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Introduction 
 
Real-time object tracking has been an important field of research over recent years as it 
has many applications in domains such as: robot vision, automated surveillance etc. 
The basic approach to tracking and can be described as follows: 
 
We have some representation of our target object (based on color, pca etc) and are 
trying to find the same object in subsequent video frames.  However, tracking is not an 
easy task as it encounters many problems as follows: 
 

- target object is often cluttered/occluded 
- changing lighting conditions 
- target changes in size/scale 
- computation cost: dealing with video data is computational expensive, but we 

would like to only use minimal resources for tracking as more are required for 
higher level semantic computations (recognition, trajectory interpretation, and 
reasoning) 

 
The last requirement rules out exhaustive search where for each frame we search the 
entire image for our target object. Since we know that in each frame the target object will 
be close to its position in the previous frame we can exploit this fact to enhance this 
exhaustive approach. The most basic form is called brute force tracking where instead of 
searching the entire image of the target, we only search in a specified region around the 
targets previous position. However, this approach is still very computational expensive 
so ideally we would like to make better use of the information learned from previous 
frames to limit the number of positions to search for the target. 
Formally, we can describe the subsequent video frames as a sequence of 
states� �

�,1,0�kkx . In addition we have a corresponding series of measurements� �
�,1�kkz , 

so we would like to predict the new state kx  given all previous measurements kz :1 , or in 

probabilistic terms we would like to find the probability density function � �kk zxp :1|  [1]. 
Using this approach several solutions have been presented, such as: 
 
The Kalman filter which has been used by Boykov and Huttenlocher [2] to track  vehicles 
in an adaptive framework.  
The Extended Kalman Filter used by  Rosales and Sclaroff [3]  to estimate a 3D object 
trajectory from 2D image motion.  
A Hidden Markov Model formulation for tracking was proposed by Chen et al. [4] 
 
The mean-shift tracker has been very recent development that has proven to be very 
effective and efficient. The aim of this project is to implement a mean-shift tracker to 
follow players in a football video and to evaluate its strengths and weaknesses.  
 



The paper first describes the model we chose for our target object (a football player) and 
then outlines the theoretical background of the mean-shift tracker. Next our 
implementation will be described and finally the results obtained discussed. 
 
 
 
 
Target Model 
 
It has been shown [5] that color probability distribution functions (pdf) can be used as a 
feature for object discrimination. In our case this seems to be a suitable feature, since 
football players normally have a distinctly colored tricot that is very different from the 
green background of the field and from that of the other team’s players. Nevertheless, 
color is subjected to several the variations [5], such changes in intensity and saturation 
which are due to changes in the light source, the objects geometry and reflections. So 
we would like to choose a color system that is insensitive to those kinds of variations. 
We can note that for a football match video lighting conditions are normally constant and 
can be approximated by a white light source [5]. Moreover, the players and the grass 
can be seen as matte surfaces. Hence in the standard RGB system the R value for an 
infinitesimal surface patch at location x is given by [5] 
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where bG is the geometric term of the object body which is dependant on the surface 

normal n
�

and the direction of the illumination source s
�

. Furthermore, � �xE is the 
spectral power distribution of the incident light and � ��RF  is the cameras spectral 
sensitivity for R given a wavelength �. We can see that this value is still affected by a lot 
of factors and thus RGB is not a suitable color system for this application. However, the 
normalized R value r is given by  
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where rk , gk and bk are the terms � � � ��� ��� dFxB k,

�
 for rF , gF and bF  respectively. 

Likewise g and b are defined as  
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Hence, we can see that normalized RGB (rgb) only depends on the surface albedo and 
the spectral sensitivity of the camera. Obviously both of them are constant in our case 
since we are tracking the same object and the camera used for each video frame is the 
same.  
 
Hence we can use the color probability density function q  in rgb space to represent our 
target object. We will refer to q also as target model from now on [1]. To find our target in 



subsequent frames we will measure the pdf p  about different locations y, where � �yp   
is referred to as target candidate. To keep computational costs low we will represent 
those pdfs as m-bin histograms of only two rgb channels. However, in order not to loose 
too much information we will not have separate histograms for each channel, but a two 
dimensional histogram. Again, to reduce computation cost we assume at this point that a 
16 x 16 bin histogram will be sufficient. 
 
Hence our target model and target candidate will be a two dimensional rgb histogram 
taken over a specified region around a location y. The only problem with rgb is that it 
becomes unstable for low intensities, as we divide by very small numbers or potentially 
zero. This issue has to be addressed during the implementation by using appropriate 
masks. 
 
