Language and Speech Processing
Final Project

PCFG Parser

Roberto Valenti, 0493198
Rémulo Gongalves, 0536601

Introduction and Problem Description

The use of statistical methods in areas such agidaye processing, speech recognition and
grammar learning, switched from being virtually nolvn to being a fundamental approach
in the last ten years [1]. Thanks to this, we n@wvehavailable a big number of corpora which
we can use to extract statistical information aad belp us to understand the underlying
structures of the languages. In fact, these dasaase usually annotated and we can use these
annotations, together with statistics, in order gpot certain regularities or frequent
characteristics of a language.

Within the multiple tasks that can be performedhvatuch knowledge, the target of this
project is the machine reconstruction of the syr{fgarse) of a sentence. We would like to
understand which rules generated a sentence, er twdunderstand which class of sentence
we are dealing with.

To better explain the task, we can use the noiaywbl model [8]: In this model (represented
in figure 1), we assume thAthas a concept and warsto receive this concept. In our case
this concept is the correct parse for a sentedades not receive the full parse, but just the
sentence, so he needs to reconstruct the corresg fgaatA had in mind starting from the
observations he gets through the noisy channdlidime 1, this is represented by the dashes
without the parse).

/<\ ® ‘ Noisy Channel — ,)

Figure 1: The noisy-channel model

B will have to use the sentence in a parser to gémeaall possible parses for the given
sentence. The disambiguator will then decide wloich of the proposed parses is the most
likely, basing its assumption some kind of moddiisTis shown in figure 2.

UZ VYVVVVVYVYYVYY

)

Parse

mbiguator

Figure 2: A typical disambiguation approach

In a brute force approach, the parser will havertomerate the possible parses by combining
possible tags. The disambiguator will then havpit& the most likely one. This approach is
clearly inadequate for medium and for big grammérghis project we will deal with this
problem.

The next sections of the report are structuredodiews: we will first describe the required
steps for the implementation of the parser, gidome background theory for the given tasks
together with some pseudo codes of the relevarieimgnted functions; we will then discuss
some of the implementation choices and detailstb@gewith the description of the simple
interface we implemented for this project. Furtheren we will illustrate and evaluate some
experiments we performed with the final parseraiyn before come to a conclusion, we will
start a discussion about the results obtained ddtathe decisions we took during the
developing phases.

Formalization of the Solution

The aim of this project is a full implementationaprobabilistic context free grammar parser
from scratches. To tackle this goal, the followmgin steps are required:

» Extract a CFG from the Treebank

» Transform the CFG in PCFG

* Transform the PCFG in CNF grammar
Use the CNF grammar in a CYK parser.

In this session we will explain each one of thepstevolved, together with some theory
behind each step.

Context Free Grammars

A good model that approximates the natural languagdax is the context free grammars
(CFG). A context-free grammar G can be defined 4guple:

G = (V,Vn,P,S) where
* Viis afinite set of terminals
* Vj,is afinite set of non-terminals
* P s afinite set of productions rules
* Sis an element of iy and represents the start symbol.
» elements of P are of the form,¥>(V, U V)*

The term "context-free" comes from the fact tha&t tion-terminal V can always be replaced
by an element of (YU V,), regardless of the context in which it occurs.

Context-free grammars are simple enough to alloar ¢bnstruction of efficient parsing
algorithms which, for a given string, determine tiee and how it can be generated from the
grammar. The problem of this grammar is that its@ésthe probabilistic model which is
needed in order to disambiguate between parsesisLigitroduce the probabilistic version of
the context free grammars (PCFG), which defineslahguage as a probability over strings
[6]. This is basically a CFG with probabilities asgted with each rule, indicating how
probable a production rule is.

A production rules is a way to represent the gramumsang a condition-action pair of the form
if (condition) then (action). In our case, the cibiod is the root and the action is the children
of this root. For example, if we have the ruke-> B C’, this means that every time we find
the symbol A, it can be substituted with the synt®aind C.

The simplest way to gather statistical informatadrout a CFG is to count the number
of times each production rule is used in a corpurgaining parsed sentences and to use this
in order to estimate the probability of each ruéénlg used. In our case, we estimate the rules
probabilities using the relative frequency of thkerin the training set.

