Improving self-localisation and behaviour for Aibo’s soccer-playing robots
(Implementation according to the new RoboCup rules of 2005)

Woiyl Hammoumi, Viadimir Nedovic, Bayu Slamet and Roberto Valenti

Intelligent Autonomous Systems Group, Informatics Institute
University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{whammoum, vnedovic, baslamet, rvalenti}@science.uva.nl

February 4", 2005

Abstract

Every year the RoboCup organization [1], which organizes the annual robot world
championships in soccer, changes the rules of the various leagues involved to work towards
increasingly natural soccer playing. In the four-legged league, which is played with Aibo robots,
some new rules have been introduced as well [2], [3]. Among others, the white wooden borders
that so far surrounded the field will be removed, the coloured marker poles that stand on the field
boundaries will be moved towards the centre of the field, and the field size will be larger.

To deal with these changes, the Aibos’ software needs to be updated. The potential
problems concern mostly localisation and behaviour control, while perception is not affected
significantly. In this project, we set out to solve the issues that relate to the changing field
specifications; we have programmed the new field specifications within the C++ layer and we
have scaled-up the behaviour for the new field size.

Unfortunately there appear to be many more dependencies towards the field dimensions
than we have been able to find in our time window. We have delivered the improved behaviour
specifications and our modifications to the C++ code. In addition to this, we pointed out where
additional changes need to be made before improved performance can be observed.

We suggest a central field dimensions module to be implemented instead of the hard-
coded values, in order to be able to deal with changing dimensions more easily in the future.

We also found out that there is an undocumented light-source detector which can be
exploited to further improve localization in the future by making use of the lamps that are usually
at the ceiling above the soccer field.

1. Introduction

Since 2004, the Dutch Aibo Team, which is a
joint effort of various Dutch universities, participates
in the four-legged league of the international
RoboSoccer competition [1]. During the year,
various tournaments are held all over the world with
the main annual event being the international
RoboCup world championships organised by the
RoboCup organisation. The four-legged league is
played with teams of four where each player is one
of the well known Sony Aibo robot dogs. These
robots have a programming interface and various
national teams that compete at the RoboCup matches
win or lose with the quality of their software.

Each year, after the world championships,
the participating teams have to publish their
software. This way the teams can learn from each
other and innovations can be based on the best implementation available. This serves the ultimate
purpose of the RoboCup organisation which is to improve on the various fields of science that
correlate to intelligent autonomous systems, so that by 2050 a team of robots can be developed
that can play a reasonable soccer match against a human team.

The Dutch Aibo Team

1.1 New rules for the RoboCup 2005

The RoboCup organisation poses its participants with additional challenges every year. In
doing so, they work from highly constrained environmental conditions towards an increasingly
‘natural’ situation. The robots’ software should evolve accordingly so that we will end up with
human-level soccer capabilities in 2050.

5400

3600

() A :_:‘_ﬁ 4000

6000

Rules 2004, the field has a size of 2.7 x 4.2 Rules 2005, a field of 3.6 x 5.4 meter surrounded
meter surrounded with low triangular walls. with a small green border

Figure 1: Sony four-legged league fields with old and new dimensions and flag positions

This year, in the four-legged league, the white wooden borders that so far surrounded the
field will be removed from the sidelines and the coloured poles that served as markers in the
corners of the playing field will move closer to the centre [2], [3] (see Figure 1). While in the past
the dogs and the ball were unable to leave the field because of the boundaries, they now have to
take this new variable into account. The dogs will be punished with a 30 seconds time-out when
they cross the outer boundaries of the playing field and the ball will be brought back into the
game at one of the predefined locations when it leaves the inner boundaries of the field. In
addition to this, the dimensions of the playing field will be increased.

These changes pose various new challenges for the Aibo software which have to be dealt
with before the next RoboCup in July 2005. It is obvious that the dogs need to be aware of the
fact that they should not leave the field and that they should also show different behaviour when
the ball leaves it. On top of this they also have to be programmed to take the new dimensions of
the field into account.