Mean-Shift-tracking 
 
The very basic idea of mean shift tracking is the same as brute force tracking, namely 
we can assume that in subsequent video frames the target will not change much in 
position and appearance. Since we measure our target candidate over a region, we can 
assume that part of the target object will still fall under the region of the previous 
position. Hence, when measuring the pdf about the target’s previous position, we will 
detect at least some similarity with our target distribution. So essentially we want to 
include special information in the distance measure between our target and current 
distribution. This way we can calculate a gradient that points into the spatial direction 
where the two distributions are most similar and hence to where we are most likely to 
find our target object. To link our color pdf with spatial information we can use a kernel, 
which will define our target model as follows 
 
Thus, in order to be able to estimate the most probable position of our target in the next 
frame we must: 
 
a) Find an appropriate metric: The paper [REF] suggests using the Bhattacharyya 

coefficient for several reasons stated there. Given two discrete and normalized 
distributions p̂  and q̂  the Bhattacharyya Coefficient is defined as 
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 Seeing the two distributions as m-dimensional unit vectors, this is simply the cosine 
between [blalala] and [balabla]. However, we want to express the distribution of our 
candidate object as a spatial function, so we let � �yp̂ be the distribution of the 
candidate object at position y. Thus, our coefficient becomes  
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b) Define an appropriate kernel: Any isotropic kernel will do, but the Epanechnikov 

kernel is recommended [REF], as it defines an ellipsoidal region and gives more 
weights to pixel closer to the center of the kernel. This is useful because pixels far 
from the center of the object are more likely to be occluded or cluttered. The kernel 
function is defined by 
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 Note that d is the number of dimensions and dc is the area of a unit circle in d 

dimensions, so 2�d  and ��dc in our case. 
 
c) Calculate the gradient in respect to y based on the choices we made for a) and b): 

We want to minimize the distance between target and candidate distribution, which, 
for our choice of metric, is the same of maximizing the Bhattacharyya coefficient. 
Reference for the exact derivation can be found in [1], but it is important to know that 
we can estimate the gradient by using the mean shift procedure [1]. In essence, the 
mean shift procedure utilizes the fact that for any density function the mean of a set 
of neighboring samples is always biased towards a local mode (local maximum). 
This is quite intuitive since samples closer to the local mode will have bigger values 
thus ‘attract’ the mean towards them. So if we want to estimate the gradient at a 
point x  we can calculate the mean vector x  from a sample set about x . From that 
we can then calculate the mean-shift vector xx � . 
Using this technique we finally come to the result that given the target object’s 
current position 0ŷ we can estimate its next position by 
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 where hn is the number of pixels under our kernel and  
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 which is basically the square root of log-likelihood, but only for the values of the two 
distributions that correspond to the location (or pixel) ix  inside the kernel. Note that 
(7) holds in our case, because the derivative of our kernel (6) is a constant. 

 Otherwise (7) should also include the derivative of the kernel as described in [REF]. 
 
Knowing all this we can now informally outline the mean-shift algorithm as follows (a 
more formal outline can be found in [1]): 
 
Given:  

the distribution of our target object q̂  and its location in the previous frame 0ŷ . 
 
1. Measure the distribution around the objects previous location 0ŷ  and check how 

well it matches the target distribution, by calculating the Bhattacharyya coefficient 
(5) 

 
 



2. Estimate the objects next location 1ŷ  using (7). 
 
 

3. Measure the color distribution around the new position and also check how well it 
matches the target distribution (Bhattacharyya again) 

 
 

4. If the color distribution at 0ŷ  matches q̂  better than at 1ŷ then the step calculated 
in 2. was too big. So keep measuring the color distributions at locations closer to 

0ŷ  by iteratively halving the step size until we find a better match (or reaches 0ŷ  
again). 

 
 

5. If the distribution at 1ŷ matches q̂ well enough (their distance is smaller than� ) 
we found our target object. Otherwise set 0ŷ  to 1ŷ  and go back to 2.  

 
 
 Implementation 
 
The basic implementation of the tracker without enhancements is fairly straight forward 
and closely follows the outline given in the previous section. The code can be found in 
meanshift.m. Presented here are for each step an overview of the matlab 
implementation and deviations from the general outline.  
 
