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Adaptive wavelet algorithms for solving operator equations have beamrsto converge with the best
possible rates in linear complexity. For the latter statement all costs areitdketcount, i.e., also the
cost of approximating entries from the infinite stiffness matrix with restoeitte wavelet basis using suit-
able quadrature. A difficulty is the construction of a suitable wavelet basiseogenerally non-trivially
shaped domain on which the equation is posed. In view of this, recentiyspamding algorithms have
been proposed that require only a wavelet frame instead of a basismBlpying an overlapping de-
composition of the domain, where each subdomain is the smooth paraimmetge of the unit cube, and
by lifting a wavelet basis on this cube to each of the subdomains, the unibess collections defines
such a frame. A potential bottleneck within this approach is the efficienmbappation of entries cor-
responding to pairs of wavelets from different collections. Indeech svavelets are piecewise smooth
with respect to mutually non-nested patrtitions. In this paper, consideginigidifferential operators and
spline wavelets on the subdomains, we propose an easy implementabiatgtm scheme to approxi-
mate the required entries, which allows the fully discrete adaptive franoeithign to converge with the
optimal rate in linear complexity.

Keywords Adaptive algorithms, boundary value problems, optimal computatioo@plexity, frames,
wavelets, splines, matrix compression, numerical integration

1. Motivation and Background

For some separable Hilbert spade a boundedly invertible operatdr: H — H’, and ag € H’, we
consider the problem of findinge H such that

Lu=g.

We assume that we are giverframe¥ = {y), : A € A} for H, i.e., a countable collection iH such
that for some constantsy, By > 0,

A FlIE < I )laenlifin) < Bwllflf,  (FeH) ()

*This work was supported in part by the Netherlands Orgaioizdor Scientific Research, the Deutsche Forschungsgemein-
schaft DFG, Grants Da 360/4-2, Da 360/4-3, and the EC-IHRprtBreaking Complexity”.

TEmail: stevenson@math.uu.nl

*Email: werner@mathematik.uni-marburg.de

IMA Journal of Numerical AnalysigC) Institute of Mathematics and its Applications 2005; alhtig reserved.



2 of 27 R. Stevenson and M. Werner

or, equivalently, closspad =H and

Bul|[V[|E < inf V|2 0 <AGHIVIA, veH). 1.2
GBS VI < AR, ver) (1.2)
The frame operatdf : H' — (o(A) : f — [f(Py)]ren hasduaF 1 la(A) = H:vi— Shcavagy. We
havelz(/A) = RanF ¢ KerF’, and¥ is called aRiesz) basior H when Ke’ = {0}, or, equivalently,
RanF = la(A).

Writing the solution of (1.1) a8 = ¥ )< Uy Y for someu € ¢2(A), u is a solution of

Mu =g, (1.3)

whereM = [(Ly»/) (Y )]r aren, andg = [9(Px )]aen- The, generally, bi-infinite stiffness matri is
bounded with|M |4, (n)—ry(n) < Bw|lL|lH—H/, KerM = KerF’, M|ranr : RanF — RanF is boundedly

invertible with ||M \E;nF”éz(/\)—%z(/\) < A;,1||L*1HH/HH, and forg, that is in Rarf, we have]|g||,,a) <

1
B&|9llHr-

v In Cohen et al. (2001, 2002); Gantumur et al. (2007) or Stemel2003); Dahlke et al. (2004, 2006)
for the basis or (true) frame case, respectively, adaptvative schemes have been proposed for solving
(1.3). Under some conditions, these schemes were showndptimealin the following sense: Let for
somes > 0, some solutiom of (1.3) bein

o= A3 = (V€ 1) Vlps 1= SUBNFIV Wl ) < o}

wherevy denotes dest N-term approximatiofor v, i.e., a vector with #supgy < N, that has distance

to v not larger than any vector with this support length. Note tha positionsof the non-zero coef-
ficients ofvy generally depend owm, meaning that here we are dealing witbnlinear approximation
Membership ofu € «7° means that for ang > 0, thereexistsa u, with #supple < [8*1/5|u|}7é§] and
[lu—uell,n) < €. For bases or frames that are commonly used in this settirgyrtembership is re-
lated to smoothness afin a scale oBesov spaced®eing a much weaker notion of smoothness than that
in the standard scale of Sobolev spaces. This is the matividiconsider nonlinear approximation and
adaptive schemes. NosupposdhatM can be sufficiently well approximated by computable sparse
matrices, in the sense that for sosie> sit is s*-computable This means that

for each je No, one can construct a matrikij having in each columm’(2}) non-zero entries,

whose joint computation takeg(2!) operationssuch that for any < s*, |[M — Milln)—ean) S
2758,

A consequence af € &5, andM beings*-computable for some* > sis thatg € o/ with |g| s <
|u|ss. Let us secondlassumehat given anye > 0, one knows how to produce an approximatgn
in ¢(£/%g|"/%) operations, and thus in particular with #sppS e /5g|"/2, with || g — ge[|r,(n) < €.
Then, given anye > 0, the aforementioned algorithms are proverptoducean approximatiorug
in '(¢-2/5|u|3) operations, and so #supp < £Y/S|u|"S, with |u — Uelley(n) < €. In view of the

assumptioru € &7, these bounds on the work and the support length are the bssibjfe modulo a
1
constant factor. Note thdfu— 3y (Ue)a P | < BEe.

REMARK 1.1 Actually to arrive at this result in the frame case, anitamithl technical third assump-
tion was made concerning tifg(A )-orthogonal projector onto R&h Although we expect it to hold
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much more generally, so far it was verified rigorously onhaispecial situation, see (Stevenson; 2003,
§4.3). In Stevenson (2003), we therefore introduced anredtsme algorithm that does not require this
assumption, which however we expect to have worse quantitatoperties.

REMARK 1.2 Although the algorithms from Cohen et al. (2001); Gantuet al. (2007) are of some-
what different type, one may think of the adaptive algorishim consist of the application of a simple
iterative scheme to (1.3), as the damped Richardson eratithe Steepest Descent scheme, where in
each iteration the application M to the current finitely supported iterant, as well as the smegtare
approximated. Such schemes are convergent WheaM T > 0, that we silently assumed above LIf

is symmetric and positive definite, i.¢/,= L and inf._yen (LV)(V)/|[V[|3 > 0, thenMT =M >0 (>0

in the basis case). Otherwise, one can apply the algoritbritset normal equations! "Mu = M Tg,
although, depending dp, quantitative better options may be possible (cf. Dahmeal.€2002); Gan-
tumur (2006)).

The validity of the assumption on the approximatibilitygpiepends on the right-hand side at hand.
In any case, it is satisfied wheris sufficiently smooth. The value af for which M is s*-computable
depends on the frame or basisand the operatok. Let us considet to be a partial differential or
integral operator obrder 2t, so that typicallyH is a Sobolev space with smoothness intiegn an
n-dimensionaldomain or manifold. Then fo# being awavelet basi®f order d, even for a smooth
solutionu the largessfor which membership € <75 can be expected &= d—;t. For biorthogonaspline
wavelets that haved > d — 2t vanishing momentsn Gantumur and Stevenson (2006a) or Gantumur
and Stevenson (2006b) for differential or singular integperators, respectivelg;-computability for
s > % was shown, being thus sufficient for optimality of the adaptlgorithms. The argument was
first, using the smoothness and vanishing moments of theletay show that the correspondikbis
s*-compressibleThis means that

for each je Np, there exists an infinite matrM j, constructed by dropping entries frdvh, such that
in each column it hag’(2!) non-zero entries, and such that for ay. s, M —M |, = n) S
275,

Secondly, by applying suitabtguadrature it was shown that each column kff; can be approximately
computedtakingon averager(1) operations per entry, while the order of approximation wétbpect
to M is maintained.