The tougher problem that follows from these new challenges is an internal one. While
playing soccer, Aibo dogs continuously estimate their location based on current observations and
some knowledge of past locations and movements [4], [5]. Localisation algorithms currently rely
significantly on the detection of white borders and marker poles. The removal of these will cause
serious performance losses on the current localisation algorithm. As the localisation software is
fundamental to almost all behaviours, this certainly is to become the weakest link. Improvements
on localisation will have positive effects on most behaviours.

Another side-effect of removing the walls is that the robots are no longer concealed from
distracting stimuli from outside the playing field. The robot could now by mistake classify certain
clothing of supporters or other distractions as objects relevant to the soccer game.

1.2 Problem statement

In short, in order to compete at a desired level in 2005, the following problems, presented
here in the prioritised order, have to be dealt with adequately:

1. localisation is for a big part based on the detection of the white borders which are no
longer in place

2. the robots are hard-programmed against old (wrong) field dimensions

the robots expect the marker poles to be at different positions

4. the robots are unaware of the fact that they will be punished if they get outside of the
boundaries of the playing field

5. the robots are unaware of the fact that when a ball leaves the playing field it will be
brought back into the game by the referee at the nearest predefined location

6. the robots are now confronted with a larger amount of distracting sensor input from
outside the playing field

(O8]

2. Current implementation

In 2004, the Dutch Aibo Team used the German Team Dutch Team Code
German software from 2003 (GT2003) as a ~ode

basis for their software development [4], [8], @;TEEP

[9]. In retrospect, this was a good choice, as the

Germans won in 2004. This year the Dutch team & N

wants to merge the German software of 2004 <Gm°“> CDm”“ %
(GT2004) with some aspects of their own T
software of 2004 (DT2004) and some Pl oz)
improvements that are issued by Floris Mantz S,J_NEJ
from the Technical University Delft [5] (see Dmns”}

Figure 2). s

The Masters thesis by Floris Mantz [5]
proposes a fundamentally different approach to

the robots’ vision system, which would be .) o
behaviour-based. Currently the Aibo is Figure2: The ‘evolution’ of the software

equipped with a single colour table which is based on German GT2003 code

used in every image processing task. Floris

claims that making use of multiple colour tables, which are object and behaviour-dependent, can
dramatically improve the robustness of the Aibo’s vision system, and thus lead to a significantly
better overall performance.

2.1 Code architecture

The architecture of the German software, which was the basis for DT2004, is very
complex [4] (also see Figure 3). The core of the software is written C++ which is compiled to run
on multiple platforms. The code is neatly structured in a very modular architecture. Many key
parameters can be set using external configuration files. The behaviour control module makes use
of an XML-based configuration system called XABSL (eXtensible Agent Behaviour
Specification Language).

At the perception level all internal sensor data of the Aibo is processed. The direction of
the camera is determined using the information on the current states of the joints, and the image
that was provided by the camera is searched for objects that are known to exist in that direction.
The detection of the field, field lines, goals, other players and so on is used to update the world
model, which is shared among all robots during the game and maintains the integrated world-
state information that surpasses the currently visible part of it.

The world model not only models the stationary objects like the goals and the marker
poles, but also the dynamic objects like other players and the ball. The result is an estimated
world state.

The behaviour control bases its reasoning on the world state. Depending on the role of the
robot, its current position, perceptions, and the state of the game, the behaviour-control module
decides which actions the robot has to take. The selected motions are then sent as requests to the
motion level.

The motion control level translates requests issued by the behaviour level into the actual
joint parameters and head movements that correspond to the requested action. A dedicated kick-
selection module is used to perform all the possible kicks the Aibo robot can execute.

SensorDatnBuffer

CaollisionDets dor | SersorDataProcesser

PlayersPercept

Obsincle sLoator

BallLocator |

| FlapersLocaior |

Behavior
Control

Motion
Control

TointDint Buffer

Figure 3: Overview of the German code modules

2.2 RobotControl

RobotControl is a full-fledged debugging interface to the Aibo software [4]. It was
developed together with the Aibo software and its main purpose is to increase the speed and
comfort of the software development process. In RobotControl, using wireless LAN, it is possible
to visualise almost all internal representations of the Aibo online: images, joint values, sensor
data, the world state and so on. In addition to this, the software that runs on the Aibo is also
linked into RobotControl. Using this, RobotControl can simulate the physical Aibo offline.