For a generic ruleA -> B C', its conditional probability is defined as [5]:

Frequency (A->BC
Frequency (A)

P(A->BC | A)=

Once we have the probability of the production sule a PCFG, the probability of a parse
tree can easily be calculated by multiplying thebabilities of the rules that built its sub-trees
[2]. A derivation of a sentence S is defined asisege of one or more context free rewritings
starting from TOP until we arrive at the sequeniceioninals S.

Parsing the Treebank in a PCFG

For this project we used an excerpt from the Opanbarvoer Informatie Systeem (OVIS)
treebank: In this treebank, a tree is represensed eecursive structurdA,[comma-list]),
where 'A" is the label of the root node ancbimma-list is a comma-separated list of subtrees
representing the ordered (left-to-right) list ofldmodes of the root, each dominating a tree or
a leaf-node "términal_,[])". The original Dutch treebank consists of 10,0808e$, so is
larger than the English ATIS corpus. The mean seetéength in this treebank is 3.5 words
per sentence, which is much shorter than the agdrathe ATIS corpus. Apart from a few
guestions, the sentences in this corpus are a#iiatipes or answers to questions.

The following algorithm is used by the implementedrser to parse the training
Treebank in a CFG and to subsequently calculatpribeabilities to transform it to a PCFG.

while (there are lines in the file) {
Read the line and add the start symbol
Parse(line)
Calculate probabilities
Create the PCFG
}
Parse (String tree) {
Extract the root
Extract the children chunk
for (all the characters in the children chunk) {
count the number of opened and closed brackets
if (number of open and closed brackets==0){
recursive step:
children[++]= Parse (content between brackets))
}
}
Remove unary production
Add the new rule to the structures
return root

In few words, the recursive part of the algorithasges sequentially through the string and,
after it has extracted the root of the tree (whiolrespond to the first encountered element),
calls itself on each of the found children in th@ldren chunk. The parse function returns the
root of the current string, so that the callingdtion can use this information to give the name
to new child.

It is important to note that, on each tree in theebank, we added the “TOP” symbol as main
tree root, which is the start symbol of our CFGngmaar. In this way we can infer statistical
information about how a sentence starts. The TQRbseY will later help to disambiguate
between possible parses of a sentence.

The parsed rules are then collected in two Hasesalgach of which respectively counts the
frequency of the rule’s root in the corpus andftequency of the rule itself;

The function will successively use this informatimncalculate the probabilities of each rule
an in [2]. Finally, the function transforms the temt of the Hashtable in an array containing
all the rules of the newly generated PCFG;

Converting the PCFG to Chomsky Normal Form

After the rules are extracted from the Treebankapdobability is assigned to them, the next
necessary step, in order to be handily used ildéurdperations, is to transform the grammar
in Chomsky Normal Form (CNF).

A grammar is in CNF only if its rules are in therfo

e A->a
« A->BC

where A,B,C are non-terminals and a is a termiyaitsol.
By transforming a grammar in CNF, rules of the fdvn > B C D E (p), where p is the
probability, are replaced by a set of rules:

« A->BCl(p)
. C1->CD1(1)
« D1->DE (1)

The steps in converting a standard PCFG into CleRha following:

1. Remove Empty Productions
2. Remove Unit Productions
3. Change grammar so all rules are in CNF

The dataset we used was lacking of empty produstsmwe didn’t worry about them, the
second step is performed during the extractiohefgrammar from the Treebank, while the
third step is performed by the function “toCNF”, ieln can be summarized in the following
pseudocode:

toCNF(rules) {
for all rules {
if there are more than 2 children{

save the root

for all children -1 as j{
child 1=j
child 2=j+1
if is not the last child {

while the child is unique, add a postfix to thehild

add the new rule, with probability 1 if is not he first;
root = child 2

}

} else add the rule;

}
Update the rules;

}

Once the function was implemented, we noticed #hist newly generated rules could have
been removed since similar rules were alreadyergtammar.

One valid example a rule repetition can be givenabglyzing the transformation of the
following rules:

- A->BCDE(p)
- F->BCDE(p2)

Applying the algorithm, the rules are transformed i

« A->BCil(p) « F->BC2(p2)
e« Cl->CD1(1) e C2->CD2(1)
« D1->DE(1) e« D2->DE(Q1)

It is clear that the first of the second rule smild be transformed to “F -> B C1(p2)” without
loosing any information in the grammar and redu¢imgnumber of generated rules of 50%

Given the small Treebank on which we trained ous@a this problem is irrelevant, but for
the sake of learning we decided to include someifieedo the algorithm in such a way that
it was possible to reduce the grammar size t@itet bound.