The bottleneck for the application of the adaptive wavedstidbalgorithms is the construction of suit-
able biorthogonal wavelet bases on the generally noratiishaped domains or manifolds on which the
equations are posed. The common construction principleaisvia anon-overlappingdomain decom-
position, where each subdomain is a smooth parametric imithe n-dimensional unit cube (Dahmen
and Schneider (1999a); Canuto et al. (1999); Cohen and Mg28®0)). Biorthogonal multiresolu-
tion analyses on this cube are lifted to the subdomains, antnziously connected to biorthogonal
multiresolution analyses on the whole domain or manifoiding rise to biorthogonal wavelets, called
composite wavelets$n view of obtainings*-computability for a sufficiently large value sf, difficulties
are that wavelets with supports that intersect interfacésden subdomains generally have no vanishing
moments, and that their smoothness is restricted to catytirRroposals to circumvent these problems
have been made in Harbrecht and Stevenson (2006); Stev&23@r), however resulting in wavelets
with larger supports, or requiring a more complicated aworasion. Another difficulty is that continuous
“gluing” of the multiresolution analyses over the intedacrequires some matching condition on the
parametrizations, that in practical situations might éadilt to fulfill. An elegant construction that
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FIG. 1. Construction of aggregated wavelet frame based on atappéng domain decomposition.

does not require this matching, and yields wavelets thafgatll requirements concerning smoothness
and vanishing moments was proposed in Dahmen and Schn&@$#9t(). Unfortunately, so far with this
approach it seems not easy to obtain wavelets that have tibrgguantitative properties. A recent
investigation of this approach was made in Kunoth and Sa(28€6).

Above problems with the construction of wavebeiseded us to consider adaptive algorithms based
on frames A special kind of frame for a Sobolev space on a domain or folghicalledaggregated
wavelet framen Dahlke et al. (2004), can be easily constructed. Sinckighgaper we will consider
to be apartial differential operatorof someorder 2t, appended witthomogeneous Dirichlet boundary
conditions we describe the construction for the case that for somélg, H = H}(Q) andQ c R"
is a domain. Consider aoverlapping domain decompositiaf the domain into a finite number of
subdomains, each of them being a smooth parametric image ofdimensional unit cube. Then, with
W being a wavelet basis fd{(0,1)", the union of the lifted bases is a frame tdr= H{(Q), see
Figure 1. This construction is simple, and can be appliedrgndmmain having a piecewise smooth
boundary. It can be expected that the effective conditiomlrer of the aggregated frame, i.e., the
condition number without taking the zero eigenvalues irgooant, is (much) smaller than that of the
corresponding composite wavelet basis.

In view of obtaining a sufficiently compressible stiffnesatnx, we will consider™ to be a
biorthogonal spline wavelet basis ofder d, havingd vanishing momentdMoreover, to obtain frame
elements that are globally sufficiently smooth, i.e., thatia C%~2(Q), on those faces df0,1)" that
are mapped into the interior ¢ we incorporate homogeneous Dirichlet boundary conditintes"
of orderd — 2. The resulting collection is then still a frame fdf(Q). Note that generall#™ now
depends on the subdomain. An alternative to obtain glolsatigoth frame elements, which has some
advantages in view of Remark 1.1, is to multiply the liftegisaon subdomai®; with x;, where{x; }i
is a collection of smooth non-negative functions@rwith x; vanishing outside2; andy; x; ~ 1. Al-
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though in the following we will not consider this option, afisults from this paper trivially extend to
this construction.

As in the basis case, the large$br which membership of some solutiore .7 can be expected is
S= d—;t. Ford >d—2t, the proof given in Stevenson (2004)sfcompressibility of the stiffness matrix
with s* > % for the basis case carries directly over to the aggregaseadicase. A potential problem,
however, is the quadrature, i.e., the question whdthés alsos*-computabldor somes* > % In the
overlapping region of two subdomains, there are two catiestof lifted wavelets whose elements are
piecewise smooth with respect to images of square mesh@; b underdifferentsmooth mappings,
see Figure 1. The question is whether entries involvingspairwavelets from different collections
can be approximated within the required tolerance at sefftly low cost. By carefully distributing
computational cost over the entries, in this paper we witivslthat indeedM is s*-computable for
s> 4t atleastwhert > 1 t>0andd—1>t. Foret > 1 andt=0ord—1=t, the suboptimal
results’ = % will be shown. Although quantitatively better schemes rhigé possible, in doing so
we exclusively use simple composite quadrature rules ofl forder and variable rank in the parameter
space of the wavelet that has the highest level of the twdvuedan an entry.

As follows from the preceding discussion, our resultstitomputability of the stiffness matri
of the boundary value problem with respect to an aggregatee:het frame is a key ingredient in the
proof of optimality of adaptive frame algorithms. In a faztiming paper, we will studpverlapping
domain decomposition (Schwarz) algorithapgplied on the continuous level for solving boundary value
problems, where the subdomain solves are approximateddptiae wavelet basis algorithms. Our first
experiments show much better performance of these algmitompared to the adaptive frame method.
The approximate application &l enters these domain decomposition algorithms for the pah®f
information between the subdomains. By #iecomputability ofM shown here, also these algorithms
can be shown to be optimal.

This paper is organized as follows: In Sect. 2, a result ivgmoconcernings*-compressibility
of partial differential operators in (aggregated) framerdinates, which slightly improves upon the
corresponding result from Stevenson (2004) (cf. Remark Ahother reason to include it is that for
both the present result and that from Stevenson (2004), genemus Dirichlet boundary conditions
are essential, whereas this restriction was overlookedeémefison (2004). In Sect. 3, we develop
quadrature schemes to approximate the remaining enttescaimpression, and show the requigtd
computability. In Sect. 4, in a slightly specialized seitiwe give much sharper estimates for certain
quadrature errors, which may help improving the quantitatiehaviour of adaptive wavelet and frame
algorithms. Finally, in Sect. 5, we report on numericalgéastverify the sharpness of bounds on the
sizes of the entries in the stiffness matrix, and on thoseualigature errors.

In this paper, byC < D we will mean thatC can be bounded by a multiple B, independently of
parameters whic andD may depend on. Obviousl§, > D is defined a® < C, andC ~ D asC <D
andC 2z D.

For any countable set, we will use|| - || to denote|| - [|4,(s) OF || - [|ry(5)—,(5)-

2. Compressibility of Partial Differential Operatorsin (Aggregated) Frame Coordinates
For some domai2 C R" andt € No, letL : H{(Q) — H'(Q) be defined by
L) = 5 [ aqpowoly  (wveHY(Q)).
la|Bl<t” €

where thecoefficients g g are sufficiently smooth
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Let
W= {l,U,\ S /\}

be a countable collection of functionsHﬂ)(Q), where we have in mind to be an aggregated wavelet
frame. The indexX encodes both thievel denoted byA | € Ng, and the location of the wavelegt, .
We assume that the wavelets &yeal in the sense that

diam(suppy, ) <2721 and  sup #{|A| =¢:B(x;27") Nsuppy, #£ 0} < oo,
xeQ,leNg

and that they arpiecewise smoothwith which we mean that supl, \singsuppy, is the disjoint union

of mdomains=), 1,..., =) m With U, =) ; = suppy, , where, |EA _is smooth with, for any € N,
sup [0V (x)| < 2NN, (2.1)
XGE)\J

We assume that there is a smooth, regular mappjindR" — R", for which each derivative is bounded,
uniformly in A, such thak/\’l(_:M) is ann-cube aligned with the Cartesian coordinates, and

(Lp)\ o KA)|K)\71(E)\Ai) € Qd*l7
with Qq_1 being then—fold tensor product of the space of univariate polynomidlslegreed — 1.