 
I. To implement the target model we need to be able to construct a rgb histogram 

around a point y given a kernel k. To achieve this we created a function cropAt(y, 
width, height) that crops a rectangular region of size width x height centered at y 
from an image channel. Now we can simply pass the cropped region to a histogram 
function (implemented in pHist2d) that constructs a 16 x 16 bin histogram for two 
rgb channels.  
However, this is not taking into account the kernel yet. Since the kernel doesn’t 
change throughout the execution we only have to calculate once and store it in a 
matrix. The function epanechKernel constructs a kernel with a given with and 
height using the Epanechikov profile in (6). Note that this formula is defined for an 
Euclidian space around the center of the kernel, which we constructed by creating a 
matrix of the same size as the kernel and setting the center entry (ay height/2, 
width/2) to zero. The rest of the entries are then the Euclidian distances from the 
center. 
Having our kernel which defines a weight for each pixel inside it, we now don’t 
construct our histogram not by adding a one to corresponding bin for each pixel, but 
the pixels corresponding weight, which we can look up in our kernel matrix. 
We then choose an arbitrary player from the first frame of our test video and 
measure his first location Y0 manually. Also the kernel size is chosen manually by 
ensuring that the kernel covers most of the player without containing any background 
pixels. Then by using all the functions defined above we can measure the target 
distribution (histogram) which we store as Ht. 

 



 
II. Just like getting our target histogram Ht we now measure our target candidate 

histogram Hc at Y0 in the next frame. The Bhattacharyya coefficient is calculated in 
bhatCoef.m which is implemented directly from its mathematical definition. The 
only thing to note is that we first have to normalize Ht and Hc by dividing them by 
their internal sum (sum of all bin entries). We then store this coefficient as C0 

 
III. This is the beginning of the mean-shift loop. We use (7) and (8) to calculate Y1. As 

mentioned before, to calculate the weights we have to retrieve for each pixel its 
corresponding bin values from the histograms which is implemented in 
histValue.m.  In order not to divide by zero we ignore all zero values in Hc. Also it 
is important to note that xi:n are the relative coordinates centered at zero and not 
the true matrix coordinates. So we have to subtract H from the true coordinates each 
time. 
Also since (7) assumes the image to be centered at Y0, our newly calculated Y1 is 
not an absolute position, but an offset from Y0. 

 
IV. The same as step 1 but now we measure Hc at Y0+Y1 and call the new coefficient 

C1. 
 
V. To make sure we didn’t step too far we loop while C1 is smaller than C2 and half the 

step size each time as described 4. Note that if we reached Y0 again for machine 
precision we should also exit the loop, otherwise we might loop infinitely. 

 
VI. After we found our new location Y0 + Y1 we can calculate the step size as the 

Euclidian distance between Y0 and the new location. If it is smaller than eps (build-in 
value in Matlab) we are close enough to our target and thus exit the mean-shift loop. 
Otherwise we continue as described in 5.  

 
Finally we include this mean shift algorithm inside a loop that reads the video frame by 
frame and normalizes it using (2) and (3). In order to smooth out the instability of rgb we 
first create a mask over the frame, considering only pixels with a RBG sum greater than 
70. The rest of the pixels get set to zero. From this we can predict that there might a 
great number of “false” black pixels when measuring the color distributions. Thus we 
ignore the smallest bin in our target and candidate histograms by setting it to zero. 
   
To show the result of the tracker we wrote a function showFrame() that displays one 
frame and indicates the position of the kernel by inverting the image over the kernel 
region. Optionally showFrame() can also be used to plot the path of the target player.     
 
 
Experiments 
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Bhattacharyya coefficient. The results for our target player are given below:����
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Channels: red-blue green-blue red-green 

Bhat. Coefficient: 0.2617 0.3801 0.2823 
�

We can see that for a combination of red and blue the target distribution is the most 
different from the background (the Bhattacharyya coefficient is the smallest). 
 
In general we can say the mean-shift tracker works very well and is reasonably fast even 
written in Matlab. An example video of the tracker can be found at  
http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/soccerbad.avi, where we can see that 
the tracker even works for the player being occluded by another for one frame. However, 
the very good performance is partly due to the fact that this is an easy example. Except 
for being occluded briefly the tacked player doesn’t impose any other difficulties: He is 
well visible throughout the video, he stays at approximately the same depth most of the 
time, which means he doesn’t change in scale and he moves at a reasonable speed. 
Also we have to note that the player covering him is from the opposite team and has 
thus a completely different color distribution. If the was player was covered by another 
from the same team we should expect the tracker to follow the other player afterwards.  
The next two frames are (inverted) samples taken from the video that highlight the 
moment the player gets occluded.  
 

   (a)  
 
We can see that actually the tracker is able to follow the player because a part of him 
stays visible all the time. Thus the tracker always follows the visible orange parts of the 
player, effectively moving around the occluding player. This works well in this example, 
but if the player was completely occluded we should expect the tracker to get lost. 
Moreover, if we would like to do some kind of trajectory analysis after tracking, this result 
is not useful as we can see from the plotted path, which should continue straight.     
 
