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Abstract

We use the correspondence between scalar field theory on AdS and induced conformal field theory on its boundary to calculate
correlation functions of logarithmic conformal field theory in arbitrary dimensions. Our calculations utilize the newly proposed
method of nilpotent weights. We derive expressions for the four point function assuming a generic interaction term.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The relationship between field theories in(d+1)-dimensional anti-de Sitter space andd-dimensional conformal
field theories was first suggested by Maldacena [1] and since then much work has been done on various aspects of
this correspondence [2,3]. This conjecture can be stated as follows, consider the actionS[Φ] defined on AdSd+1
and letΦb be the value ofΦ on the boundary

(1)Φ|∂AdS =Φb.

So the partition function of the AdS theory subjected to this constraint is

(2)ZAdS[Φb] =
∫
Φb

DΦ exp
(−S[Φ]),

where the path integral is over configurations fulfilling (1).
The correspondence states that the partition function of AdS theory is the generating functional of the boundary

conformal field theory

(3)ZAdS[Φb] =
〈
exp

( ∫
∂AdS

dx ÔΦb

)〉
.
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The functionΦb is considered as a current which couples to the scalar conformal operatorÔ via a coupling∫
∂AdSdx ÔΦb. This is an elegant and useful result, since it gives a practical way for calculation of correlation

functions of conformal field theory. However since 2- and 3-point function are fixed ( up to a constant) by conformal
invariance, one is specially interested inn > 3. The conformal correlators have been studied for various cases,
e.g., interacting massive scalar field theory [4] or massive spinor field theory [5]. It is also interesting to find
actions on AdS which induce logarithmic conformal field theory (LCFT) on its boundary. Correlation functions in
a logarithmic conformal field theory exhibit logarithmic behavior and first were noted by Gurarie [6]. Logarithmic
operators appear when two (or more) operators are degenerate and have the same dimension, hence the Hamiltonian
becomes non-diagonizable. In the simplest case one has a pairÂ andB̂ transforming as

(4)Â(λz)= λ−∆Â(z), B̂(λz)= λ−∆[
B̂(z)− Â(z) lnλ

]
.

The bulk action which give rise to logarithmic operators on the boundary were first described in [7,8]. Also one
can investigate AdS/LCFT correspondence using the method of nilpotent weights which was introduced in [9] and
then was modified in [10,11]. In Ref. [11] a superfield was defined as

(5)Ô(�x,η)= Â(�x)+ ˆ̄ζ (�x)η+ η̄ζ̂ (�x)+ η̄ηB̂(�x),
whereζ̂ (�x) and ˆ̄ζ (�x) are fermionic fields with the same conformal dimension asÂ(�x) andη̄η acts as the nilpotent
variable. Now it is easy to see that̂O(�x,η) has the following transformation law

(6)Ô(λ�x,η)= λ−(∆+η̄η)Ô(�x,η).
If Ô(�x,η) were the logarithmic operator on the boundary of AdS the corresponding fieldΦ(x,η) on AdS can be
extended as

(7)Φ(x,η)= C(x)+ η̄α(x)+ ᾱ(x)η+ η̄ηD(x),

wherex is (d+1)-dimensional coordinate withx0, x1, . . . , xd components andx = (�x, xd) andxd = 0 corresponds
to the boundary. In Ref. [12] the following action was introduced for free scalar massive superfield with BRST
symmetry

(8)Sf = −1/2
∫
dd+1x

√|g|
∫
dη̄ dη∇Φ(x,η).∇Φ(x,−η)+m2(η)Φ(x,η)Φ(x,−η),

wherem2(η) = m2
1 + η̄ηm2

2 andm2
1,m2

2 are defined to be∆(∆ − d) and (2∆ − d) respectively andg is the
determinant of the metric on AdS.

Expanding the integrand of (8) in powers ofη and η̄, integrating overη and η̄ and writing it in terms of four
components one finds

Sf = −1

2

∫
dd+1x

√|g| [2∇C(x).∇D(x)+ 2m2
1C(x)D(x)+m2

2C
2(x)

(9)+ 2∇ᾱ(x).∇α(x)+ 2m2
1ᾱ(x)α(x)

]
.