Thinking of an aggregated wavelet framg, is just the parametric mapping used to lift the wavelet on
(0,2)" to the subdomain. For some

Nod>t+1,
we assume that, wheh> 2,
P €CI2(Q).
By (2.1), this shows that fdr € [0,d — 1],
a0y < 2M(E k), (2.2)

In view of these assumptions, recall from Sect. 1 that evesrfmothu, the largess for which any
U € lo(A) with u= S, Uy ) can be expected to be S iss= d—;t. Our task is therefore to prove
s*-computability ofM = [(L{/)(Y)]x aren for somes® > 4L,

First of all, we show thaM is sufficiently compressible. To this end, we splitinto M) +M (9,
with M () containing those entrigd (/) () of M with

suppyy C Sy i, for some 1< i <m,  when|A| > |A7],
suppyyr C =y 4, forsome 1<i<m,  when|A| < |A’|,

and zeros at the remaining locationsAnx A, and thus withM(® being the matrix containing the
remaining entries oM, and zeros otherwise (see Figure Zhe indices “r’ and “s” refer to regular
and singular, respectively. . B

The collection of wavelet¥ is said to havel € Ny vanishing momentshen, ifd > 0,

Wroky LBy 4,
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possibly with the exception of the with |A| = 0.
In order not to be forced to handie= 1 as an exceptional, although easy case, unless explicitly
stated otherwise, in the following we will always assume tha

n>1

THEOREM2.1 Forj € Ng, we define the infinite matricaﬂgr) andM 25) by dropping the entriels! , ), =
(Lyy) (@) from M ") or M) when
A= [A]| > L or []A|=[A"]| > L5, respectively.

s)

Then the number of nonzero entries in each row and cqunMEBfandMg is of order 2, and

HM(r)_l\Agr)H52—](“{1[’)7 ||M(S)_MES)||§2*I'( 1) (2.3)

for the latter estimate assuming tibt d — 2t — 1.

REMARK 2.1 The corresponding result from Stevenson (2004) givesame bound fafM ") — M Er) I,

whereas it shows that for arsy =22 |M (9 — M§s>|| <27s,

So Theorem 2.1 shows thit(") is s*-compressible witls* >
d > d—2t, and thatV (¥ is s-compressible witfs" > 4t or s* >
d>d-2t—1.

In order to prove it, we start with bounding the individuatréas of M.

ors* >
n

d—t
d-t
Twhe

LEMMA 2.1 We have

— A=A [ (Bt+d) —A = (B +d—1—
|M9”52H\|Hb“+h|Mﬁﬂgzhl\ﬂb+ v

for the latter estimate assuming thbe d — 2t — 1.

Proof. Let|A| > |A’[, |A| > 0. By a transformation of coordinates, we can write

(Lgn) () = 80,50 (W 0Ky )OP (W) 0Ky, (2.4)

|a,|BI<t

/KAl(suppr,\)

for some smootla, g depending on the coefficientg 3 andk) . Since bounding the lower order terms
is easier, we consider a term of the right-hand side of (2dfbitrary|a| = |B| =t.

Whend —1 < 2t, select ay < 8 with | +y|=d—1and so| —y| =2t — (d—1). Using the
homogeneous Dirichlet boundary conditions for the casestinapy, Nsuppy,: N9Q # 0, integration
by parts, volsuppy, ) < 271", and (2.2) show that

o Bapd®(rok)0P (U oK)
Ky~ (suppdy)

/’1( PR )(_l)‘ylay(aaaﬁaa(w/\’OK/\))t?ﬁ’V(Lp,\ oKy)|
K) ~(suppy

< 2 IngI(3+d-1-0)plA|(3+2t~(d-1)~1) _ p—(A|-IA'(+d-1-1)
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Whend — 1 > 2t, by additionally using that the wavelets have d—2t—1 vanishing moments,
we obtain

‘/71 ...|:|/71 (—1)P10P (84 507 (W 0 K))) (Un o K )|
K L (suppyy ) Ky - (suppdy )
A Bl AB/5 a _ A1)
200 inf (-1)F10" (Ea g0 (W0 k) = Pll 2 supppn )22

< 27 AIndiam(k; H(suppyy )42 (~1) P1aP (y 50 (s 0 Ky ))lyg-2-12 17D
< 2~ AIng=A|(d-1-20) gA"|(3-+a-1-) |5 1) _ (A=A (B+a-1-1)

which completes the proof of the second estimate.

Finally, when supgy, C =,/ for some 1< i’ <m, i.e., when(Ly)/ ) (g ) = A /\/, using (2.1) we
find
<2 AN inf (~1)819B (&, 5% (W, ok oI5
s 52700 1108 g0 (W 0) ~ Pl

< o AIng— AN (3 +d+21) 9lA| (1) _ o (|A|-IA" \><z+t+d>_

O

REMARK 2.2 Sincey,: oKy € Qq_1, in the exponent of the upper bourd2*'I(z+1¥I-t) for
SURc; 1 \0"( Y oKy )(X)| the term|y| can be replaced by max(d —1),|y|). As a consequence,

for sufﬂuently larged, the last estimate from above proof, and so the upper bourld%, is not sharp

for [A’| > 0, in the sense that the bound is still valid when multipliéthva certain positive power of
2-1¥'l. So the casé\’| = 0 is the most difficult one. This observation is valid for marstimates that
will be derived in this paper.

Proof of Theorem 2.1. The locality of the wavelets shows that the number of noneatdes in each

row of M,S%, = [Mf\r?)\/]‘)\‘:[7‘/\/‘:él and column oM gf?[ is 0(max{1,2(’ ~O"}). The piecewise smooth-
ness of the Wavelets shows that the number of nonzero eintléaesh row oM gsé)/ =M S\S))\,}W#J,\,‘:W

and column oM 7, is &(max{1, 2 ~("-1)})_ The definition oﬂvl andM ) shows that in each row
and column they havé’(zl) nonzero entries.

Estimating||M ") |2 and||M %, |2 on the products of their maximal absolute row- and columnssum
taking into account Lemma 2.1, we find

HM%/HZ52|£’4\n2—\//4\(g+t+d~)2’ HM ) 12 < 2Dl (3 +d-1-12

By applying M ~M (7|2 < max 5 ., = b IM I max s ! iy [IM{7, | and
(92
HM(S)_M_J I <ma&’z{z:wwbﬁ}HMMHXm‘wz{w:wwpﬁ}||M/,.,z'||’
the proof is completed. O

3. Computability
The following lemma will be applied foB; = M ) with k = n, and forBj = S with k=n— 1.
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LEMMA 3.1 For some fixek € N, and all j € No, let Bj = ((Bj) a1)x a7en be @ matrix such that
the number of possible nonzero entries in each rowBgl, ¢ := [(Bj)x a1]ja|=¢, ]| @nd column of

(Bj)esis @(max{1,2'~0k}), and
(Bj)ax =0 when||]A|—[A"]| > L.

Let Bj be an approximation foB;, zero on positions wherB; is known to be zero, and for which
the computation o(B]‘),\_’,\/ takes?'(N; » /) operations otherwise, where, for some absolute constants

rq=0,r#aq,
|(Bi)aa —(Baal < NJ-_,AQ_VA/Z_M_W‘|(k/2+rk). (3.1)

For somep € (1,r/q) whenr > q, andp € (r/qg,1) whenr < g, and@ < min{1,p}, select
Ny e 1,20l

Then the work for computing each columnigf is 0(2)), and

218 whenr > q,

IBj —Bjll < { 2-i(r+(6-P)8)  \whenr < g. (32)

In particular, takingd = min{1, 0}, we have|Bj — Bj|| < 2-1mn{ar),

Proof. The work per column (or row) is less than or equal to an absatuiltiple of
i/k . C ik S . .
S 2m'<max{ 1,219*“19"} ~ 20420y 2P <ol 4 219 max(1, 210} < 2,
m=0 m=0

because 08 < min{1,p}.