It is also possible to use RobotControl to control or manipulate the internal
representations of the Aibo. This allows the testing of every particular module independently. For
example, the parameters for certain motion requests that are normally issued by the behaviour
control can be set to test the motion control or kick selection module independently.

XX e g X X (ot | & o
Ll N s e

<] shter speed [t =] G [i Allsendtorobr el

Getaul (R
Send debug ks

OOmea_0f0 ndefied fimercoledi 2 febbraio 2005|

Figure 4: General view of the RobotControl tool

1. The XABSL behaviour tester dialog - the debugging interface to the behaviour modules
(gives an overview of the internal states of the engine)

2. The toolbars providing different helper tools for colour calibration, for copying data to
the memory stick, and for wireless network configuration ...

3. The new robot control’s field view and radar viewer - draws the percepts based on
robot’s localization on the field, and the world state.

4. The settings dialog - permits switching between the solutions of modules running on
the robot or on the simulator.

5. Image viewer - displays images and debug drawings from the robot.

6. The simulator - offers a lot of possibilities to simulate and debug algorithms.

2.3 Localization

The Aibo is equipped with a Self-Locator, which implements a Markov-localization
method employing the so-called Monte-Carlo approach [10], [14], [4]. In this approach, the
current position of the robot on the field is modelled as the density of a set of particles. Each
particle represents a possible position of the robot on the field. Therefore a particle mainly
consists of a vector representing the hypothetical x and y coordinates of the robot in millimetres
and its rotation in radians.

The localization technique first positions all particles based on the motion model of the
previous action of the robot. Then it computes the probability of each particle based on the
current perceptions of the robot. The particles are resampled towards the locations with higher
probabilities and then the average of the resampled probability distribution is taken as the
estimate for current pose of the Aibo.

2.4 Behavior Control

The Behavior Control module is responsible for making decisions based on the world
state, the current game state and the behaviour that is executed currently by the Aibo [4], [9]. The
Behaviour control outputs the following to the motion control layer:

e amotion request that specifies the next motion of the robot
a head motion request that specifies the mode how the robot’s head is moved,
a LED request that sets the states of the LEDs,
a sound request that selects a sound file to be played by the robot’s loudspeaker,
a behaviour team message that is sent to other players by wireless communication.

In the German Team code Aibo’s behaviour is specified using a very sophisticated XML-
based system called XABSL, the eXtensible Agent Behaviour Specification Language [4]. At the
basis of the XABSL definition, the C++ layer provides several so-called basic symbols and basic
behaviours. The basic symbols represent run-time values which are provided by the C++ layer
during execution on the Aibo. The basic behaviours define units of movement which can be
executed by the Aibo. These basic symbols and behaviours are also written to XABSL compliant
files with each code compilation. Following the XABSL specification, it is then possible to take
these basic symbol definitions as a starting point to constructing increasingly complex behaviour
patterns. In fact it is possible to use XABSL to define finite state machines where in each state a
basic behaviour is executed. The
reasoning, by which the Aibo
chooses among possible successive
states, can be based on the provided
symbols. Many aspects of soccer
playing are put in XABSL symbols,
and thus regenerated with each
software compilation. =

. option playing-goalie

On the right, a visualisation { postion clear i
of the finite state machine that "' courageous Qg
specifies the behaviour of the goalie " _—
can be seen. All transitions fromone | e
state to another are regulated by | X L —= o 1

o ./b ook 0 |}bc k\¢|\ f E:if \'.\ 1eaN \\

decision trees. { biock |

L\ T '°""/ S\ L \“‘“/i -

3. Our project

The problem statement mentioned in chapter 1 can be translated into a mission statement

quite straightforwardly. By doing so, we formulated an overall

mission statement for the Dutch Aibo Team. However, in
consultation with our supervisor and some experienced members of
the Dutch Aibo Team, we have defined a more specific focus of our
project [6], [7]. At the University of Utrecht a larger project will start
in February 2005. To be of most help to this team, we focused on
solving one problem adequately (namely change the dependencies
on the field dimensions and solve implied problems in self-
localisation and motion, i.e. parts of item 1 listed below) instead of

getting involved with multiple issues, possibly without producing
satisfactory results in any of them.

