

Roberto Valenti, Felix Hageloh


Machine Learning: Pattern Recognition

Lab 2
“Parzen Estimator and K-Nearest-Neighbor”
Roberto Valenti
0493198
Felix Hageloh
0425257
Abstract

In this lab we examined the effectiveness of two different classification methods, the n-nearest-neighbor and the parzen-estimator. The two methods were tested on two datasets with different dimensions and number of classes. To measure the effectiveness we ran each classifier over a subset of the datasets and recorded the number of misclassifications for each classifier with varying smoothing parameters. To get a better estimate we averaged the result over ten different test runs, each using a different training set. This then gave us an idea on how dependent the results for both methods are on the smoothing parameter, and how it should be adjusted according to different shapes of datasets. 
Introduction

The first task is to design the two classifiers; the parzen estimator and the nearest neighbor. As suggested in the instructions, we will make use of the function sqdist to implement the k-nearest-neighbor method. The parzen estimator is a straight forward implementation of the mathematical definition, also using sqdist.

Next we have to design a function that loops through all different smoothing factors (or values of k) and then for each one loops through all different training sets. We then have to calculate the mean error and standard deviation for each smoothing factor. We will then use those functions on the given test data and plot the classification error versus the smoothing factor for each case. To plot the error together with the standard deviation we can use the errorbar function. Those graphs should then give us an idea how well each classifier performs given different smoothing parameters and different data sets.
Implementation
The two basic functions, the parzen-estimator and the nearest-neighbor method, both take as an input a training set, a test set and a smoothing parameter. The result is a vector containing all probabilities for each point in the test set. For the nearest neighbor function we used sqdist to calculate the square distance of each point in the test set with each point in the training set. Storing them in a matrix and sorting them according to their distance gives an easy means to retrieve the distance of the kth nearest neighbor, as it is simply the kth column of this sorted matrix. The rest is just translating the mathematical definition of both methods into Matlab code.
For getting the mean error and standard deviations for each classifier, we wrote four different functions. The first one is used to calculate the error for the parzen-estimator given two classes:

Function parz_error, arguments: 

Class1 Values, Class2 Values, 

num of different training sets,

lower and upper bound and step size for smoothing parameter
returns:


Vector with all errors for each smoothing parameter,


Vector with associated standard deviations

BEGIN

LOOP through all smoothing parameters by step size

LOOP through all training sets



LOOP through all data vectors the test set



Classify each vector using the parzen estimator



IF misclassified





Increase error




END IF



END LOOP


END LOOP


calculate mean error from all training sets

get standard deviation for all errors

END LOOP

Store all errors in a vector

Store all deviations in a vector

Return Error Vector and Deviation Vector
END FUNCTION

To speed up execution we calculate all probabilities beforehand and store them in four different vectors – one for each combination of training and test set. Then we just loop through all probabilities and compare them to get the classification error.
The function for the nearest-neighbor error looks exactly the same, except that we use the nearest-neighbor method to classify the data.

Furthermore we had to design the same function for three different classes. The only difference is that this function takes three classes as an input and has to calculate six different probability sets. 

Experiments

To run the experiment we now simply had to load the two datasets and plug them into our functions. For the iris data we were given class labels so we could the split the set into the three different classes. Then we use the results to make a plot with errorbar. From that we got following graphs:
Banana data:

[image: image1.jpg]mean error with standard deviation

mean error with standard deviation

30

20

10

-10
0

30

20

10

Parzen Error (BANANA DATA)

I Il
01 02 03 04 05
smoothing parameter (h)

Nearest-Neighbor Error

0.6

10 20 30 40
k nearest neighbors

50

60




Iris Data
[image: image2.jpg]mean error with standard deviation

mean error with standard deviation

IN)
S

o

=)

o

o

20

15

10

Parzen Error (IRIS DATA)

T T
Il I I Il Il

0 01 02 03 04 06 07

smoothing parameter (h)

Nearest-Neighbor Error

T T
I I Il Il Il Il Il

0 10 15 20 25 30 35 40 45

k nearest neighbors




Conclusions

The graphs give us a nice overview on the performance of each classification method and also shows the dependency on the dataset. Both methods perform very on the banana data set for small smoothing parameters (or values of k), with having almost zero classification error. This is not surprising considering the shape of the banana set. It is difficult to fit a Gaussian curve over this set, or to draw a decision boundary and therefore classifiers using these methods will have a hard time. However, the two methods presented here base their classifications on the data points in the vicinity of the examined data vector. Since in the banana set the points for each class are clustered very densely both classifiers perform very well ass long as the kernel (for the parzen) or the number of nearest neighbors is small enough. Our experiment showed that the classification is very good up to 8 nearest neighbors and up to a smoothing factor of 0.1.
The iris data is clustered less densely, hence data vectors are more spread out. Here small kernels/k-values result in over-fitting since it is likely that points from a different class are close to the examined data vector. For too large kernels/k-values we get the opposite: Two many points are considered so that the classification becomes less accurate. The best result we receive for some value in the middle which, according to our experiment, lies around 4 for the nearest neighbor method and around 0.4 for the parzen estimator. 
PAGE  
4