By bounding the squared norm 6£7), ¢ = (Bj)s¢ — [(BT)/\,/\']W:A \w/|=¢ ON the product of its
maximal absolute row- and column sum, taking into accoumttimber of non-zero entries in each row
and column, (3.1), and the selection\yf, ,/, we find that

16,0 0ll < (1201 E (21816 loky ~aIE=1(5/2+1k) _ 109~ k(r—pa),

By bounding||Bj — B]-‘||2 on ma&/z{&%[,‘é%} (&) eer || x max Z{f/:\éfﬁ’\é%} (&7)eell, we arrive at
(3.2). O

REMARK 3.1 Forr = g, one easily infers that one can comput&ataking 0(2)) operations per
column, with for anye > 0, ||Bj — B3| < 2-I(min{ari—¢),

Now we come to the task of approximately computing the esitsiévi E” andM gs)_ We will exclu-
sively apply composite quadrature rulesvafriable rank Ne N, depending orj and\|/\| — \)\’H, but
fixed order pe N, onn-cubes aligned with the Cartesian coordinates. That is,ulsdigide then-cube
under consideration inthl equal subcubes, and, on each of these subcubege apply a quadrature
rule that isexact on Q_1(0). We assume that this rule is internal, i.e., that all abaeisse in the
closure of the subcube, and that it is uniformly stable, tleat the sum of the absolute values of the
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FIG. 2. suppl C Sy, i.e., an entry oM (),

weights can be bounded by an absolute multiple of the voluhtieeosubcube. Finally, having a fixed
p, we can assume that the total number of abscissa¢ny.
Without loss of generalityin the remainder of this section and in the next secti@assume that

NE!

For notational convenience, and, in view of (2.4), withoogd of generality, we will assume that

, so that

m

M/\,/\IZZ > /_ aq 0% Y0P Uy, (3.3)
i=1al[Bl<t=Ad

each=) ; being am-cube aligned with the Cartesian coordinates, [apd =, ; € Qg1 |

We first consider the task of approximating the entriemfﬁ.

PROPOSITION3.1 Let suppy, C =,y for some 1< i’ < m, see Figure 2 for an illustration. LM&');
be the result of the application of a composite rule of rirdnd orderp applied to each of the integrals
from (3.3). Then

< N—P/no—(IA|=[A"))(n/2+p-d+1)

0 0
|M)\,)\’ o M/\, !

Proof. Although this proof can already be found in Gantumur and&tsuen (2006a), for convenience
we recall it here. It is sufficient to consider one integf_e}\li aa7,3z9“wA/dB Y, . Using that each of the

N subcubes oF, ; has diameterS 2-*IN=1/", and thus volumes 2-AI"N~2, standard estimates show
that the quadrature error can be bounded by an absolutepieudfi

Y —1/9—|A|n—1 P
g2 N TN e 1 @ g% O oo

whereO runs over theN subcubes. In order to boudkﬂﬁaaﬁgﬁﬁ’(?“w,\/al‘(”@ﬁw)\ Loy for any u+

V+W = p, sincea, g is smooth,[A| > |A’|, anddl‘("’dﬁwA vanishes wheifs, +w > d, by invoking the
bound (2.1) on the partial derivatives @, and /, we see that the worst case occurs wiiea 0,
Bx+w=ry:=min{d—1 B« + p}, and thuss = p—ry+ S, yielding

Hakp (aa 50° L W)\) ILa(o) S 2l [(lal+p—ric+B+n/2-t) olA |(|Bl+Tc—Be+n/2-1)

< 2|)\/\(p—d+1+\a|+n/2—t)2\/\\(\B\+d—1+n/2—t)7 (3.4)
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FIG. 3. supyy ¢ =, forany 1<i’ <m,ie., anentry oM(®), but=, ; € Z,/ ;) for anyi.

where we used that21-1A"D(n—B) < 20A-IA"NA-1)  that is sharp whep = 0 andp > d — 1. Upon
applying thafa|,| 8] < t, and using that the number of the subcubes,ithe proof is completed. [

REMARK 3.2 In above proof, the worst case occurs wifigr= 0 and|3| =t. Forn=1 andt > 0,
both equalities cannot hold simultaneously. One may vetift forn = 1, the upper bound from
Proposition 3.1 can be sharpened\oP2~(1A1=1A")(3/2+p+t=d)

COROLLARY 3.1 Letd >d—2t andp > 2d —t — 1, thenM (" is s*-computable witts* > 9=t

Proof. Recall that the number of nonzero entries in each rovWIé?) and column ofMé,Q is

O(max{1,2( (=0 )"1). Using Proposition 3.1, an application of Lemma 3.1 Kot n yields a matr|x

5) for which the computation of each column tak€$2!) operations, and for WhchﬂM
M (D
Mj

r ( p—d+ 1) ( p—d+1 )
“l<2V" ") whend > 1, andHM ) <2 for any € > 0 otherwise (cf.
Remark 3.1). Using thatv (") || <2 ( ) by Theorem 2.1, the proof is completed. d

Next we consider the apprOX|mat|on of the non-zero entigs, of Mj S Note that for these
entries, supg, will have a non-empty intersection with the singular suppbry,.. As a consequence,
for p not too small, generally the decay of the quadrature errbnai be as fast as function of the rank

N — oo or [|A|—|A’|| — co as with the entries et ("), However, since the number of non-zero entries in

Mz(ze>/ increases less fast as function|6f- ¢'| — o as that mME},, as shown in Lemma 3.1, this effect
can be compensated by investing some more work in their ctatipn without increasing the overall

complexity.

REMARK 3.3 Let(A,A’) correspond to a non-zero entry BF9, i.e., suppy, ¢ Sy forany 1<

i” <'m, but such that for all K i < mthere exists an X i'(i) < mwith =) ; C =), meaning that
singsuppp, Nsuppy, C singsuppy,, see Figure 3. Then itis obvious that the bound of the quarrat
error from Proposition 3.1 is still valid. This situationaes wheny,, andy, are piecewise smooth
with respect to partitions that anestedas function of the level, e.g., in the case of an aggregatediefq
frame, wheny,, andy, are wavelets lifted by the same parametric mapping. In ordeto complicate
our exposition, in the following we will ignore this fact, duoise also for such entries the less favourable
bound on the quadrature error from the following propositio

PROPOSITION3.2 LetM} ,, be the result of the application of a composite rule of rairknd orderp
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FIG. 4. SeW, j y» of subcubes in the quadrature meshxyn on whichy,. is not arbitrarily smooth.

applied to each of the integrals from (3.3). Then
IMaar—=M3 | S N—P/n=(AI=I'D(n/2+p=d+1) | N~(@-t)/np—(1AI=I")(n/2+d-1-t)

which is valid without any assumption on the location of sSagpy, .

Note that the first term in the upper bound is equal to the b@iveh in Proposition 3.1.
Proof. As in the proof of Proposition 3.1, we have to consider onlg ortegral
fEA i %7Bd“wA,dﬂ Y, , where it is now sufficient to consider the hard case that

Z)insingsuppy,: # 0. Let us denote witW), ; 5/ the set ofn-cubesd in the quadrature mesh af),

on which g, is not arbitrarily smooth, see Figure 4. Using t&tp,. € nglfla‘(Q), in particular
using the bound (2.2), for any €V, ; »/ its Taylor polynomialj € By_,_|q| of orderd — 1 |a| at some
pointy € O, with g:= 0 whend — 1 — || = O, satisfies

109 Wrr —llL oy S (N2 Ahyd=1lal) gay,, he-1-1el
N~ (@1 [a])/ny— Al(d-1-[a]) oA'|(d-1-+n/2-1)

N
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Fromq € Py_p_|q), for [n| <d—2—|a| we havedq € Py_5_|q|—|5)» @nd sO

d-2-Ja|-In[ 1 ( n '
9q(x) = Z) j,{(‘Z(xi—yi)‘m)‘(d”q)(w}
i= C LIS
d—2—a|—’1|1{( n - .)i)j(dnw )(%)}
= JZO i i; i — i dXi’ Yy

Invoking the bounds foltd% /... q) for || < d—2, we infer that foix—y| < 2-1*'l, so in particular
for x € O, we have

X'=y

X'=y

10Mq(x)| < 2N I(al+nl+n/2-) (3.5)
obviously being also valid fomn | > d — 2— |a|. Note that this bound ofyd@" q|||_w<,3> is equal to that on
||(9n+aLﬂ)\/H|_w(D) from (21) in case’ ¢VA,i7)\/.