3.1 Overall mission statement

From the problem statement we derived the following mission statement. We ordered the

problems by their importance:

1.

3.

improve localisation [4], [9]

e make localisation independent of the white borders

e find and implement alternative means to improve localisation, perhaps make use of
colour detection improvements that are suggested by Floris Mantz [5]

e take changed field specifications into account

¢ preferably make field specifications parameterised properties of the Aibo
behaviour

¢ otherwise hard-code new specifications

improve behaviour [4], [9]
e make the robot aware of the fact that they should stay inside the field boundaries
e make the robot aware of the concept of an ‘out-ball’
¢ they should show improved behaviour on ‘out-ball’ situations
¢ the possible locations for the ball to be brought back into play should be
parameterised

make the robot ignore irrelevant input stimuli from outside the playing field

3.2 Our project goals

A great help in analysing the listed problems was the fact that the German Team code of

2004 is very well-structured and extensively documented [4]. This enabled us to quickly get a
reasonable impression of how the problems relate to the various software modules in C++. Using
the insight that we acquired from the documentation and from a closer look at the code, we were
able to evaluate the problems in terms of how much degradation in overall performance they
would cause, whether it would be feasible to solve the problem in a one-month time-frame and
whether solving one problem could be done without first solving some other one.

We decided to focus our project entirely on changing the field specifications and on

updating their dependencies. We envisioned that a larger field and repositioned marker poles

would have a great impact on localisation performance [7]. As localisation is fundamental to
almost all of the Aibo’s behaviour, the performance degradation due to inaccurate localisation
propagates through most of the exposed behaviour. Because of this dependency of behaviour on
localisation it is also rather difficult to get an accurate analysis of the behaviour-related problems
and it is possible to end up designing solutions in terms of behaviour patterns while in fact that is
only compensating for the uncertainty in localisation. Reasoning along this line led us to the
logical decision that we should to try to design and implement a solution to localization first in
which we make the Aibo aware of the new field specifications.

3.3 Approach

We expected there to be many modules in the C++ code that make use of information
about the field dimensions. At the perception level, we have among others the SelfLocator, which
makes use of the field specifications in the Monte Carlo algorithm implementation. It is clear that
this algorithm cannot generate sensible hypothetical robot positions in its particle distribution
when it is supplied with the wrong field size. Information about the field dimensions and marker
pole positions is also necessary to be able to relate perceptions to a correct world model.

The field dimensions are also used by the Aibos for Behavior Control. Many decisions
about which behaviour to execute next are based on specific distances, e.g. the distance to the
own goal or that to the centre line.

We decided to approach the problem from multiple directions simultaneously; we used a
bottom-up approach in parallel with a top-down approach [7]. Besides the fact that this looked
like the most efficient method, we also
chose it for some additional benefits.
As we were inexperienced in this field
of applications, we were likely to come
across several practical difficulties; by
approaching the problem from
multiple directions, we aimed at
detecting these issues as soon as
possible so that we could build up the
relevant experience and deal with them
early in the process. Another pursued
positive side-effect of executing
multiple approaches in parallel was
that we would acquire knowledge both
on a specific and on a more conceptual
level of the different software modules
and the various concepts involved.

3.3.1 Bottom-up approach

The bottom-up approach implied that we should first pin-point the hard-coded field
specifications in the code; then we would track all dependencies we could find and make the
necessary changes. We expected that there would also be dependencies with regards to field
dimensions and marker positions, which we could not find directly by searching through the code
and reading the documentation. We assumed that we would either see a significant improvement
by just modifying the visible dependencies or that the invisible dependencies would become
paramount along the way as we got more insight and experience. In order to identify at least
some of these invisible dependencies and reduce the problems with the latter scenario, we were in
contact with members of both the Dutch Team in Utrecht and the German Team in Bremen; their
valuable information helped us with making the changes in the code, as well as debugging the
resulting configuration.

