow M[t]$ $\begin{array}{rcl} M[x] & \leftarrow & r \\ w & \leftarrow & M[t] \end{array}$

$$b \leftarrow u + w$$

a. Program fragment				
U	\leftarrow	M[t]		
M[x]	\leftarrow	r		
W	\leftarrow	M[t]		
b	\leftarrow	u+w		

b. After GCSE 1: $z \leftarrow M[t]$ 2: $u \leftarrow z$ 3: $M[x] \leftarrow r$ 4: $w \leftarrow z$ 5: $b \leftarrow u+w$

CSA

Computer Systems Architecture U

b. After GCSE a. Program fragment $\leftarrow M[t]$ $M[x] \leftarrow r$ $w \leftarrow M[t]$ 3: $b \leftarrow u + w$

1: $z \leftarrow M[t]$ 2: $u \leftarrow z$ $M[x] \leftarrow r$ 4: $w \leftarrow z$ 5: $b \leftarrow u + w$

c. Copy Prop on
$$u \leftarrow z$$

1: $z \leftarrow M[t]$
3: $M[x] \leftarrow r$
4: $w \leftarrow z$
5: $b \leftarrow z+w$

CSA

Computer Systems Architecture

a. F	a. Program fragment				
И	\leftarrow	M[t]		
M[x]	$x] \leftarrow$	r			
W	\leftarrow	M[t]		
b	\leftarrow	<i>u</i> +	W		
c. (Copy Pre	op or	$u \leftarrow z$		
1:	Z	\leftarrow	M[t]		
3:	M[x]	\leftarrow	r		
4:	W	\leftarrow	Z		
5:	b	\leftarrow	z + w		

b. After GCSE 1: $z \leftarrow M[t]$ 2: $u \leftarrow z$ 3: $M[x] \leftarrow r$ 4: $w \leftarrow z$ 5: $b \leftarrow u+w$

d. Copy Prop on $w \leftarrow z$ 1: $z \leftarrow M[t]$ 3: $M[x] \leftarrow r$ 5: $b \leftarrow z+z$

- University of Amsterdam
- *in*[*B*] contains for each pointer *p* the set of variables to which *p* could point at the beginning of block *B*
 - Elements of *in*[*B*] are pairs (*p*,*a*) where *p* is a pointer and *a* a variable, meaning that *p* might point to *a*
- out[B] is defined similarly for the end of B

- $trans_B$ is composed of $trans_s$, for each stmt s of block B
 - If s is p = &a or $p = \&a \pm c$ in case a is an array, then $trans_s(S) =$
 - $(S \{(p, b) | \text{any variable b}\}) \cup \{(p, a)\}$
 - If s is $p = q \pm c$ for pointer q and nonzero integer c, then

 $trans_{s}(S) = (S - \{(p,b) | \text{any variable b}\})$ $\cup \{(p,b) | (q,b) \in \mathbb{R} \}$

S and b is an array variable}

• If s is
$$p = q$$
, then
 $trans_s(S) = (S - \{(p, b) | any variable b\})$
 $\cup \{(p, b) | (q, b) \in S\}$

University

Amsterdam

- If *s* assigns to pointer *p* any other expression, then $trans_s(S) = S - \{(p,b) | any variable b\}$
- If *s* is not an assignment to a pointer, then $trans_s(S) = S$
- Dataflow equations for alias analysis:

$$out[B] = trans_B(in[B])$$
$$in[B] = \bigcup_{P \in pred(B)} out[P]$$

where $trans_B(S) = trans_{s_k}(trans_{s_{k-1}}(\cdots(trans_{s_1}(S))))$

Systems Architecture

CSA

CSA

- In reaching definitions analysis (to determine *gen* and *kill*)
 - \rightarrow statement *p = a generates a definition of every variable *b* such that *p* could point to *b*
 - $\rightarrow *p = a$ kills definition of *b* only if *b* is not an array and is the only variable *p* could possibly point to (to be conservative)
- In liveness analysis (to determine *def* and *use*)
 - $\rightarrow *p = a$ uses p and a. It defines b only if b is the unique variable that p might point to (to be conservative)
 - $\rightarrow a = *p$ defines *a*, and represents the use of *p* and a use of any variable that *p* could point to

University

Amsterdam

C-code

MIPS example: CSE

MIPS assembly (-O1)

j

.end

int x,y;		.ent	foo
int *p;	foo:		
		lw	\$2,x
int foo() {		lw	\$3,y
int r;		addu	\$2,\$2,\$3
		#use	
r = x + y;		lw	\$3,p
asm volatile ("#use"::"r	"(r));	li	\$2,0x0000000a
*p = 10;		SW	\$2,0(\$3)
r = x + y;		lw	\$3,x
return r;		lw	\$2,y
}		addu	\$2,\$3,\$2