Let us now think of the composite quadrature rule as beinexpi the integrand, gd* Y 0Py
with, on anyd €V, ; )/, the factord® g, being replaced by the correspondipgSince the fact that gen-
erally the modified integrand is discontinuous over integfabetween differemt-cubes in the quadra-

ture mesh does not effect the error of the composite quaératle, using (3.5) the proof of Proposi-
tion 3.1 shows that this quadrature error can be bounded bpswiute multiple of

N P/no—(IA[-A"))(n/2+ p-d-+1) (3.6)

To bound the total error we have to add the sum avet V, ; ,» of bounds for the error of the

quadrature rule onl with integranday (9 ¢,/ —q)dPy,. On each of such a, this error can be
bounded by an absolute multiple of

vol(D)||ag g (0% Y — )P s [|L. o)
(N—l/nz—w)nN—(d—l—la\)/nZ—\)\ [(d=1—[al])olA’|(d=1+n/2-1) 5|A[(|B]+n/2-1)

<
< N~ (@-1-0/np— (A=A (n/2+d-1-1) (3.7

the last inequality being sharp fea| = [B| =t. Since ¥, ; »» < N/, we find that the additional
error can be bounded by an absolute multiple of

N~ (A-8)/no— (A=A} (n/2+d—1-1)

which completes the proof. O

REMARK 3.4 One might wonder why foll € V, ; »» we wrote aaﬁd"tp,\/aﬁw)\ = a(,’qu"'Bl,U;\ +
g p(0%Ynr — q)dPw,, and estimated the quadrature error for both terms separdteleed, using

ag p0% Y0P Yy € wd~119l(m), alternatively one can apply a standard error estimate furaarature
rule of order mifd —1—|a|, p} applied to this integrand. Invoking the bounds on the pladgavatives
of ¢, andy, ., however, one would end up with a bound on the quadrature asron Proposition 3.2

with the second terr—(@-1/n2=(AI=[A")(n/2+d=1-1) rap|aced byN~(d-t)/n2=(AI=IA")n/2,

COROLLARY 3.2 Letp > maxqd—t,2d—2—t}, &=t > 1 andd > d -2t — 1. ThenM® is s'-
computable witrs* = 4=t
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Proof. Recall that the number of nonzero entries in each roché?g, and column ofMg/S)é is

o(max{1,2’ ~H(-11) The conditionp > max{d —t,2d — 2—t} shows that in the bound from Propo-
sition 3.2 the first term is never larger than the second d¢raé dan be written as

N-(@-0/n= (A= ((-D/2+- 5 (0-1) | The conditiond~t > 2 1 shows that?=2/2=t 1/2 ts “H) , and so

an application of Lemma 3.1 fdt=n— 1 yields a matrlxl\/l *, for which the computauon of each

column takes7 (2)) operatlons and for Whlcth || < 27I(F), Using that bydT >3 1and
d>d—2t—1,|M® || < 271(°%") by Theorem 2. 1 the proof is completed O
Above result is not fuIIy satisfactory, since actually weeds* > 9=, Fors* = 9=t generally the

adaptive frame algorithms can only be shown to be optimabgoine Iog factors. Below we reconsider

the task of approximately computing the entriesM)gF). Forn < a, |B|+|n| < d-1,integration by
partsshows that

Ay, 9B :,In\m a=ny,,d" B
/QaaBa Y0y = (-1) i;/fmd 0" (ag g07 ), (3.8)

so that alternatively one can apply the composite quadratue to each term on the right-hand side,
with the advantage tha® ", is smoother thad? (.. We will consider this approach for tiargest
possiblen, i.e.,|n| = min{|a|,d —1—|B|}. Formula (3.4) now reads as

% (0“”7 w}\/an(aaﬁaﬁ%)) ILao) S 21A"[(p—d+1+lal=Inl+n/2-t) oA |(|Bl-+In|+d—1+n/2-1)

which is sharp whef = ny = 0 andp > d — 1. As in the proof of Proposition 3.2, for eaChe V, ; 1,
let us think ofd? "y, being replaced by a Taylor polynomialof orderd —1— |a — |, withq=0
whend —1—|a — n| = 0. Then the quadrature error can be bounded by some absalittplenof

Z 2—1A Ianl(zflA \ Nfl/n)pz\M(pdeHa\f\n\+n/27t>2|A |(IB|+[n|+d—1+n/2-1)
< N*P/nzf(l)\\*M’\)(n/2+pfd+1fmin{t,dflft}),

with the last inequality being sharp whém| = |B| =t.
Instead of (3.7), for eacti € V, ; ,» we get

vol(@)[|(8% "¢y — 4)9" (8q 30” Un ) IL.. o)
N~2/ngA [y~ (@-1-al+1n])/ng— Al (d-1-fal+[]) o' (d-L+n/2-0) Al 1B+ +n/2-1)

S (N
< N-1-(d-1-tmin{t,d—1-t}) /no—(]A|—[A"]) (d-1+n/2-1)

with the last inequality being sharp fa| = |B| =t. So, using ¥, ; »» < N("/", the additional error
can be bounded by an absolute multiple of

N (d—t+min{t.d—1-t})/no—(|A |-[A"]) (n/2+d—1-1)

and we have arrived at the following result:
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PROPOSITION3.3 LetM} }Y be the result of the application of a composite rule of rah&nd order

p applied to each of the mtegrals from (3.8) for eaah, | 3| < t, where for each of these integrals the
largest possiblg is taken. Then

My e — M3 ] SN P/ (A= (/24 p-d+1-frinfta-1-1))
4 N~ (-t /np—(1A | -[A")) (n/2+d~1-1)

which is valid without any assumption on the location of singpy,. (The terms in the exponents
within frames indicate the differences to the bound fromp@sition 3.2.)

COROLLARY 3.3 Letp>2d—2—t+min{t,d—1—t}, d—;t >3 d-1>t>0 andd >d—2t — 1.
ThenM® is s*-computable for soms* > 9=t

Proof. The number of nonzero entries in each rost)qZ/ and column oM é,s)é is

0(max{1,2(' -0~ The conditiong > 2d — 2—t+min{t,d—1—t}, andd— 1 >t > O thatimplies

d > 2, show that in the bound from Proposition 3.3 the first termeiger larger than the second one, that
can be written aN*(d*”mi“{‘d*l*t} Jno=(AI=IA"D((n-1)/2+ 955 (n-1))
thatr := =121
thatq:=
for which the computation of each column tak€¢2!) operations, and for whlch\Mj - j H g
2-imin{ar} o ||M gs) —M; (s)x H < 2-Imin{ar})—£ for anye > 0 in caseg =r (see Remark 3.1). Using that

. The conditiond=t > 1 shows

> 9=t "and the conditions> 0 andd — 1 >t show that mit,d — 1—t} > 0 and thus
d— t+m|n{td 1 t} > (s)*

d L. So an application of Lemma 3.1 flar= n— 1 yields a matn)d\/l

—1/2
byd>d-— 2t 1,(M® — || <o i) by Theorem 2.1, an8=22=1 > d=t by the assumption
that— > 2, the proof is completed. O

Concludlng we can say that under the conditions of Corofkatyand 3.2M is s*-computable with
s* > ¢t and that under the conditions of Corollary 3.1 and 3.3, 6 &-computable witrs* > 9L,
Corollary 3.3 requires thét> 0 andd — 1 > t, the latter meaning that lowest possible order spline
wavelets are not covered.