3.3.2 Top-down approach

The top-down approach started at the conceptual level, which is the high-level behaviour
exposed by Aibo robots. All behaviour is defined in XABSL files. At the basis, the C++ layer
provides the basic symbols and behaviours. Many aspects of soccer playing are put in XABSL
symbols, and thus regenerated with each software compilation. Therefore, the symbols will
always include the latest software changes. Unfortunately, the field dimensions were not
represented by XABSL symbols; the values were instead hard-coded in the decision trees that are
used in the behaviour specifications. So we would have to scrutinize every rule that is defined in
XABSL and made all appropriate changes.

4. Implementation

Our team was divided into two teams, each following one of the approaches. The team
that followed the bottom-up approach used the low-level C++ implementation as a basis for their
modifications. The other team took the XABSL definition files which are used by the behaviour
control module as a starting point for the top-down approach.

4.1 Changes in C++

We determined the main location in the software code where the field specifications are
defined: the FieldDimensions class [7]. Every documented or otherwise determined dependency
towards this was followed and the necessary modifications were implemented. It appeared as if
most modules in the perception layer that need field dimensions for their algorithms make use of
this class.

However, we cannot know for sure that all dependencies on field dimensions were solved
while executing this procedure. Even though the German code is well-structured and well-
documented, we found it surprising that there existed several instances of files where robots’
localisation or motion had hard-coded field-dependencies. Since it was not always easy to know
what the actual numbers were supposed to represent (i.e. whether the developers desired a certain
distance from the goal, the halfway line, the border lines, or something else), a logical change in
the code would be to parameterise all these distances and store them all in some header or library
file (just as in the case of FieldDimensions.h on which many modules depended, there could be
another file, say FieldDistances.h from which specific player positions could be read). However,
given our time constraints, we decided not to make these changes, but instead to update the hard-
coded values wherever we encounter them.

In addition, the field-view in RobotControl was updated to reflect the changed field size,
moved marker poles and removed borders. In the figure below a difference between the old and
the new field-view can be clearly seen; in the new field-view, Monte Carlo localization makes
use of the new dimensions.

Old view: a field with a size of 2.7 x 4.2 New view: a field of 3.6 x 5.4 metres, poles
metres, flags in the corners and wooden moved to the centre and no wooden borders.
borders.

Figure 6: The old and the new field view in RobotControl.

4.2 Changes in XABSL

One part of the software that clearly had the field
dimensions programmed in without wusing the
FieldDimensions class (directly or indirectly) was the
behaviour-control module. Throughout the XABSL
definitions, hard-programmed field positions are used in
decision trees that control the selection of subsequent
states in the finite state machines. We checked every rule
in the XABSL and made all appropriate changes. Using
the documentation of the old behaviour and using
common sense we were able to ‘scale up’ the behaviour
to the now larger field.

On the right an excerpt from a decision tree
defined in XABSL is shown; it makes use of specific
values that correspond to certain distances on the playing
field. For example, robot-pose.y value of 400 refers to a

=state name="position"=

=zubzequent-option ref="goalie-position" =

=zet-output-symbol ref="head-cortral-mode" value="head-control-made
=decizion-tree=

=if=

=condition description="ball was not seen for 3 seconds but in last 2
=and=

=greater-than=

=ddecimal-input-syimbol-ref ref="ball fime-since-last-seen"/=
i =decimal-value value="3000"=

=lgrester-than=

=less-than=

=decimal-input-symbol-ref ref="hall fime-since-last-seen"/=
i =decimal-value value="3500"=

<Nesz-thans=

=greater-than=

| =decimal-input-function-call ref="abs"=

i =wvith-parameter ref="ahz value"=
=ddecimal-input-syvimbol-ref ref="robot-pose "=
=twith-parameter=

| afdecimal-input-function-call=

i adecimal-value value="400"1=

=lgrester-than=

=land=

=fcondtion=

distance of 400 millimetres from the halfway line going through the centre. In another figure
below, the coordinate system that is defined on the field is shown (for the player attacking the

blue goal on the right):

e the origin is at the centre of
the field

e x coordinate is in the direction
of line of sight, with positive
values on the opponent side,
and negative ones on the own
side

e y is in the direction 4000
orthogonal to the line of sight,
with positive values indicating
left of the centre and negative
ones-right of the centre.