The first attempt we did to tackle our goal wasirtgplement stand-alone function which
spotted these duplication in the transformed rtoelster fix them. The problem of this first
implementation was that the advantages of using flnction were not worth its
computational complexity. We then decided to redieegrammar “on the fly” by using an
additional structure in the proposed algorithm whriansforming the grammar in CNF. The
modified algorithm stores all visited sequence<lufdren and, in case a new rule has an
already visited sequence, it links the rule to #®mwn sequence. With the discussed
additions, the normalized grammar was reduced ofrul@s without relevant additional
computational costs. For further implementatioradet please refer to the source code.
Appendix A shows the CNF transformation (using described algorithm) of the toy CFG
12.36 on page 458 of [2], previously transformed CFG.

The CYK algorithm

The Cocke-Younger-Kasami (CYK) algorithm determirveisether or not a string can be
generated by a given context-free grammar ana, ihaw it can be generated. This process is
known as “parsing” [6]. The standard version of CY&cognizes languages defined by
context-free grammars written in Chomsky normalnfo(CNF). Since any context-free
grammar can easily be converted to CNF, CYK camuded to recognize any context-free
language. It is also possible to extend the CYKowilgm to handle some context-free
grammars which are not written in CNF, but thisré@ases the difficulties that can be
encountered in the algorithm implementation.

The computational complexity of the CYK is G(rwhere n is the length of the parsed string,
This, even if it seems expansive, makes the CYK ainthe most efficient algorithms for
recognizing any context-free language if comparét previously used algorithms.

The pseudo code of the used CYK algorithm is shbalaw, implemented as described in [4]
and explained in [8] with some implementation adds and optimizations.

CYK (sentence, rules)
{
n= size of the sentence
Create a n+1* n+1 table;
for 0O< k<n{
If (A->k-th word in the sentence) belongs to thgrammar
Add the left side to table[k-1][k]
forO=<i<k-2{
for i<j<k
{
B= list of RHS in table[i][j];
C= list of RHS table[j][k];
For all combination of values in B and C
If (A->BC) belongs to the grammar
Add the LHS to table[i][j]
}
If table[O][n] contains A and TOP->A belongs to he grammar
true
else
false
}

The CYK algorithm takes as input a sentence anméuaigar in CNF.

The algorithm uses a table structure (only half)afo store partial parses, and loops through
this structure to enumerate possible combinatichede partial parses.

To better explain how the CYK algorithm works, wath getting too much in the
implementation details, let's use a basilar exanglea small grammar. We want the CYK
algorithm to check if the sentence “the new studenight the book” can be generated by the
following grammar:

e S->NPVP Det->the

* VP->VtNP e Det->a

* NP->DetN * N ->book
 N->AdjN * N ->student
e V->saw * Adj->new

e N->saw

In the initialization step, the algorithm checks fwssible LHSs (left hand sides) for the
terminal words in the sentence, placing them in “tiagonal 0” (the left-most diagonal)
shown in figure 3. Note that the word “saw” appearthe grammar as “V” or “N”, so both
values appear in column 4.

0 1 2 3 4 S 6

0 {DET} O (NP} # 0 {5}
1 adgy | I 0 0 0

2 N] 0 0 0
3 V.IN} G (VE}
4 {Det} | {NP}
3 N}
6

Figure 3: The CYK table

In the second phase, the algorithm looks for tleelpetion rules in the grammar that covers
the filled LHSs (on diagonal 0) for adjacent worlfsthis case, the only available production
rules are N -> Adj N’ and “NP -> Det N. This operation is then repeated for the othdisce
in the table, varying the values of “i” and “j”, @uterating over different values of “k”,. This
concept is graphically represented in figure 4, nettbe algorithm looks for a LHS A in order
to combine the subtrees B and C, which togetheercthe input sentence from “i” to “j”

A

Figure 4: Partial parses combination

When the algorithm terminates, the content of tlstrnight-top cell of the table can contain
(on not contain) the root of the input sentences presence of a value in this cell confirms
that the parse could be built from the originalngnaar, but it doesn’t guarantee that it is a
complete sentence. To further assess if the semisractually generated by in the grammar,
one should check if this parse root appears aartingt symbol, which consist on verifying
whether or not the grammar contains the parsea®at RHS (right hand side) of the starting
symbol “TOP”.