The underlying quadrature scheme consists of the applitafia simple composite quadrature rule
of fixed orderp, and a suitably chosen raikon the integral in the parameter space of the wavelet that
has the highest level of the two involved in an entry. The fdrdepends orj, i.e., on the total number
of operations one is prepared to spend on the computatioachf @lumn of the approximate stiffness
matrix, on the difference in levels of the wavelets involvadd on whether the support of the wavelet on
the higher level intersects the singular support of the Vedwm the lower level or not. Fully satisfactory
results are only obtained, when in the first, singular cagaedrpture is applied after first applying an
integration by parts.

For that case, even more favourable bounds, possibly lgadibetter quantitative behaviour of the
adaptive frame scheme, could be obtained by applying adagtiadrature, in the sense that subcubes
that intersect the singular support could be more refined thase that do not (cf. Figure 4). On the
latter subcubes, instead bfrefinement alsq-refinement could be considered. These modifications
would require more programming efforts though.

We apply fixed order composite quadrature rules mainly beeatithe approximation of the singular
entries ofM, i.e, the entries oM (¥, and because of the ease with which they can be adjustedeo giv
approximations within any prescribed tolerance. Numéegaeriments learned us that when applied
to regular entries their error decreases much faster atidanaf the difference in levels of the wavelets
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involved than predicted by the bound of Proposition 3.1.héltgh for our goal of proving optimal
computational complexity of adaptive frame algorithmssthbund was satisfactory, in view of the
guantitative behaviour it is interesting to derive a moreusate bound. This will be the topic of the next
section.

4. TheRegular Case Revisited

All quadrature error bounds derived so far were obtainedibysing over 1< i < mbounds for quadra-
ture errors in approximating integrals over the individggl;, being the regions restricted to whigh
isinQq_1. The fact thaty, is a wavelet, i.e., that it has vanishing moments did not playrole. In this
section, we will see that also for bounding quadrature srtioe vanishing moments can be exploited.
Although for relatively larged andd compared tap, also for entries oM (® better bounds can be ob-
tained, for simplicity hereve consider only entries & (") (actually, we will even exclude some of these
entries from our considerations, see below).

In order to simplify our analysis we make the following oh&dion. By a scaling of the inte-

gration domain,f aa;[; (X)o7 L,u,\,(x)df Yy (x)dx can be written ag &, g(y)d) Y (y)d&3 {0, (y)dy, where
aap(y) = aa’B(Z*"\ ly), and where,, and (I, have all the properties of a wavelet on level 0 and
|A]—|A’|, respectively. In the same way, a composite quadratureofubnkN and orderp to approxi-
matefEM ag,g(X)0¢ wA,(x)af Y, (x)dx can be transformed to such a rule to approximate

fzm_:M g p(Y) 0y tIJA/(y)deIJA (y)dy. In other words, if for]A’| = 0 we can prove an upper bound for

the quadrature error in approximatinggr)/\, of type~ N~92-1AI" then we have shown an upper bound
of type~ N~92-(A1=I'lr for generalA | > |A’|. (Since qualitativelyay 5 becomes increasingly smooth
with increasingA’|, as in Remark 2.2 we see that the cBs¢= 0 is actually the most demanding one).
Since for any non-zero entiy S\”/\,, Y, is infinitely smooth on supg, , it is even sufficient to prove an

upper bound of types N~92-IAI" for the quadrature error in approximating an integrgb? @, where
g € C™. This is what we are going to do in the following.

The usual way wavelets are constructed onrtheibe is by takingensor products of univariate
wavelets and scaling functionin order to obtain the best possible estimates we will ks fact.
We start with considering thenivariate case &= 1. B

So we considet, to be a univariate spline wavelet withvanishing momentnd oforderd>t+1
with respect to a subdivision ¢, 1] into subintervals, that in this section are assumed to kgual
length h=h), = 2121, Since the wavelets satisfy homogeneous Dirichlet boyncizmditions of order

t —1, for B <t integration by parts shows that tfeth derivativewf\ﬁ) hasd + 8 vanishing moments
From now on, we will only consider thosg, that satisfyfhomogeneous Dirichlet boundary condi-

tionsof themaximal possible order € 2, which in casel >t + 1 is not satisfied by each wavelet whose

support has non-empty intersection wétte. For such wavelets, there exist scalars- a; ) g such that

WP = 5 a,g(-+th),
A /gZZ( )

where( is thecardinal B-spline of order d- 3 with knot distanceh. The number of non-zeray is
bounded, uniformly im.

LEMMA 4.1 Foranyg € Py_pg_1, Yiezd(- +ih){ (- +ih) € Py, andycz { (- +ih) = 1.
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REMARK 4.1 For comparison, using (Cohen; 2000, Theorem 2.8.1)rdeesithat a general compactly

supported, € Ly with [ { # 0 satisfies the Strang-Fix conditions of order 3 — 1 (implying that the

shift invariant space generated gycontainsPy_g_1) if and only if ¥z (- + ih)kZ (- +ih) € R4 for
,d=B—1,and O£ Sz {(-+1ih) € .

Proof. It is sufficient to give the proof foh = 1. With {x denoting the B-spline of orddy; {; is the
characteristic function d, 1], and fork > 1,

&(X) = 270100 + (1= 1E1) de-a(x—1). (4.1)

Fork =d— 3 = 1, both statements of the lemma are obviously true. Assuatebthth statements
are true for som&—1=d— B > 1. Using (4.1), we find that

S Ax+)Zkx+1) = 3 [ax+1)E +a(x+i+1) (1 )] Gea(x+1),

i€Z i€z

and so in particula¥ <z {k(X+1) = ¥icz {k—1(x+1) = 1. Substitutingy(x) = X" for r € N, we have

(K1) B+ (i + 1) (1 ) = OG0 *%() X+i)! kﬂ;)([) (x+1)+
:ZJG) (X+ k11r2<> (x+)*ten,

(xR 4 (ki + 1) (1 - )

where in particular for = k—1,

By
g (e,

We conclude that for ang € B_1, Siczd(- +1) k(- +1) = Sicz (- +1){k—1(- +1i) for someqe Ry,
which completes the proof by the induction hypothesis. O

Thanks to the fact tha,t//(\B) hasd + B vanishing moments we have the following result.

(kfl) (x+i)+L

@ (x+i)*t e Ry,

LEMMA 4.2 5,7 a,q(¢) =0 foranyq € Ry, _;.
Proof. Without loss of generality we take= 1, and dropA from the notations. We have

S WP = T 5 adtcki+h) =3 &y Lckith = 3 ay o),

i€z i€z

sothat 0= [ WP (x)dx= [§ Ticz WP (x+i)dxtogether withy ., { (- +ih) = 15 0 impliesy cz a =
0.
Now suppose that the statement of the lemma is valid forqmde;sz. Then writing (x +
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IR i <d+il> (—0*(x+i+0TP¥, we have

S o DF P LBk = 5 () S (-0 (e 4+ TR 0
(x+1) PP (x+i)= % 5 ;4()Z(++) {(x+i+1)
i€z k=0 cZ ieZ

:dEl( *il) /EZZ ag(—/z)klz (x+0)F+B-1kz (x4 i) (4.2)
d

IEL
= [Z a(— > {(x+i),
Z
so that 0= [§ Sicz (X + i) d+B-1y(B) (x +i)dx together withy ;7 (- +ih) = 1 # 0 implies
S rez,at4P~1 = 0, with that completing the proof. O

REMARK 4.2 Above proof confirms the known fact thpj.z a,q(¢) = O for anyq € Pitp-1 is also a
sufficient condition fon,u)(\ﬁ) to haved + 8 vanishing moments.