On the following page, a
complete option-hierarchy for

3600

Aibo’s behaviour is displayed.
The hierarchy of square boxes

start with the play-soccer behaviour, while the basic behaviours provided by the C++ software
are shown at the bottom and indicated with ellipses. The arrows indicate the lower-level
behaviour that may be executed when the higher-level behaviour gets activated. Every displayed
option internally has a finite state machine with one or more internal states. Depending on the
current state, lower-level behaviours are activated until the activation chain ends at the bottom
with the execution of a basic behaviour. It is in these finite state machines where the decision
trees reside and where we have made all the necessary changes.

!

‘opponent
Toam
scored

acion

playing
Goale

pay

playing
opponent
iokoff

playing
goalie
execute
ek

ande.
oall
‘oal

opponent

hande.
oall
‘opponent
border

bal

handie.

‘approach

oall

tum
release

playing

supporter
playing

supporter

defensive
supporter

playing

8eg

stand

do

notnng

support

5. Results

Note: we will refer to the original code of the German Team with GT2004, while the software
with our modifications included is referred to as DT2005.

All types of players (goalie, defensive supporter, offensive supporter, striker) were able to
find their kick-off positions both with the GT2004 and DT2005 code. The behaviour go-to-kick-
off-position is executed by all players during the initiation phase of the soccer game. We
observed that this initial positioning is based purely on perception. This makes a lot of sense as
Aibos cannot make any assumption on where they will be placed on the field.

When the game starts, the GT2004 Aibos do just fine. Despite the fact that they have the
wrong field dimensions programmed in throughout the code, the code appears to be very robust
and especially the players such as goalie or striker do not appear to be bothered too much with a
larger field.

In case of DT2005 Aibo, we analyzed different behaviours one at a time and found that
the robot has no problem finding the centre of the field or any of the goals, since these behaviours
are based solely on perception. However, when asked to move to an arbitrary position in the new
field (specified by exact x and y coordinates), the DT2005 robot positions itself incorrectly. This
happens because the DT2005 version of the code has accurate field dimensions and
corresponding distances in FieldDimensions and in the Behavior Control, but not in the
Perception modules (since we discovered these dependencies too late in the process). Therefore
the robot is able to find any of the markers, but its internal representation of the field remains
wrong, based on the old field dimensions.

When the Aibo is configured with the old field-dimensions and the new behaviour
specifications (using the new field dimensions) things do not get better. When we configured the
Aibo with the new field dimensions using the old behaviour we also saw no improvements. So
we figured that the source of the problem is not in our modified code, but somewhere in a hidden
dependency towards the old field dependencies. We found that there are multiple XML files, all
in the directory
\GT2004\Src\Modules\BehaviorControl\GT2004BehaviorControl\PotentialFields\Common,
which all map certain visual perceptions to positions on the field. In these files we found
statements similar to ‘when you perceive a part of the white line together with a marker pole you
are on this position’. Some of these could refer to positions on the old field, but we could not
make sense of most of the numbers.

We noticed that the goalie forces itself to stay inside the penalty area by constantly
looking to the surrounding lines and the poles, while the other players do not constrain
themselves and follow the ball outside of the field. The goalie’s example can therefore be used to
implement a desired XABSL ball-out-of-field behaviour linked with team ball-locator (a module
for communicating the ball position among the dogs. This behaviour would then be extended to
position the dogs in the direction where the ball will be placed by the referee.

A surprising fact that we observed was that when the Aibo was really lost and we
commanded it to get back to the centre of the field, it starts looking upwards, at the ceiling. In
RobotControl we could see that the Aibo makes use of the TL-lamps attached to the ceiling to
position itself. Apparently the Aibo software has a light-source detection algorithm programmed
in and makes use of this as a fall-back methodology to localise itself. We observed that the Aibo
assumes the TL-lamps to be attached in symmetry with the field as it positions itself precisely
between them; it also assumes only two lamps. In the RoboLab we had three, but the Aibo would

always position itself between the two of them. As neither the Germans nor the Dutch make any
mention of this algorithm in any of their documentation, we did not know the Aibo made use of
this kind of information for localization.

