

Roberto Valenti, Felix Hageloh

Machine Learning: Pattern Recognition

Lab 6
“Parzen Estimator and K-Nearest-Neighbor”
Roberto Valenti
0493198
Felix Hageloh
0425257
Abstract

This lab shows the implementation of two PCA techniques and highlights which one is better to use in which case. It then goes on with some experiments that give a visualization of what the principal components stand for and how data samples are affected using a PCA projection of the data set. Essentially we could show that PCA projection only preserves information where the greatest variance in the dataset occurs. Furthermore we could show that only using 9 principal components we can already capture about 70% of the total variance of the dataset and that the benefit of including more principal components versus the number of components that we need to include decrease quickly as the number of components increases.
Introduction

We have to implement PCA in two ways, using the covariance matrix of X and using the inner product of X, but first we must prove that both ways are equivalent. First lets assume we found the eigenvector matrix W of the covariance C. Then for one eigenvector w we know that
Cw = λw

where λ is the eigenvalue of w. Furthermore

Cw = XTXw = λw

since C = XTX
We can multiply both sides with X on the left (matrix dimensions agree), to get

X XTXw
=
Xλw
(XXT) (Xw)
=
λ (Xw)
Note now that T = XXT is the inner product of X, so
 T (Xw)
=
λ (Xw)
which implies that Xw is an eigenvector of T!
Lets call v the eigenvector of T then

v = Xw
or
 w = XTv
Thus every eigenvector of C can be mapped onto an eigenvector of T by w = XTv where both vectors have the same corresponding eigenvalue λ.
Also we were ask to show that if v is an eigenvector then also rv is an

eigenvector for r (IR. Let v be an eigenvector of C with eigenvalue λ then we have
C(rv) = r (Cv) = r (λv) = (r λ) v
and thus rv is also an eigenvector of C with eigenvalue rλ.
After this we can implement PCA in both ways, which is straightforward using the mathematical definition.

Implementation
We implemented two functions pca_c and pca_t that return the mean of the data, a matrix containing all eigenvectors of c (or t respectively) and a matrix with all corresponding eigenvalues in its diagonal. Both functions are almost identical and are structured as follows:
· Compute the mean of the data matrix X
· Subtract mean from X
· Compute either C or T
· Compute the eigenvectors and eigenvalues of C or T using MatLab’s eig() function
The rest of the implementation exists of running all required experiments, using the code given in the project description.
We go on only using pca_c for the rest of the lab, since for the image data the resulting covariance matrix is of size 560x560 versus 1965x1965 if we were to use the inner product. In general we can say that it is better to use covariance matrix if the number of features of the data is less than the number of samples, and better to use the inner product if it is the other way round.
For the last two experiments we had to order the eigenvectors according to their eiegnvalues. We achieved this by first summing over the second dimension of the eigenvalue matrix, to get one column vector containing all eigenvalues. Then we use the negative of this vector to sort descending. We can then use the indexes returned from MatLab’s sort() function to sort the eigenvector matrix.
For the last plot of the cumulative variance percentage we used Matlab’s cumsum() function and instead of summing all eigenvalues we use the sum of the variance of X to compute the total variance.

Experiments

[image: image1.jpg]

Figure 1: image of 9 eigenvectors (eigenfaces) sorted by eigenvalue
[image: image2.jpg]

[image: image3.jpg]

[image: image4.jpg]

[image: image5.jpg]

Figure 2: some image reconstructions using a 9 dimensional PCA projection
[image: image6.jpg]x10*

anjeausblg

15 20 25 30 35 40 45 50
Vector

10

Figure 3: the 50 largest eigenvalues

[image: image7.jpg]I
5%
=3

L
o
=3

soueLEA Jo aBEJUSaIad WNS SANEINWND

L
«
=3

0.2

0.1

15 20 25 30 35 40 45 50
Eigenvectors

10

Figure 4: cumulative percentage sum of total variance
Conclusions
Figure 1 shows the images of the nine biggest eigenvectors (in terms of their eigenvalues), also called eigefaces. The eigenvectors obtained through PCA reflect where the biggest variance of the dataset occurs. On the images of the eigenfaces we can make out some areas that are not just grey, but also contain black and white pixels. These are the areas were the images in the dataset are the most different from each other and thus this is where we would preserve data of each image if we were to use this eigenvector for our PCA projection.
If we combine the 9 eigenvectors plotted, we can see that basically we save data around the general contour of the heads. Comparing this to figure 2, where we plot the PCA projection of some images using these 9 eigenvectors, shows that this is indeed where we preserve information. On the images of the PCA projection we can make out the general shape of the head, but nothing else. However, this information appears to give us the greatest discriminative power within this dataset.
To decide how many principal components are sufficient to represent our data, we can use figure 3. It shows that after the tenth greatest eigenvalue we don’t loose much more of the total variance if we strip away the following eigenvalues, or actually their corresponding eigenvectors. The optimal number of components to select in terms of discriminative power versus the dimensionality of the data can be read from the ‘elbow’ of this graph, which is about nine principal components.
This is emphasized by figure 4, where we can read that using the nine biggest principal components preserves about 70% of the total variance. Due to the logarithmic shape of this graph we can see that the benefit of including more principal components versus the number of components that we need to include decrease quickly as the number of components increases.
PAGE
4