We see that the bosonic part of this action is the same as the one proposed in [7]. Also note that in the free
theory, as we expect, the bosonic and fermionic part are decoupled. In the language of superfield the AdS/CFT
correspondence becomes

(10)

〈
exp

∫
dη̄ dη

∫
∂AdS

dd �x Ô(�x,η)Φb(�x,η)
〉
= exp

(−Scl
[
Φb(�x,η)

])
,

whereΦb(�x,η) is the value ofΦ(x,η) on the boundary.
In Ref. [12] the two-point correlation functions were calculated using Eq. (11), now our aim is to calculate

n-point functions with this method. However the method used to calculate two-point functions will not give non-
trivial 4-point functions unless interactions are also added.
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2. Interactions and n-point functions

In order to findn-point functions [4,5,7,8,13] (n� 3)one should consider interaction terms inΦ(x,η) in addition
to the free theory. Furthermore we wish the action to have BRST symmetry so that the correlation functions remain
invariant under BRST transformations. In the language of superfield the infinitesimal BRST transformation is of
the form

(11)δΦ(x,η)= (ε̄η+ η̄ε)Φ(x,η),

where ε̄ and ε are infinitesimal anticommuting parameters. If we consider the interaction term of degreen in
Φ(x,η) the general form is

(12)SI = λ

∫
dd+1x

√|g|
∫
dη̄ dηV,

(13)V =Φ(x,η1) · · ·Φ(x,ηi) · · ·Φ(x,ηn)
with ηi = niη andni ∈Z.

Then change ofV under BRST transformation is given by

(14)δV =Φ(x,η1) · · ·Φ(x,ηi) · · ·Φ(x,ηn)
[
ε̄

n∑
i=1

ηi +
n∑
i=1

η̄i ε

]
.

BRST invariance leads to

(15)
n∑
i=1

ni = 0

which clearly does not have a unique solution. For n even the most symmetric choice is

(16)V =Φ
n
2 (x, η)Φ

n
2 (x,−η).

But for n odd we must choose an antisymmetric division such as

(17)V =Φn−1(x, η)Φ
(
x,−(n− 1)η

)
which is true for anyn regardless of being odd or even.

Let us first consider interaction terms of type (16) forn even

(18)SI =
∫
dd+1x

√|g|
∫
dη̄ dη

λn(η)

n! Φ
n
2 (x, η)Φ

n
2 (x,−η),

(19)λn(η)= λn + λ′
nη̄η.

To write SI in terms of its four components, we expand (18) in powers ofη’s, then integrate it over them and we
find:

(20)SI =
∫
dd+1x

√|g|
[
Cn−1(x)

n!
(
λ′
nC(x)+ nλnD(x)

) + λn

(n− 1)!C
n−2(x)ᾱ(x)α(x)

]
.

It is observed that the pure bosonic part ofSI is the same as the one proposed in [7] and the fermionic part despite
the free action is coupled with bosonic fieldC(x), this means that the exact solution of equation of motion for this
action and the one in [7] will be different, but we will show that in tree level to first order inλn the correlation
functions are the same. Now the total action is

(21)S = Sf + SI .
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The equation of motion for the fieldΦ(x,η) is

(22)
(∇2 −m2(η)

)
Φ(x,η)+ λn(η)

(n− 1)!Φ
n
2 (x, η)Φ

n
2−1(x,−η)= 0.

Writing the equation of motion (22) in terms of the four components we have

(23)∇2C(x)− (m1)
2C(x)+ λn

(n− 1)!C
n−1(x)= 0,

(24)∇2α(x)− (m1)
2α(x)+ λn

(n− 1)!C
n−2(x)α(x)= 0,

(25)∇2ᾱ(x)− (m1)
2ᾱ(x)+ λn

(n− 1)!C
n−2(x)ᾱ(x)= 0,

∇2D(x)− (m1)
2D(x)− (m2)

2C(x)+ Cn−2(x)

(n− 1)!
(
(n− 1)λnD(x)+ λ′

nC(x)
)

(26)+ λn

(n− 2)!C
n−3(x)ᾱ(x)α(x)= 0.

We see that as pointed out earlier the equation of motion forD(x) is different with the corresponding one in [7],
also as we expected the fermionic fields to behave like ordinary field with dimension∆ interacting withC(x). The
Dirichlet Green function for this system satisfies the equation

(27)
(∇2 −m2(η)

)
G(x,y, η)= δ(x − y)

together with the boundary condition

(28)G(x,y, η)|xε∂AdS= 0.

The classical fieldΦ(x,η) satisfying equation of motion (22), with Dirichlet boundary condition on∂AdS fulfills
the integral equation

Φ(x,η)=
∫

∂AdS

ddy
√|h|nµ ∂

∂yµ
G(x, y, η)Φb(y, η)

(29)+
∫

AdS

dd+1y
√|g|G(x,y, η) λn(η)

(n− 1)!Φ
n
2 (y, η)Φ

n
2 −1(y,−η),

whereh is the determinant of the induced metric on∂AdS andnµ the unit vector normal to∂AdS and pointing
outwards. We shall denote the surface term in (29) byΦ0(x, η) and the remainder byΦ1(x, η). Then substituting
the classical solution (29) into (21) integrating by part and using the properties of Green function we obtain to tree
level

Scl = 1

2

∫
dd �x√|h|

∫
dη̄ dη nµΦ0(x, η)∂µΦ

0(x,−η)

(30)+
∫
dd+1x

√|g|
∫
dη̄ dη

λn(η)

n!
(
Φ0(x, η)

) n
2
(
Φ0(x,−η)) n2 .