6. Conclusions

For the most part the Germans did a good job when developing their Aibo software. The
behaviour control, which is a very complex subject when the relations between certain
behaviours and low-level motion specifications are considered, was made very flexible and easy
to modify using the XABSL engine. The C++ code also looks neatly structured for the biggest
part and RobotControl is an amazing debugging interface.

However, when it comes to the field dimensions, things start to get really messy. We have
changed a big number of files, checked many dependencies and read all documentation available,
but we obviously haven’t covered all the dependencies. We think that the problem resides
somewhere at the perception level in the C++ code. We have thoroughly checked our modified
behaviour specifications and we do not think that only a syntax error in those would cause
unsatisfactory results when the game starts.

As the RoboCup organization is likely to change the field dimensions another few times
as they work towards human-level soccer playing, the software needs to be modified to make
these changes easier to implement. There already is a FieldDimensions class, but for some
unknown reason it is not linked to XABSL. It is very well feasible to export the field dimensions
as an XABSL basic symbol, which is the way many other variables have been used. In that case,
the decision trees could be made more self-explanatory in the XABSL definitions, which would
automatically be updated as the field dimensions are changed in the C++ code.

It is likely that the FieldDimensions class does not yet provide enough information to be
of good use for the perception modules. The FieldDimensions class could therefore be
accompanied by a FieldDistances class to make all necessary information easily available. In any
way, it would be a great improvement if all layers, namely perception, behaviour control and
motion control would tap from the same source when it comes to field dimension information.

To improve localisation, the Aibo could also make extensive use of the lamp detector,
which is apparently already programmed in. Now that the white borders are removed, the lamps
could be a good alternative, as they are also visible from any position and give a good indication
on the orientation of the Aibo. We don’t know whether it is possible to calibrate the relative
position of the lamps in relation to the field; this technique was not documented and we did not
have enough time to explore this issue further. We think that taking a “screenshot” of the light
position in the beginning of the game could help to improve the Monte-Carlo self localization
when the dogs are completely lost.

In conclusion, even if we did not accomplish all of our goals, we understood the structure
of the code and pointed out where the problems are coming from. Furthermore, we discuss and
propose some solutions for the future problems, building a solid base that the Dutch team can use
as a starting point for further improvements and implementations.

7. References

[1] RoboCup official website, http:// www.robocup.org/

[2] RoboCup Technical Committee: “Sony Four-Legged Football League Rule Book 2005”.
Available online: http://www.tzi.de/4legged/pub/Website/History/Rules2005.pdf

[3] RoboCup Technical Committee: “Sony Four-Legged Football League Rule Book 2004”.
Available online: http://www.tzi.de/4legged/pub/Website/History/Rules2004.pdf

[4] Thomas Roefer et al., “German Team — Robocup 2004”, Technical Report 2004. Available
online: http://www.germanteam.org/GT2004.pdf

[5] Floris Mantz, “A Robust Behaviour-Based Hierarchical Vision System with Local Colour-
Tables and Use of Behaviour and Location Information”, Thesis Report, Technical University
Delft, January 2005.

[6] UvA’s Aibo Soccer Team Project Page, http://student.science.uva.nl/~baslamet/wiki

[7] UvA’s Aibo Soccer Team LabBook, http://student.science.uva.nl/~baslamet/labbook

[8] Stijn Oomes et al. “The Dutch Aibo Team 2004, http://aibo.cs.uu.nl/articles.htm

[9] Thomas Rofer et al. “German Team 2004 — The German National RoboCup Team”, In 8"
International Workshop on RoboCup 2004, Lecture Notes in Artificial Intelligence, Springer-
Verlag 2004.

[10] S. Oomes, P. Jonker, M. Poel, A. Visser, M. Wiering "The Dutch AIBO Team 2004", in 8th
International Workshop on RoboCup 2004, Lecture Notes on Artificial Intelligence, Springer-
Verlag 2004.

[11] Thomas Rofer and Matthias Jungel, “Vision-Based Fast and Reactive Monte-Carlo
Localisation”, IEEE International Conference on Robotics and Automation, 2003.