To approximately computg, gl,ll)(\ﬁ), it is written asy <z fiﬂ”)hgw}ﬁ), and the individual integrals
over the interval$ih, (i + 1)h] are approximated bgomposite quadrature rulesf order p> 0 andrank

N, which in this section are assumed tod¥gft invariant i.e., of typezﬂ-\'zleg(xj +ih)wf\ﬁ)(xj +ih)

with w; andx; independent of. For the resulting approximation fdf, gl,U)(\B) we have the following
result.

ProPOSITION4.1 For any polynomiad of degree less or equal tb+ max(d—1,p—d+28),

N
5 3wl +in g o+ in) = [ quf®
i€z =1 R
Proof. Again, without loss of generality we take= 1, and dropA from the notations. We write
Jzay'®) and the quadrature approximation f5yi.; q(x+ i)@® (x+i)dx and YL Wi Siez d(Xj +
i WP (x;j +1), respectively. For € N, as in (4.2) we have

Z(X+i)r4’(ﬁ)(x+ i () Z a(— X+ DK (x+1)

i€z k=0 Le |€Z

_ kdi B (k) gzae<—e>kgz<x+i>f-kz<x+i>
r“()/gzag S ),

where the second equality follows from Lemma 4.2. Fgrd+max(d—1, p—d+2p),i.e.,r—d—g <
maxd — B —1,p—d+ B), the last expression is either a constant thanks to Lemmao4.5ince
{ € Py_p_1, itis a polynomial of degree less or equalge- 1. Since in any casp > 0, in both cases
the quadrature approximation is exact. O
So the order of exactness of the quadrature rule is an inogesction ofd, and a non-decreasing,
and eventually increasing function of bathand p. It is remarkable that even fgo = 1, the rule is
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already exact for any polynomial of degmi& d—1. On the other hand it is fair to say that the required
number of function evaluations grows with d andd. E.g. thinking ofN =1, ag—point Gauss rule
being of orderp, andy, being a biorthogonal spline wavelet of ordkewith Jvanishing moments as
introduced in Cohen et al. (1992) whose support extendéde-21 — 1) intervals of typelih, (i + 1)h],
this number of function evaluations jgd +d — 1).

An alternative way to approximatg gtpf\ﬁ ) for smoothg has been analyzed in Barinka et al. (2002).
After splitting the integral intg, g(w)(\ﬁ) +C)-C i gtp)(\ﬁ) for some constar@ with wﬁm +C >0, both

integrals were approximated by Gauss quadrature, the finsg %w + C as weight function. In this
way exactness of ordgris obtained at the expense of only /2 = p function evaluations. Of course
additional work is required in setting up this Gauss rule.

PROPOSITION4.2 | [ gP)| < 2*"“(%“*‘5)\g|Wd~+,3 and

. N
|/ aw® — 5 S wiglx; + i (x; +ih)|
JR i€Z =1
< NP2 M(G+trdrmaxd—p,p+p-+1-d)) 1911, o mas-1.p-a28)53)-

loo

Proof. Sincewﬁﬁ) hasd~+[3 vanishing moments, using (2.1) we have

| 9wlP < vol(suppin) |94 .. diam(suppys ¥ A g, .

_ 1B 1) Al
< 27 MAlz+E-12 M|(d+ﬁ)|g‘wg+ﬁ-

Similarly to the proof of Proposition 3.1, but now using treetfthat by Proposition 4.1 we may
subtract fromg say its Taylor polynomiad) of orderm:=d+ maxd —1,p—d+2f3) + 1 around some
point in suppy, , the quadrature error can be bounded on some multiple of

N2 HINH 2 NPl - ) e
< 27‘)‘|(p+l)N7p (B+0) B 7
~ ogggzja,)i73 ||lll,\ L. |0 Q|W£ ¢

< o-RIPFYN-P  max 2RI(G+B+-t)p—[A|maxO.m-p+
~ o</<d-1-B

_ _ 1 A — 11—
< 2 MPHN PR (8-3-02 M Im-PHd-1-B) g e,

loo

) ‘g|WoTa><(0,mf p+{)+p—{

where we usedy, € Py_1, (2.1), and tham—p+d—1— > 0 by d~+B > 0. By substituting the
expression fom, the proof is completed. |
Returning to thenmultivariate settingwe consider waveletg, of the following type

U =8&,@ &),

where|Ay| = --- = |An| = [A[, and for 1< £ < n, §,, is eithera univariate waveleg,, of the type we
studied in this section, except that fox d — 1 it satisfies| g, [y < 2MI(z+v=n) instead of| g, ey <
2M(3+v-  or such a function without vanishing moments, i.e., a univarialing function, where at
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least one of the factoi§, , ..., <), is a wavelet. Note that the scaling of bgrorthonormalized wavelet
Y, with a factor 221t to give it an “energy-norm” of order 1 is independent of thaspdimension
n. Here, we distributed this scaling evenly over the factérstthermore, note that above assumption
on the multivariate wavelet means that it satisfies homagen®irichlet boundary conditions of the
maximal orderd — 2, meaning that fod — 1 > t we exclude some wavelets that are mapped onto the
physical boundarg Q.

To approximatggn gd® g, for |B| < t, we apply the product of the quadrature rules for the uréari
integrals in the coordinate directions, i.e., sums of shifariant composite rules of ordgrover the
subintervals on which the univariate wavelet or scalingfiam is polynomial. So denoting, g, (9) =

Jr géﬁf‘) andQ,, g, m(9) its quadrature approximation using rakk givenN € N" we approximate

Jen 0Py = (g @+ @ 1r, ) (9) BY (Q) p N @ +-@Qy 5 \n)(9). Note that the total number
of abscissae is N.

ProOPOSITION4.3 We have

[y @ @ — Qo gyt @ ®Qy g\ (9)] S
NP/~ A (3t deming cnmax(d-—By.pt B+ 1-d)  max 10Y9 L (mr)-
{y:ye<max(p,d-+max(d—1,p—d+20,)+1)}

Proof. It is sufficient to consider the case tht is a wavelet and, since the other cases give never
worse bounds, the other factors are scaling functions. hthious simplifications of the notations,
Proposition 4.2 (wittN, t reading adN'/", t /n) shows that fok = 1,

(1®-Qlk—Q®---@Q(9)| S
N~ P/no—[Al(k(3+§)+d+maxd—py,p+pi+1-d)) ) max H@VgHLm(Rk).
{y:ys<max(p,d+max(d—1,p—d+28)+1),1<l<k}

Fork > 1, we write

1@ Qlk—Q® - Q=
(1® Ol 1- N Q1) DQ+11® - @ k1 ® (I — Qx)-

From
—Al(i it
[(Ik— (Ik— Q) (@) S 27! |(2+n)Hg||W;ﬂa>‘(P.J+ma>(d—1,p*d+2ﬁk)+1)(R)v

_ —Al( _ —
|(Ik—Qu)(@)] S N™P/n2 PG Hrmaxd-fcpthctd Vllgll ymetpmaxa-1o-:280+3 g

St idi(ke2)y(dat d- -
(11® - ®11)(g)| < 27 Al +at+dtk 2)(2+”))||‘91+B1‘9§2"'dffllg”Lm(kal)a
by Proposition 4.2 for both wavelets and scaling functiaﬁs(O), and, for the last estimate, addition-
ally a tensor product argument (cf. Light and Cheney (1985))again applying this tensor product
argument and the induction hypothesis we arrive at theratteof the proposition. O
Recalling thaM)\")\/ = ZWMBKt f_Q aaﬁﬁd“w)\/dﬁ Y, and using that

min min maxd—B;,p+B;+1—d)=maxd—t,p+1—d, [%ll),

[B|<t1<e<n

we arrive at the conclusion that for the basically shift nwat tensor product setting discussed in this
section, the following estimate is valid.
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FIG. 5. Two simple domains made up of two overlapping patches withmatching dyadic grids.