CSA

}

Computer Systems Architecture foo

\$31

C-code

MIPS assembly (-O1)

int *p;	.ent	foo
	foo:	
<pre>int foo(int x, int y) {</pre>	li	\$4,0x0000001
int r;	#use	
	lw	\$3,p
x = 1;	li	\$2,0x000000a
asm volatile ("#use"::"r"(x));	; SW	\$2,0(\$3)
*p = 10;	addu	\$2,\$5,1
r = x + y;	j	\$31
return r;	.end	foo
}		

MIPS example: CP cont'd

C-code

MIPS assembly (-O1)

int *p;		.ent	foo
	foo:		
<pre>int foo(int x, int y) {</pre>		li	\$2,0x0000001
int r;		SW	\$2,0(\$sp)
		#use	
x = 1;		lw	\$3,p
&x		li	\$2,0x000000a
asm volatile ("#use"::"r"(z	x));	SW	\$2,0(\$3)
*p = 10;		lw	\$2,0(\$sp)
r = x + y;		addu	\$2,\$5,\$2
return r;		j	\$31
}		.end	foo

CSA

University of Amsterdam

Instruction selection

- Was a problem in the CISC era (e.g., lots of addressing modes)
- RISC instructions mean simpler instruction selection
- However, new instruction sets introduce new, complicated instructions (e.g., multimedia instruction sets)

- Tree-based methods (IR is a tree)
 - Maximal Munch
 - Dynamic programming
 - Tree grammars
 - Input tree treated as string using prefix notation
 - Rewrite string using an LR parser and generate instructions as side effect of rewriting rules
- If the DAG is not a tree, then it can be partitioned into multiple trees

- Every target instruction is represented by a tree pattern
- Such a tree pattern often has an associated cost
- Instruction selection is done by tiling the IR tree with the instruction tree patterns
- There may be many different ways an IR tree can be tiled, depending on the instruction set

temp 1 const a

Name	Effect	Trees	Cycle
_	r _i	temp	0
ADD	$r_i \leftarrow r_j + r_k$	*	1
MUL	$r_i \leftarrow r_j * r_k$	*	1
ADDI	$r_i \leftarrow r_j + c$	+ const const	1
LOAD	$r_i \leftarrow M[r_j + c]$	mem mem mem mem + + const const const	3
STORE	$M[r_j + c] \leftarrow r_i$	move move move move mem mem mem mem + const const	3
MOVEM	$M[r_j] \leftarrow M[r_i]$	move mem mem	6

Name	Effect	Trees	Cycles
_	r _i	temp	0
ADD	$r_i \leftarrow r_j + r_k$	+	1
MUL	$r_i \leftarrow r_j * r_k$	*	1
ADDI	$r_i \leftarrow r_j + c$	const const	1
LOAD	$r_i \leftarrow M[r_j + c]$	mem mem mem mem + + const const const	3
STORE	$M[r_j + c] \leftarrow r_i$	move move move move mem mem mem mem + const const	3
MOVEM	$M[r_j] \leftarrow M[r_i]$	move mem mem	6

Name	Effect	Trees	Cycles
_	r _i	temp	0
ADD	$r_i \leftarrow r_j + r_k$	+	1
MUL	$r_i \leftarrow r_j * r_k$	*	1
ADDI	$r_i \leftarrow r_j + c$	const const	1
LOAD	$r_i \leftarrow M[r_j + c]$	mem mem mem mem + + const const const	3
STORE	$M[r_j + c] \leftarrow r_i$	move move move move mem mem mem mem + const const	3
MOVEM	$M[r_j] \leftarrow M[r_i]$	move mem mem	6

Name	Effect	Trees	Cycles
	r _i	temp	0
ADD	$r_i \leftarrow r_j + r_k$	*	1
MUL	$r_i \leftarrow r_j * r_k$	×	1
ADDI	$r_i \leftarrow r_j + c$	const const	1
LOAD	$r_i \leftarrow M[r_j + c]$	mem mem mem mem + const const	3
STORE	$M[r_j + c] \leftarrow r_i$	move move move move mem mem mem mem + const const	3
MOVEM	$M[r_j] \leftarrow M[r_i]$	move mem mem	6

Tiling examples

Computer Systems Architecture

CSA

The cost of a tiling is the sum of the costs of the tree patterns

- An optimal tiling is one where no two adjacent tiles can be combined into a single tile of lower cost
- An optimum tiling is a tiling with lowest possible cost An optimum tiling is also optimal, but not vice-versa