In the example in figure 4, the full parse genatdig the CYK algorithm for the given input
sentence is shown in figure 5.

0 1 2 3 4 5 6

Figure5: Full parse for the example in figure 3

A nice characteristic of the CYK algorithm is itdagtability to deal with probabilities. Until
now, we discussed the CYK in its original form. Réing the noisy channel model, we
would like to use the CYK as a parser to generdt@assible parse trees, and to use a
probability model as disambiguator.

The first required modification to the CYK algonth consists on the integration of
probabilities in the partial parses. We define pinebability of an arbitrary parse tree as the
Inside-probability [2][3][8] of the parse tree:

Inside((i A p)= P(A-" w,..w| A

The inside probability at the top node can themaggnt the full sentence probability in the
given grammar:

P(W,...,w, |G)= Inside(0, TOP 1

This probability will be the sum of the probabiligf each sub tree in the parse. For the
example shown in figure 3, this can be formalized a

Insid&(i A p)= Insid§ | A }J)+ R A- BG X Insidg,i BB Inside,k,G’

If, every time that the CYK combines partial parsee use the inside probability to have the
probability of the new full parse, in the end ok thlgorithm, together with the possible
parses, we will have the sentence probability.

We now want to change this new version of the C¥ioathm to be able to disambiguate the
possible parses by returning the parse with thedsigprobability. In this case we don't need
the sum of the probabilities for each sub parssipad we are looking for the sub parses with
maximum probability. The required modification ¢slled “Viterbi-parse”[2][3][8] and
makes use of the recursive definition of the inpdababilities. The difference is that, in the

Viterbi-parse, we select the sub parse with maxinpuabability instead of summing over all
sub parses:

Viterbi((i, A, j)) = arg MaXeoper v,y P d6r= A" w, .w |A

Beside this little modification, another requiredddion is a pointer structure to the RHSs
involved in each found LHS. This is required whence we obtained the possible parses
through the CYK, we need to follow the “parse pattith the highest probability, starting
from the “TOP” symbol.

Using the CYK algorithm on the sentence “the_ agemuail _and_ the_ labor_ codes_" with
the CNF PCFG shown in Appendix A. resulted in a tesre probability of
2.8001888465279303E-10. By using the Viterbi-parssification to the CYK algorithm,
the resulting suggested tree (in string representais:

(NP,[(NP,[(DT,[(the_,[)]),(NBAR,[(N,[(agency_,[])}.(N,[(mail_,]]).(CC,[(and_,[1)]).(
NP,[(DT,[(the_,[)]),(NBAR,[(N,[(labor_,[])]),(N,[(codes_, [N,

Implementation Details

For this project we used Java as our programminga@ment. This preference of using Java
over other programming languages was mainly foplatform independency.

The cornerstone of our implementation is the Rl#éss; which contains all the attributes
needed for a production rule and is implementeduich a way that is easy to perform the
most common operations. For instance, a Rule dassbe easily display its content in a
string representation, or can be constructed pgssastring representation in its constructor.
The class with all the implemented function is Datéich loads, parses and converts the
grammar as soon it is instantiated. To perform tamtil operations with the data, it is
necessary to type them in the main class fileedaRCFG, or to use the implemented user
interface (see next session).

During the implementation phase we decided to U'séage” approach to the project.

By “state” approach we refer to an array contairatighe rules shared in the environment.
Every time one function is executed, usually itggssthrough this rule array, or an arbitrary
rule array used as input, performs some operatigis iown structures and finally updates the
rule array with the result of the operation, morfifythe state of the environment. One of the
multiple advantages that came with this choice wasification of the inputs and outputs
format for the function, allowing us to easily depipelines between them. Of course, once
the graphical user interface was implemented, aflthe power of this approach was lost by
forcing those functions in graphical static buttofiBe previous approach and its advantages
are still accessible bypassing the interface anding the parser from the normal main file.

The Graphical User Interface

Figure 6 is a screenshot of the interface we implated to easily use and debug some of the
implemented parser features without recompiling dbde every time. The interface can be
shattered in three main components, the first dlmva to perform data operations, the
second one allows to use the parser and the lassatedicated to evaluation operations.