[12] Brammert Ottens et al. “Aibo Project 2004 — German Team Report”, University of
Amsterdam, January 2004.

[13] Patrick de Oude et al. “Evaluation of CMPack 2003”, University of Amsterdam, January
2004.

[14] Frank Dallaert et al. “Monte Carlo Localisation for Mobile Robots”, IEEE Conference on
Robotics and Automation (ICRA99), May 1999.

[15] D. Fox et al. “Monte Carlo localization: Efficient position estimation for mobile robots”, In
Proc. of the National Conference on Artificial Intelligence, 1999.

[16] Martin Lotzsch, “XABSL - a behavior engineering system for autonomous agents - Diploma
thesis”, Humboldt Universitat zu Berlin, 2004. Available online:
http://www.martinloetzsch.de/papers/diploma-thesis.pdf

[17] Martin Lotzsch et al. “Designing agent behavior with the extensible agent behavior
specification language XABSL”, In 7th InternationalWorkshop on RoboCup 2003 (Robot World
Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelligence. Springer-Verlag,
2004.

[18] Sony Corporation, “OPEN-R documentation — OPEN-R Internet protocol version 4”,
Technical Report, 2004. Available online: http://openr.aibo.com/opent/eng/index.php4

[19] Thomas Rofer, “An architecture for a national RoboCup team”, In RoboCup 2002 Robot
Soccer World Cup VI, Lecture Notes in Artificial Intelligence, Springer-Verlag, 2003.

[20] Tim Laue and Thomas Rofer, “A Behavior Architecture for Autonomous Mobile Robots
Based on Potential Fields”, In 8" International Workshop on RoboCup 2004, Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2005. (to appear)

Appendix A: C++ changes

A.1 FieldDimensions

First we changed FieldDimensions.h and FieldDimensions.cpp to make it reflect the new
field size and marker pole positions. We also tracked and modified several dependencies.

File Description

FieldDimensions.h changed all hard-coded dimensions

added new variables according to rules of 2005
removed variables not used anymore

FieldDimensions.cpp updated the methods to use new dimensions or new variables

Field.cpp replaced SideCorner and Sideline by Groundline

A.2 Behavior Control

We had to change some basic symbols in the XABSL files, so we changed their C++
counterparts which originate the XABSL basic symbols.

File

Description

GT2004PlayersLocator.cpp

replaced SideCorner and Sideline by Groundline

BallSymbols.cpp added a template for new behaviour 'ball-out-of-field'
AngleSymbols.cpp Sideline replaced by Groundline
LinesTables2004.cpp removed comment from ‘#IFDEF SAVE’
DrawingMethods.cpp changed method ‘paintFieldPolygons’

replaced SideCorner and Sideline by Groundline

removed code not necessary anymore

added outside lines and new points where out balls will
be placed

GT2004StandardConverter.cpp

changed players positioning

GT2004ConfigurationSymbols.cpp

changed various kick-off positions which were defined in
ct+

Appendix B: XABSL changes

We found many XABSL files which were using integer values that correspond to a
certain region or position on the field which were based on the old field dimensions. The table
below only lists the files and states within these files which we have changed. The state

definitions are very self-explanatory.

XABSL File

States

Simple-basic-behaviors = goalie-position

Changed the cut-y range

Handle-ball

ball-in-center-of-field
ball-at-left-border
ball-at-right-border
ball-at-left-opponent-border
ball-at-right-opponent-border
ball-near-own-goal

Search-for-ball

Go-to-left-side
Go-to-right-side

Playing-goalie

Return

Clear-ball
Clear-ball-courageous
Position

Head-back
Head-back-from-border

Goalie-clear-ball

Walk

Goalie-position

Ball-just-seen-not-moving
Ball-just-seen
Ball-not-seen

Playing-defensive-supporter

Ball-in-opponent-half

Position-defensive-supporter-near-own-goal

Position

Playing-offensive-supporter

Changed the common decision tree

Position-offensive-supporter-near-opponent-
goal

Position-left
Position-right

Position-supporter-near-ball

Choose-side

Position-striker-when-ball-in-own-penalty-area

Position