The Green function for this problem is calculated in Ref. [12] substituting it forΦ0(x, η) one obtains

(31)Φ0(x, η)= a(η)

∫
dd �y

(
xd

(xd)2 + |�x − �y|2
)∆+η̄η

Φb(�y,η)
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with

(32)a(η)= Γ (∆+ η̄η)

2πd/2Γ (α + 1)
= a + η̄ηa′.

Using the solution (31), the classical action to first order inλn becomes

SIcl =
∫
dd+1x

∫
dd �y1 · · ·dd �yn

∫
dη̄ dη

(
a(η)

)n (xd)−(d+1)+n(∆+η̄η)∏n
i=1[(xd)2 + |�x − �yi |2]∆+η̄η

(33)×Φb(�y1, η) · · ·Φb(�yn/2, η)Φb(�yn/2+1,−η) · · ·Φb(�yn,−η).
After expanding in powers ofη andη̄ and integrating overη’s, one obtains for the classical solution

SIcl =
an

n!
∫
dd+1x

∫
dd �y1 · · ·dd �yn

[
λ′
nΨ1 + λn

(
Ψ2 +

(
n
a′

a
+ ln

(xd)n∏n
i=1[(xd)2 + |�x − �yi |2]

)
Ψ1

)]
(34)× Jn(�y1 · · · �y1, x)

with

(35)Jn( �y1 · · · �yn, x)= (xd)−(d+1)+n∆∏n
i=1[(xd)2 + |�x − �yi |2]∆

and

(36)Φb(�y1, η) · · ·Φb(�yn/2, η)Φb(�yn/2+1,−η) · · ·Φb(�yn,−η)= Ψ1 + η̄Ψ + �Ψη+ η̄ηΨ2.

Now we can derive the correlation of operator fields on boundary by using Eq. (11). Expanding both sides of
Eq. (10) in powers ofΦb(�x,η) and integrating overη’s then-point functions of different components of̂O(�x,η)
can be found. So the connected part of the tree leveln-point function to orderλn for components of̂O(�x,η) are〈

B̂(�y1) · · · B̂(�yn)
〉
conn

(37)= −an
∫
dd+1x Jn(�y1 · · · �yn, x)

[
λ′
n + λn

(
n
a′

a
+ ln

(xd)n∏n
i=1[(xd)2 + |�x − �yi |2]

)]
,

(38)
〈
B̂(�y1) · · · B̂(�yi−1)Â(�yi)B̂(�yi+1) · · · B̂(�yn)

〉
conn= −λnanIn( �y1 · · · �yn),

(39)
〈
B̂(�y1) · · · B̂(�yi−1)

ˆ̄ζ (�yi)B̂(�yi+1) · · · B̂(�yj )ζ̂ (�yj )B̂(�yj+1) · · · B̂(�yn)
〉
conn= ±λnanIn( �y1 · · · �yn)

with

(40)In( �y1 · · · �yn)=
∫
dd+1x Jn( �y1 · · · �yn, x),

where the plus sign in (35) refers to case(i < n/2, j > n/2) and all the other correlation functions being zero.
As we expected logarithmic terms appear in the correlation functions ofB̂ ’s with themselves and fermionic fields
behave just like ordinary fields of dimension∆, but their fermionic nature inhibits appearing of odd number of
them in nonzero correlation functions. The integralIn can be made simpler after integrating overxd and using
Feynman parameterization [4]. The result for(n= 4) is

(41)I4 = 2∆− d
2

Γ (2∆)

2π
d
2(

ξ1ξ2
∏

i<j yij
) 2

3∆

∞∫
0

F

(
∆,∆,2∆;1− (ξ1 + ξ2)

2

(ξ1ξ2)2
− 4

ξ1ξ2
sinh2(z)

)
dz

with

(42)yij = | �yi − �yj |, ξ1 = y12y34

y14y23
, ξ2 = y12y34

y13y24
.
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Using the generalized Feynman diagrams [14], maybe it had better call them Witten diagrams, one can calculate
one loop contribution to the correlation functions of the scalar field theory we introduced. One observes that the
correlation functions of the operators on the boundary will have the same expected structure of LCFT and some of
the correlation functions that vanished at tree level, will be nonzero.

Coming back to odd powers ofΦ(x,η), choosing it of the form (19) we observe that it is not possible to write
a consistent equation of motion, forΦ(x,η) as a whole. However integrating overη’s, one can derive a consistent
set of equations for the components. Our method does have the weakness that choosing either of the forms (18) and
(19) is arbitrary. Even requiring BRST symmetry does not fix the choice. It is not clear to the authors what extra
requirement is necessary to fix this choice. When the power is even, of course an extra symmetry under reflection
Φ(x,η)→ −Φ(x,η) exists! Therefore only in the case of even powers, a choice can be fixed.
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