The program automatically loads the default traniireebank, which is embedded in the
application. If the user wishes to, the interfalteves loading another dataset.

£ Language & Speech Processing - PCFG Parser

Console: (DFiIﬂame:

Printing the rules

=

Walt..(otpt [ipte, D CackT 00,100

(ptp0 [ipte, 145,001,100 @| Readfrom | ([3)wwiteTo |
thaag,[thaaa_[],1.0)

(noord, [(hoord_ 11, 1.0)

(cont 3, [{con,0),(avp,[],1.00 CNE @
(cant 2,[{con,0), 7, 00,1.00

(oever [ioever_,[],1.00

(eont 1 fieon, 05 601 .0 | Original @
(cond 0,[{con,0).is7,00.1.00

(spoor[(spoar_[3],1.0)

(capelle [icapelle_ [3],1.00 | Print Rules @
(rading, [{rading_,[03],1.0) [

(ijssel [jssel_01.0)

(centrurm,fcentrum_[1,1.00 | Evaluation @
(zuid, [izuid_, [3],1.00

(rod, [ipro, 0, (av, [1,1.0)
(orod. [ioro, 1), (errorady, 1).1.0) .
twechtwiik [fvechbaijk_, 0,100 Semence.

(aro2,[{ro, I, (v, [0, 1.00 | ‘
(prat.[ipro,0.imp,0,1.0)

a, o iady [0],1.0: -
R @| oteel [Fotecaes (10Nl

S A O TRy T e A

i E

1 PCFG Evaluation.

o S T (10
Sentence File: |test sentence.ovis \J_Z) |

Evaluate | [Full Data Sef |+ [Evaluate Productions |~ |
Test File: {testing, ovissyntax (13 |
twerage Labeled Precision :0.9070329070929071
twerage Labeled Recall :0.905094905094 58051
Exact match: 08841158841 1588432

String coverage: 0 9910089910085991

Figure 6: The Graphical User Interface

To perform this operation, the file name of thespeal tree bank has to be typed in (1) and
the button (2) pressed. After a grammar is loadethfa file, it is possible to execute some
operations with it. To convert it to a CNF gramnthe user just needs to press on (4), while
to switch back to the original the user should pras (5). At any time, it is possible to print
the current rules in the console (11) by pressimg6).

After the grammar is in CNF, the possibility of mgithe parser becomes available. A
sentence, with words separated by spaces, hastypéa in (8). The combo box (10) allows
the user to select if he just needs to check isdrgence is in the grammar and its probability
or if he wants the most probable parse for thetispatence. By pressing on (9) the parser’'s
results with the defined setting will appear in)(11

In order to easily evaluate the performances PCR&dP, the user should press on the
evaluation button (7). By doing so, a new sub wimdudll appear, which offers four different
ways of evaluation. By default, the suggested sestis “test.sentence.ovis” is already typed
in (12), which should in any case contain the flee of the unparsed test sentences. The
same for the field (13), which requires the fileraai the gold parses for the sentences read
from (12). The combo box (15) and (16) allows tiseruto select the evaluation setting that
will be extensively illustrated in the next sessiéiter all the evaluation settings are selected,
the user can press on (14) and the results wikapim the specific console (17).

As a special interface stability measure, everyetimat some error occurs or the user does
some mistakes a small window will appear to infohe error or to show a warning message.

Evaluation

In order to test the accuracy of the parser, welempnted a function (accessible through
interface) which takes as input a file with sentsnand a file with the correct parse tree
associated with the respective sentence. The umctiads each sentence and calls the parser
in order to propose a possible parse tree.Therdatgparse tree is then compared to the tree
read from the other file (the gold standard). Téosnparison is done through the following
measures:

e exact-match

» string-coverage

* labeled precision
e labeled recall

The exact-match is the most straight-forward meashat can be implemented for the given
task, since is obtained as the averaged resufteo€@mparison of the string representation of
the proposed parse and the gold parse, over dikshset.

equal test and gold pars
gold parses

Exact Match=

The string coverage represents an indication ofntlnaber of the test sentences which are
successfully parsed by our parser. By successpatged, we indicate a successful outcome
of the CYK algorithm in recognizing the sentencebasg generated from the grammar that
we used for training.