An example video where the target object gets occluded completely, or at least no part 
of the target falls under the kernel anymore, can be found here 
http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/truck.avi.  
As expected the tracker gets lost after in can not find any colors matching the car after it 
gets occluded. �



 (b) 
 
This example was also taken using the red and blue channel. Since the car is green we 
should naturally include the green channel. However, this was not suitable for this 
example since by chance the occluding object also has some green in it, which the 
tracker finds and thus is ultimately able to follow the car again. This is pure luck though 
and can not be counted as a valid example.  
 
Another problem not addressed so far is a very fast moving object. An example of this 
can be found here http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/tennisbad.avi��Since 
the position of the to ball changes to much in subsequent frames, no part of the ball falls 
under the kernel at its previous position - the major underlying assumption of the mean-
shift tracker. Some critical video frames are show here: 
 

    (c) 
 

Another problem in this video is also that the ball is white while the background also has 
lots of white noise in it. In our 16 x 16 the color for the ball and the noise get mapped to 
the same bin, especially for rgb. We tried the same video with RGB but it didn’t give any 
better results either. 
Moreover, due to optical distortion the ball also appears to be stretched and discolored 
when it moves very fast. It thus also changes its scale and and color distribution, which 
oppose even more difficulties to the tracker. 
 
This leads to the last problem of tracking, namely noisy and cluttered images especially 
where the noise has the same color as the target object. A good example is shown in 
here http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/car.avi.  



Tracking a white car in this video was impossible. The tracker just got lost very quickly 
until it found another white car and kept jumping from car to car. Following the red car as 
of course possible, as it is not affected by noise. And example frame is shown here  

  (d) 
 
Enhancements  
 
 
Facing those problems covered previously. We came up with several enhancements to 
the tracker.  
 
Trajectory Guessing: 
The main problem is that the object is not under the kernel anymore when it reappears. 
Hence, after we lost the target object we would like to keep the kernel moving with the 
same velocity (includes direction) that the target had before it got occluded. By this we 
are most likely to have the kernel in the correct position when the object becomes visible 
again, unless of course it changes direction while occluded. 
Our approach to solve this problem is pretty simple: If the Bhattacharyya coefficient is 
smaller than a certain threshold, we can assume that the object is lost. By analyzing the 
objects last location and its location five frames before, we can calculate a velocity 
vector for the target. Hence we let the kernel move with the same velocity until the target 
object is found again.  
Of course, if the object is not found the kernel will just keep moving until he reaches the 
end of the image. 
 
Trajectory Guessing is a fairly limited improvement that should only work in certain 
cases. However, for our cases is led to some satisfactory results posted here  
 
http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/soccer.avi 
http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/truck.avi 
 



Adaptive Scaling: 
As mentioned in [ref], the object can change its scale during the video sequence. This 
can lead to strange results during tracking, like focusing on details of the tracked object. 
To avoid this we should scale the kernel whenever the target object changes its scale. 
Details on the theory and implementation can be found in [1]. Our Implementation is 
taken directly from this description also a filter to avoid over sensitive scale adaptation.  
 
By testing the adaptive scaling on the table tennis sequence, we notice a major 
performance improvement. As mentioned before, due to distortion the ball changes its 
scale, which is now accounted for with this enhancement, but the improvement is 
surprisingly large. The main problem identified for this video was the objects high 
velocity and not its changing scale. However, since the kernel gets stretched through the 
adaptive scaling it is now also big enough to follow the ball even in cases when its 
location in a new frame is so far away from its pervious position that our initial kernel 
would not have been able to detect it. The results for the table tennis video can be found 
here 
 
http://student.science.uva.nl/~rvalenti/UVA/MIR/movies/tennis.avi 
 
Several other improvements could be made to the tracker, many of them mentioned in 
[1], so that we would also be able to follow a white car in example (d). However, due to 
time constraints we were not able to implement other enhancements or run experiments 
with different parameters, such as different color models or kernel profiles.  
 
Conclusion 
 
The mean-shift tracker can be a very effective and efficient solution for video tracking. 
While its mathematical foundation can be complicated it is very easy to implement. It 
gives very good tracking results while being computationally inexpensive which allows 
for real time tracking and higher level computations. It is very flexible in a sense that it 
has many parameters that can be tuned. Many different target models can be used and 
enhancements be made, which makes the tracker adaptive to several different domains. 
However, its performance also strongly depends on the correct tuning of these 
parameters and the correct set of enhancements used. Thus some work and testing is 
required before using the tracker in different application areas.  
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