Optimal Tilings

2:	ADDI	$r2 \leftarrow r0 + a$
3:	MUL	$r1 \leftarrow t1 * r2$
4:	LOAD	$r2 \leftarrow M[r1]$
6:	ADDI	$r3 \leftarrow t2 + c$
7:	LOAD	$r3 \leftarrow M[r3 + d]$
8:	STORE	$M[r2 + b] \leftarrow r3$

2:	ADDI	r2 \leftarrow	r0 + a
3:	MUL	r1 \leftarrow	t1 * a
4:	LOAD	r2 \leftarrow	M[r1]
5 :	ADDI	r3 \leftarrow	r2 + b
7:	ADDI	r2 \leftarrow	t2 + c
8:	ADDI	r2 \leftarrow	r2 + d
8:	MOVEM	M[r3]	\leftarrow M[r2

Computer Systems Architecture

CSA

Optimum tiling

2:	ADDI	$r2 \leftarrow r0 + a$	(1)	2: ADDI	$r2 \leftarrow r0 + a$	(1)
3:	MUL	$\texttt{r1} \leftarrow \texttt{t1} * \texttt{r2}$	(1)	3: MUL	$r1 \leftarrow t1 * r2$	(1)
4:	LOAD	$r2 \leftarrow M[r1]$	(3)	4: LOAD	$r2 \leftarrow M[r1]$	(3)
6:	ADDI	$r3 \leftarrow t2 + c$	(1)	5: ADDI	$r3 \leftarrow r2 + b$	(1)
7:	LOAD	$r3 \leftarrow M[r3 + d]$	(3)	7: ADDI	$r2 \leftarrow t2 + c$	(1)
8:	STORE	$M[r2 + b] \leftarrow r3$	(3)	8: ADDI	$r2 \leftarrow r2 + d$	(1)
				8: MOVEM	$M[r3] \leftarrow M[r2]$	(6)
		total	12		total	14

Computer Systems Architecture

CSA

- Maximal Munch is an algorithm for optimal tiling
 - Start at the root of the tree
 - Find the largest pattern that fits
 - Cover the root node plus the other nodes in the pattern; the instruction corresponding to the tile is generated
 - Do the same for the resulting subtrees
- Maximal Munch generates the instructions in reverse order!

- Dynamic programming is a technique for finding optimum solutions
 - Bottom up approach
 - For each node *n* the costs of all children are found recursively.
 - Then the minimum cost for node *n* is determined.
- After cost assignment of the entire tree, instruction emission follows:
 - Emission(node n): for each leaves l_i of the tile selected at node n, perform Emission(l_i). Then emit the instruction matched at node n

Register allocation...a graph coloring problem

- First do instruction selection assuming an infinite number of symbolic registers
- Build an interference graph
 - Each node is a symbolic register
 - Two nodes are connected when they are live at the same time
- Color the interference graph
 - Connected nodes cannot have the same color
 - Minimize the number of colors (maximum is the number of actual registers)

- Simplify interference graph G using heuristic method (K-coloring a graph is NP-complete)
 - Find a node m with less than K neighbors
 - Remove node *m* and its edges from *G*, resulting in *G'*.
 Store *m* on a stack
 - Color the graph G'
 - Graph *G* can be colored since *m* has less than *K* neighbors

Spill

- If a node with less than K neighbors cannot be found in
 G
 - Mark a node *n* to be spilled, remove *n* and its edges from *G* (and stack *n*) and continue simplification
- Select
 - Assign colors by popping the stack
 - Arriving at a spill node, check whether it can be colored. If not:
 - The variable represented by this node will reside in memory (i.e. is spilled to memory)
 - Actual spill code is inserted in the program

- If there is no interference edge between the source and destination of a move, the move is redundant
- Removing the move and joining the nodes is called coalescing
- Coalescing increases the degree of a node
- A graph that was K colorable before coalescing might not be afterwards

Computer Systems Architecture

Sketch of the algorithm with coalescing

- Label move-related nodes in interference graph
- While interference graph is nonempty
 - Simplify, using non-move-related nodes
 - Coalesce move-related nodes using conservative coalescing
 - Coalesce only when the resulting node has less than
 K neighbors with a significant degree
 - No simplifications/coalescings: "freeze" a move-related node of a low degree → do not consider its moves for coalescing anymore
 - Spill

Select

- Assume a 4-coloring (K = 4)
- Simplify by removing and stacking nodes with < 4 neighbors (g,h,k,f,e,m)</p>

Register allocation: an example (cont'd)

After removing and stacking the nodes g,h,k,f,e,m:

Coalesce now and simplify again

Register allocation: an example (cont'd)

Register allocation: an example (cont'd)

Stacked elements: 4 registers available: R3 m е f k g h f е k k b m b m g g ETC., ETC. h h

Computer Systems Architecture

No spills are required and both moves were optimized away

- Essential for VLIW processors
- Scheduling at basic block level: list scheduling
 - System resources represented by matrix Resources ×
 Time
 - Position in matrix is true or false, indicating whether the resource is in use at that time
 - Instructions represented by matrices Resources ×
 Instruction duration
 - Using dependency analysis, the schedule is made by fitting instructions as tight as possible

University

Amsterdam

- Finding optimal schedule is NP-complete problem ⇒ use heuristics, e.g. at an operation conflict schedule the most time-critical first
- For a VLIW processor, the maximum instruction duration is used for scheduling \Rightarrow painful for memory loads!
- Basic blocks usually are small (5 operations on the average)
 \Rightarrow benefit of scheduling limited \Rightarrow Trace Scheduling

- Schedule instructions over code sections larger than basic blocks, so-called traces
- A trace is a series of basic blocks that does not extend beyond loop boundaries
- Apply list scheduling to whole trace
- Scheduling code inside a trace can move code beyond basic block boundaries ⇒ compensate this by adding code to the off-trace edges

Trace scheduling (cont'd)

Trace scheduling (cont'd)

CSA

Computer Systems Architecture

Introduction to Compiler Design – A. Pimentel – p. 116/127

Trace selection

- Because of the code copies, the trace that is most often executed has to be scheduled first
- A longer trace brings more opportunities for ILP (loop unrolling!)
- Use heuristics about how often a basic block is executed and which paths to and from a block have the most chance of being taken (e.g. inner-loops) or use profiling (input dependent)

Loop unrolling

- Technique for increasing the amount of code available inside a loop: make several copies of the loop body
- Reduces loop control overhead and increases ILP (more instructions to schedule)
- When using trace scheduling this results in longer traces and thus more opportunities for better schedules
- In general, the more copies, the better the job the scheduler can do but the gain becomes minimal

Loop unrolling (cont'd)

Example

```
for (i = 0; i < 100; i++)

a[i] = a[i] + b[i];

becomes

a[i+1] = a[i+1] + b[i+1];

a[i+2] = a[i+2] + b[i+2];

a[i+3] = a[i+3] + b[i+3];

}
```


- Also a technique for using the parallelism available in several loop iterations
- Software pipelining simulates a hardware pipeline, hence its name

Systems Architecture There are three phases: Prologue, Steady state and Epilogue

CSA

- Scheduling multiple loop iterations using software pipelining can create false dependencies between variables used in different iterations
- Renaming the variables used in different iterations is called modulo scheduling
- When using *n* variables for representing the same variable, the steady state of the loop has to be unrolled *n* times

Compiler optimizations for cache performance

Merging arrays (better spatial locality)

int val[SIZE]; struct merge {

int key[SIZE]; \Rightarrow int val, key; };

struct merge m_array[SIZE]

- Loop interchange
- Loop fusion and fission
- Blocking (better temporal locality)


```
for (i = 0; i < 50; i++)
  for (j = 0; j < 100; j++) becomes for (i = 0; i < 50; i++)
     a[j][i] = b[j][i] * c[j][i];
```

```
for (j = 0; j < 100; j++)
                a[j][i] = b[j][i] * c[j][i];
```


University

Amsterdam

- Fuse multiple loops together
 - Less loop control
 - Bigger basic blocks (scheduling)
 - Possibly better temporal locality

```
for (i = 0; i < n; i++) {
    c[i] = a[i] + b[i];
    for (j = 0; j < n; j++)
    d[j] = a[j] * e[j];
    d[j] = a[j] * e[j];
    for (i = 0; i < n; i++) {
        c[i] = a[i] + b[i];
        d[i] = a[i] + b[i];
        d[i] = a[i] * e[i];
        }
    }
}</pre>
```


- Split a loop with independent statements into multiple loops
 - Enables other transformations (e.g. vectorization)
 - Results in smaller cache footprint (better temporal locality)

```
for (i = 0; i < n; i++) {
    for (i = 0; i < n; i++) {
        a[i] = b[i] + c[i];
        d[i] = e[i] * f[i];
        becomes
        for (i = 0; i < n; i++) {
            d[i] = e[i] * f[i];
        }
        d[i] = e[i] * f[i];
    }
}</pre>
```


CSA

Computer Systems Architecture

Perform computations on sub-matrices (blocks), e.g. when multiple matrices are accessed both row by row and column by column