#successfully parsed senten

String Coverage= -
sentences in the test se

Since we are dealing with trees, special companiseasures are needed in order to correctly
evaluate the performances of the parser. To bettderstand why we need to introduce

special measures, it is easier to start from amela Let's suppose that, feeding our parser
with the sentence “correctie_ leiden_ venlo_", shggested parse is:

(a,[(np,[(n,[(correctie_,[])]),(np,[(leiden_,[)D)]).(np.[(venlo_,[)D])
while the correct (gold) parse is indicated in tihgt set as:

(&[(n,[(correctie_,[1)]),(np,[(np.[(leiden_,[])]),(np,[(venlo_,[H)]])

It is clear that the two parses are somewhat @ige) but it is difficult to see how much just
from this string. In a graphical tree representattbe two parses appear as in figure 7.

() (=)
/\ /N
()

ok

correctie_ leiden_ venlo_ correctie leiden_ venlo_

Figure 7: Proposed Vs Gold parse for the sentence “coreecteiden_ venlo ”

It is easy to note that, while the root and thevdésaare correct in both cases, the underlying
knowledge of the tree is slightly wrong. Let usidefa constituent of a parse: from wikipedia
[6]“the term constituent is used in syntactic analysigefer to a single word or a group of
words that function together as a unit and are eddeel into a hierarchical structure”

We can play a bit with this definition of constituedefining a “coverage” constituent and a
“production” constituent. While the production ctansent is characterized by a root and its
production (or its direct children), the coveragmstituent is characterized by a root and the
part of the sentence that it covers.

The coverage for the parses in figure 7 is showrtalsle 1, while their production is
represented in table 2.

Proposed coverage Correct coverage
A 1 3 A 1 3
NP 1 2 NP 2 3
N 1 1 N 1 1
NP 2 2 NP 2 2
NP 3 3 NP 3 3
Table 1. Coverage analysis
Proposed productions Correct productions
A NP NP A N NP
NP N NP NP NP NP
N correctie_ N correctie
NP leiden_ NP leiden_
NP venlo_ NP venlo_

Table 2: Production analysis

The red values in table 1 and 2 indicate that treespondent constituent couldn’t be found
in the gold parse.

We can use this information in measures known asBval, which are very similar to the
normal precision and recall measures, but adaptedder to evaluate trees structures.
ParsEval comprehend labeled precision and labelelly defined as follows:

Labeled Precision is the ratio between the numlbezoarect constituents in the proposed
parse and the number of constituents in the prappaese, while the labeled recall is given
by the ration between the number of correct carestits in the proposed parse and the number
of constituents in the gold parse.

In the case of the given example, the labeled pi@tiand the labeled recall for coverage
evaluation will be computed as:

. # correct constituents 4
Labeled precisiorn= =_=

constituents in the tree 5

Labeled recall= # correct constituents - él- 0.8

constituents in gold tree 5

One might note that in the given example that thecipion equals the recall both cases
(coverage and production evaluation). This is bseatihe number of constituents in the
proposed tree and the number of constituents igdliparse are the same.

Experiments

While testing our parser on the suggested testvgath consists of 1001 sentences and
respective parses, we realized that a lot replica@mple were used. One very obvious
example can be seen by searching the words “newl *ja_" and counting how many times
the words appear as test sentences.

Removing the repeated sentences and parses, thefsize suggested test set drops to 618
instances. From now on, we will refer to this vensof the test set as “clean”.

In order to extensively analyze the performancethefimplemented parser, we decided to
evaluate it on both “normal” and “clean” test satdiscussion about this decision can be
found on the next session). Table 3 shows therdiffees between the exact match and the
String coverage obtained in the two experiments.

Exact Match String Coverage
Clean Test Set 81.23% 98.54%
Full Test Set 88.41% 99.10%

Table 3: Exact match and String coverage for the two teistaesions

The other two analyzed measures, average labetmisipn and average labeled recall, are
represented in table 4 for the clean test setjmmtable 5 for the full test set. In these tables,
both the rule coverage and productions rules amgpeaoed.

Rule Coverage Productions
Average Labeled Precision 81.72% 85.00%
Average Labeled Recall 81.72% 84.63%
Table 4: Performances on the clean test set
Rule Coverage Productions
Average Labeled Precision 88.71% 90.71%
Average Labeled Recall 88,71% 90.51%

Table 5: Performance on the full test set

As an additional way to have some insight about hiogv parser is dealing with data, we
analyzed the average labeled precision and reeakgntence length on the full test set. The
results are shown graphically in figure 8 for praiiton analysis and for coverage analysis.