COROLLARY 4.1 Let|A| > |A/| with suppy, C =)/ for some 1< i’ < m, and such thaty, satisfies
homogeneous Dirichlet boundary conditions of order2. Then

‘ME\O/\’ _ MS{)}»\*J < N—P/Mo~(Al=[A)(§+t+d+maxd—t,p+1-d,[ PF1]))
To compare with the upper bound from Proposition 3.1, no& 3htt + d+ max(d —t,p+1—
d, /B2 - (B +p—d+1) =max2d+d—p—1Lt+d,t+d+d— ).

5. Numerical Tests

The numerical experiments in this section intend to confinm sharpness of the different estimates
given in Lemma 2.1, Propositions 3.1, 3.2 and 3.3, and Camp#.1. On domain® C R?, we consider
an operatot : H}(Q) — H=1(Q) of order 2 = 2 defined by

2
o= 5 | awd (5.1)

which results from the variational formulation of Poissoptoblem with homogeneous Dirichlet bound-
ary conditions. We are concerned with the size and the appation of the entries in the stiffness
matrix representingy with respect to aggregated wavelet frames.

As reference system§” = {¢i, : e A} C H&(0,1)2, we use biorthogonal spline wavelet
bases of orded =2 ord = 3, havingJ: 2ord=3 vanishing moments, respectively. The dual
wavelets are chosen not to satisfy any boundary conditiemghat indeed all primal wavelets have
the aforementioned number of vanishing moments (Dahmersahdeider (1998)). The wavelets are
constructed as tensor products of univariate wavelets aalihg functions with respect to uniform
partitions of the unit interval as discussed in Sect. 4.

The elements of the aggregated frame are obtained by |diegrding to

B Wil,:’u(Kiil(X))
| detDki (k; 1(x))[ 2’

Yiu(X) for x € Imki, (5.2)
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and zero elsewhere of?, wherek; : (0, 1)2 — Qi C Q represents a smooth parametrization of the
i—th patch of the open, overlapping coveriiy= J; Q;. Although not required for the current
application, in our software we included the additionallisgagiven by the denominator in (5.2) in
order that| ¢4 ullL,@) = Wil 012 @nd that the lifted primal wavelets are biorthogonal toiksirty
lifted dual wavelets. Except for affing;, effectively it yields smooth, non-polynomial coefficient
in the differential operator that we therefore have omiite@5.1). Ford > 2, the reference system
Y depends (weakly) on in the sense that on those edges that are mapped into thierrde Q,
homogeneous Dirichlet boundary conditions of ordler2 >t — 1 = 0 are prescribed, which guarantees
that all; , € CY9-2(Q). The aggregated wavelet frame @nis now defined as

wi={yp : A=(ip) e |J{i} xA"}. (5.3)

i=1
We consider parametrizations of type
Ki(r,s) = (1-1)(1— )b + (1-1)sb®V 4 r(1- 5)b0 4 rsb™-Y),

whereb®!) ¢ R?, (k,¢) € {0,1}2. Thus, provided that the verticé§“") are ordered appropriately;
maps the unit square to an arbitrary quadrangl®4nin case the vertices describe a parallelogram,
is affine and so the denominator in (5.2) is a constant.

We consider two different types of overlapping decomposgiof Q. The first type refers to the
situation of overlapping rectangular patches with nonemiag dyadic grids both being aligned with
the Cartesian coordinates, as shown in Figuref) (

First of all, we address the decay estimates in Lemma 2.1chwdnie the essential ingredients for
the proof of Theorem 2.1, stating a sufficient compressyhdf M. For the grids in Figure 5I€ft),
we could compute the entries bf exactly, whereas for the grids in Figure Bght) we applied our
composite quadrature scheme with, for this gbaty> 1 and a high ordep such that the quadrature
error is neglectable.

For fixed columns oM () andM (9, we have computed the largest entry in modulus as function of
level difference of row and column indices. The decay of tlealatus of this entry is illustrated by the
results given in Figure 6. Lemma 2.1 predicts the exponkadieay raten/2+d+t orn/2+d—1—t
in base 2 foM () or M, respectively. FoM ("), we observed the rate 4 or 5 foe=d =2 ord =d = 3,
and forM (9, we observed the rate 1 or 2 foe=d = 2 ord = d = 3, all in accordance with the predicted
rates.

For investigating thguadrature errorof our composite schemes we used product Gaussian quadra-
ture formulas of fixed ordep as building block. Figure 7 addresses the rate of conveegehthe
composite quadrature scheme for a fixed entry fidffi as function of the granularity or rartk. We
have used a quadrature rule of orghet 4 for the casel = d=2 andp=2ford = d = 3. We observe
the polynomial rates 2 4/2 = p/nand 1= 2/2, respectively, as predicted by both Proposition 3.1 and
Corollary 4.1.

For fixedN and p = d = d = 2, the decay of the quadrature error in a fixed colummMé? as
function of the level differencgA | —|A']| of the involved wavelets is examined in Figure 8. We observe
the exponential rate/2+t+d+maxd—t,p+1—d,[(p+1)/2]) = 6 in base 2 as predicted by
Corollary 4.1, which is much better than the raf@ + p—d + 1 = 2 predicted by Proposition 3.1.

Unlike that from Corollary 4.1, as stated in Remark 3.3 therttbfrom Proposition 3.1 also applies
to entries fromM (¥ when the singular supports of the corresponding waveletsested as function of
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the level, cf. Figure 3. The results given in Figure 9 for: d = d = 2 indicate that for those entries the
bound from this proposition as function of the level diffece is sharp.

Figure 10 addresses the rate of convergence of the compositEature scheme for entriesNH®
as function of the ranN. We have used a quadrature rule of orget 2 for the casel = d =2 and
p=4ford=d= 3. We observe the polynomial rateb—t) /n=1/2 and 1, respectively, in accordance
with the second term from the bound of Proposition 3.2. Sintkeese caseg> max{d—t,2d —2—t},
as stated in the proof of Corollary 3.2, the second term @ ltound is always dominating. Recall that
for the entries oM (9 the integrand of any integral in (3.3) may be discontinudbensequently, iN
is successively increased, the ratio of the number of qtadr&nots on either side of the singularity
may differ, even for uniform dyadibl-refinement, as we have used it in our experiments. This sause
the oscillatory behaviour of the error that can be obsemdedgure 10.

For fixedN, the decay of the quadrature error in a fixed colum6¥ as function of the level differ-
encel|A| —|A’|| of the involved wavelets is examined in Figure 11. The restdinfirm the exponential
raten/24+d —1—t in base 2 given by the second term from the bound of Propasi®.

Since ford = 3,d — 1 >t = 1, for this case alternatively we can apply the compositelratare to
the right hand side in (3.8), i.after integration by partsThe results shown in the lower error diagram
of Figure 10, obtained witlp = 4, confirm the improved polynomial rat¢ 3= (d —t +min{t,d —1—
t)})/n predicted by Proposition 3.3, and illustrate an improveaditiative performance. Indeed, in the
lower error diagram of Figure 10 the initial error filr= 1 is more than ten times smaller than without
the integration by parts trick.

To conclude we can say that in our tests all estimates hawerstibe sharp. Moreover, also the
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quantitative performances of our quadrature scheme foappeoximation of the matriceldl () have
turned out to be quite promising, cf. Figure 7 and 8. Natyralle computation of entries ik (9

is much harder. Nevertheless, applying an additional matemn by parts as suggested in (3.8), both
higher convergence rates as function of the riinknd an improvement of constants can be achieved.
Therefore, it can be expected that the application of thik tpossibly in combination with an adaptive
guadrature scheme as mentioned at the end of Section 5, llwill for an efficient computation of
stiffness matrices also for domains with more complex gddese
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