1.2 12
1 1
0.6 \/\ 0.6 \/\

0.4 0.4

0.2 02

o+ > o+ - ¥
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16

12 1.2

08 \\b\\/\ 08 \‘\’_\\/\

L
N
RVA
0 LI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8: Labeled precision (left) and labeled recall (riggior sentence length.
Top: production evaluation, bottom: coverage evahra

Discussion

The choice of analyzing the performances on bo#arcland full test set came from the
observation that the test set is probably an agijptic outcome, which reflects the probability
to encounter the represented sentences in thengelsigsk, during a day or even its lifetime.
By choosing to test both versions of the test set, actually chose to measure the
performances of the parser per se and the perfaenainthe parser in the context of the task
it was trained for (a public transports informatiepstem). Analyzing the results of the
experiments in tables 3, 4 and 5, it is immediatadtice the amount of differences between
the coverage and the production analysis and betwlee full and the clean test set. An
improvement between 5% and 7% is achieved usingestl set. This is probably because the
repetitions we removed on the clean test set wetialynsmall and very frequent sentences,
and this gave more weight to errors performed omgéo sentences if compared with the
weights for these sentences in the full datasas dlbservation is also reflected in the graphs
in figure 8, which show a drop in both precisiordaecall for 8 or 9 words long sentences,
and instability after 12 words long sentences. Wiektthat the reason behind this instability

can be found in the difference between the numbérng sentences and the average size of
the training set. In fact, it is difficult for a ggmmar learned from very small sentences, to
correctly cover a long sentence. This is why tlggest part of the sentences that were not
found in the grammar are the longest ones, gengrétiese big jumps in precision and recall

in the graphs.

Speaking about the coverage and production anatgsiparison, the former analysis always

achieves 2% lower labeled precision and recall thanproduction analysis. Of course, even

if the difference is just 2%, the 90.7% obtainedhy production analysis sounds much better
than the 88.7% of the coverage analysis, but wieumethat the latter reflect the nature of the

parses and the real performances of the parsemunch better and strict way.

Beside on the obtained results, another importétdudsion should be made about some
implementation details that we didn’t want to adiebctly in the report: In order to deal with
unseen words, a straight forward smoothing teclenigas implemented, which assigns to this
word a list of all know tags and let the algorithmeck up one that will actually push the
sentence to be in the grammar. This solution heiednprove mainly the string coverage,
which went from 96% to 99% on the full test set.eTbther measures did not change
significantly, since the correct partial parses agred more or less the same, and the
incomplete parses were already included in theuewian. Of course, using this kind of
smoothing can introduce significant errors: fotamse, a sentence which is completely out of
the grammar will have a parse (even if completetpng), while some other sentence with
some word that are actually in grammar can resuficd belonging to the grammar. Choosing
whether or not to use this kind of smoothing is ptately task dependent.

Thinking about the task reflected in the Treebamé thought about improving the results by
adding a little human knowledge in the simple srhogf technique. In fact, looking at the
training set, it seems that the OVIS is often usinghbers which represent time values. Since,
probably, not all the possible numbers were inttaging set, we decided to implement a
little string parser which recognized all the numsoigom zero to sixty (all possible numbers
in a clock and a calendar). When a number was reped, the smoothing added a single
“NUM” or a “NUM” and a “DET” tag instead of the fulist of known tags. This human
knowledge addition improved all measures (besitisgscoverage) from 0.1% to about 1%.
Given this, it would be interesting to embed in ihglemented parser the POS tagger
implemented in [7] in order to “translate” the samtes of another task and analyze them with
this parser. Of course, since the grammar rulesbagildifferent, we cannot hope to create a
general parser with this “hack” to the terminalst this will surely help to slightly increase
its performances for different task rather than tdek that the parser was originally trained
for.

Conclusions

In this project we successfully implemented a RGFG parser. The parser performed pretty
well for the OVIS task on which it was trained, bwe believe it won’t perform as well if
used for other tasks (i.e. parsing normal Dutcheseres) without a proper, new and task-
specific training. Together with a simple smoothieghnique and a non expansive way to
reduce the grammar when is transformed to CNF, dditianally implemented a usable
interface for the program which allows users teriatt end experiment with the implemented
parser without changing and recompiling the codlealfy, we tried to boost the performances
of the parser integrating some human knowledgé&ensimple smoothing for unseen words,
obtaining a little improvement on both labeled En and recall.

References and Bibliography

[1] Abney, Steven$tatistical Methods and Linguisticdudith Klavans and Philip Resnik,
eds., The Balancing Act. MIT Press, Cambridge, NI®96)

[2] Manning, Christopher D and Schiitze, HinriEbundations of Statistical Natural
Language Processing/IT Press, Cambridge, MA (1999)

[3] Daniel Jurafsky and James H. Mar8peech and Language ProcessiRgentice-Hall,
(2000)

[4] Collins, Michael A New Statistical Parser Based on Bigram Lexicgh®wlencies
proceedings of ACL (1996)

[5] Detlef Prescher, Remko Scha, Khalil Sima’an andraas Zollmani.reebank
Grammars and. Other Infinite Parameter ModRistitute for Logic, University of
Amsterdam (2004)

[6]Wikipedia, the free encyclopedia. http://en.wikilge org/wiki/Main_Page

[7] Roberto Valenti, Romulo Gongalvesidden Markov Model POS Taggéranguage and
Speech processing midterm project, University ofstéardam, (2005)

[8] Khalil Sima’an,Language and Speech processing course slidieiersity of
Amsterdam, (2005)

Appendix A - Toy CFG transformed to CNF

(AP.[(A[]).(RBA,[])],1.0)
(TOP,[(V,[])],1.1010790574763268E-4)
(TOP,[(S,[1)],1.1010790574763268E-4)
(TOP,[(RB,[])],1.1010790574763268E-4)
(TOP,[(AP,[])],1.1010790574763268E-4)
(TOP,[(P,[])],2.2021581149526536E-4)
(TOP,[(VBG,[])],2.2021581149526536E-4)
(TOP,[(DT,[])],2.2021581149526536E-4)
(TOP,[(NBAR,[])],5.505395287381634E-4)
(TOP,[(CC,[])],1.1010790574763268E-4)
(TOP,[(NP,[])],3.3032371724289804E-4)
(TOP,[(PP,[])],1.1010790574763268E-4)
(TOP,[(N,[])],8.808632459810614E-4)
(TOP,[(VPG,[])],1.1010790574763268E-4)
(TOP,[(A,[)],2.2021581149526536E-4)
(TOP,[(VP,[])],3.3032371724289804E-4)
(VBG,[(handling_,[])],0.5)
(VBG,[(controlling_,[1)],0.5)
(PPO,[(PP,[]),(PP,[])],1.0)
(NPL,[(NP,[]),(PPO,[])],1.0)
(NPO,[(NP,]),(PP.[])],1.0)
(RB,[(rapidly_,[])].1.0)

(DT,[(the_,[])],0.5)

(DT,[(a_,[)],0.5)

(V.[(sees_,[])],1.0)

(S,[(NP,[]),(VP,[])],1.0)

(P.[(as_.[])].0.5)

(P,[(of_,[)],0.5)

(N,[(use_,[]],0.125)

(N,[(volume__,[])],0.125)
(N,[(costs_,[])],0.125)
(N,[(agency_,[])],0.125)

(N,[(mail_,[])]1,0.125)

(N,[(codes_,[])],0.125)

(N,[(labor_,[])],0.125)

(N,[(way_,[])],0.125)

(PP,[(P.[),(NP,[])],1.0)
(VP,[(VBZ,[]),(NP1,[])],0.3333333333333333)
(VP,[(VBZ,[]),(NPO,[])],0.3333333333333333)
(VP,[(VBZ,[]),(NP,[])],0.3333333333333333)
(A,[(widespread_,[])],0.5)
(A,[(growing_,[])],0.5)
(CCO,[(CC,[]).(NP,[)],1.0)
(CC,[(and_,[]D],1.0)
(NP,[(DT,[1),(NBAR,[1)],0.5)
(NP,[(NP,[]),(CCO,[])],0.5)
(VPG,[(VBG,[]).(NP,[])],1.0)
(NBAR,[(NBAR,[1),(PP,[])],0.3333333333333333)
(NBAR,[(AP,[]),(NBAR,[])],0.3333333333333333)
(NBAR,[(N,[1),(N,[D],0.3333333333333333)

