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1. Introduction. Adaptive finite element methods (AFEMs) have become a
standard tool for the numerical solution of partial differential equations. Although
being successfully in use for more than 25 years, in more than one space dimen-
sion, even for the most simple case of symmetric elliptic equations of second order
a(u, v) = f(v) (∀v), their convergence was not demonstrated before the works of
Dörfler ([Dör96]) and that of Morin, Nochetto and Siebert ([MNS00]). Convergence
alone, however, does not show that the use of an AFEM for a solution that has singu-
larities improves upon, or even competes with that of a non-adaptive FEM. Recently,
after the derivation of such a result by Binev, Dahmen and DeVore ([BDD04]) for
an AFEM extended with a so-called coarsening routine, in [Ste07] it was shown that
standard AFEMs converge with the best possible rate in linear complexity.

The aforementioned works all deal with AFEMs in which the error is measured
in the energy norm ‖ · ‖E := a(·, ·) 1

2 . In many applications, however, one is not so
much interested in the solution u as a whole, but rather in a (linear) functional g(u)
of the solution, often being referred to as a quantity of interest. With uτ denoting
the finite element approximation of u with respect to a partition τ , from |g(u) −
g(uτ )| ≤ ‖g‖E′‖u− uτ‖E, obviously it follows that convergence of uτ towards u with
respect to ‖ · ‖E implies that of g(uτ ) towards g(u) with at least the same rate. It is,
however, generally observed that with adaptive methods especially designed for the
approximation of this quantity of interest, known as goal-oriented adaptive methods,
convergence of g(uτ ) towards g(u) takes place at a higher rate. Examples of such
methods can be found in the monographs [AO00, BR03, BS01], and in references cited
there. So far these goal-oriented adaptive methods are usually not proven to converge.
An exception is the method from [DKV06], however, in which adaptivity is purely
driven by energy-norm minimalisation of the error in the dual problem a(v, z) = g(v)
(∀v). Another exception is the goal-oriented method from [MvSST06], which is proven
to converge with a rate equal to what we will demonstrate (for piecewise linears),
where, however, in [MvSST06] the strong assumption u, z ∈ C3(Ω) was made.
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The starting point of our method is the well-known upper bound

|g(u)− g(uτ)| = |a(u− uτ , z − zτ )| ≤ ‖u− uτ‖E‖z − zτ‖E , (1.1)

where zτ is the finite element approximation with respect to τ of z. Having available
an AFEM that is convergent with respect to the energy norm, in view of (1.1) an
obvious approach would be to use it for finding partitions τp and τd such that the
corresponding finite element approximations uτp

and zτd
have, say, both energy norm

errors less than
√
ε. Indeed, then the product of the errors in primal and dual finite

element approximations with respect to the smallest common refinement of τp and τd,
and so the error in the approximation of the quantity of interest, is less than ε. This
approach, however, would not benefit from the situation in which, quantitatively or
qualitatively, either primal or dual solution is easier to approximate by finite element
functions.

The alternative method we propose here works, in essence, as follows. On the
k-th iteration, we start from a partition τk, and compute on it the solutions of the
primal and dual problems. To advance the iteration, this partition is refined in such a
way that the product ‖u−uτ‖E‖z− zτ‖E is reduced by a constant factor. To achieve
this, we consider the effort needed to reduce each of ‖u− uτ‖E and ‖z− zτ‖E by the
same constant factor, which we do by separately computing suitable refinement sets.
The smallest of these sets is then applied to τk to obtain τk+1.

We can show that this method is convergent. In particular, we prove that if,
for whatever s, t > 0, the solutions of the primal and dual problems can be approxi-
mated in energy norm to any accuracy δ > 0 from partitions of cardinality O(δ−1/s)
or O(δ−1/t), respectively, then given ε > 0, our method constructs a partition of
cardinality O(ε−1/(s+t)) such that

|g(u)− g(uτ )| ≤ ‖u− uτ‖E‖z − zτ‖E ≤ ε.

In view of the assumptions, this order of cardinality realizing ‖u−uτ‖E‖z−zτ‖E ≤ ε
is optimal. Moreover, by solving the arising linear systems only inexactly, we show
that the overall cost of the algorithm is of order O(ε−1/(s+t)).

The convergence rate s + t of our goal-oriented method is thus the sum of the
rates s and t of the best approximations in energy norm for primal and dual problems.
With the approach of approximating both primal and dual problem within tolerance√
ε, the rate would be 2 min(s, t). Another alternative approach, namely, to solve

each of the problems to an accuracy of εs/(s+t) and εt/(s+t), respectively, would also
result in the rate s+ t. This approach, however, is not feasible, since the values s and
t are generally unknown. Our method converges at the rate s + t without previous
knowledge about the regularity of the solutions.

Concerning the value of s (and similarly t), when applying finite elements of
order p, for s up to p/n, a rate s is guaranteed when the solution has “ns orders
of smoothness” in Lτ (Ω) for some τ > (1

2 + s)−1 (instead of in L2(Ω) required for
non-adaptive approximation) (cf. [BDDP02]).

Our method is based on minimizing an upper bound for the error in the functional,
which under circumstances can be crude. Actually, in all available goal-oriented adap-
tive methods the decision which elements have to be refined is based on some upper
bound for the error. Different than for the error in energy norm, there exists no
computable two-sided bound for the error in a functional of the solution. This leaves
open the possibility that some bounds are “usually” sharper than others. An ar-
gument against the upper bound (1.1) brought up in [BR03] is that it is based on
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the application of a global Cauchy-Schwarz inequality, whereas the dual weighted
residual method advocated there would better respect the local information.The con-
tribution of the current paper is that we prove a rate that is generally observed with
goal-oriented methods. When applying finite element spaces of equal order at primal
and dual side, we neither expect (see Remark 5.1 for details), nor observe in our
experiments, that on average our bound gets increasingly more pessimistic when the
iteration proceeds.

This paper is organized as follows: In Sect. 2, we describe the model boundary
value problem that we will consider. The finite element spaces and the refinement
rules based on bisections of n-simplices are discussed in Sect. 3. In Sec. 4, we give
results on residual based a posteriori energy error estimators. A cheaper estimator,
consisting of face contributions only, applicable to lowest order elements is discussed in
the appendix. In Sect. 5, we present our goal-oriented adaptive finite element method
under the simplifying assumption that the right-hand sides of both primal and dual
problem are piecewise polynomial with respect to the initial finite element partition.
We derive the aforementioned bound on the cardinality of the output partition. In
Sect. 6, the method is extended to general right-hand sides. By replacing the exact
solutions of the arising linear systems by inexact ones, it is further shown that the
required number of arithmetic operations and storage locations satisfies the same
favourable bound as the cardinality of the output partition. Finally, in Sect. 7, we
present numerical results obtained with the method. To apply our approach also to
unbounded functionals, here we recall the use of extraction functionals, an approach
introduced in [BS01].

In this paper, by C . D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Similarily, C & D
is defined as D . C, and C h D as C . D and C & D.

2. The model problem. Let Ω ⊂ IRn be a polygonal domain. We consider the
following model boundary value problem in variational form: Given f ∈ H−1(Ω), find
u ∈ H1

0 (Ω) such that

a(u, v) :=

∫

Ω

A∇u · ∇v = f(v), (v ∈ H1
0 (Ω)), (2.1)

where A ∈ L∞(Ω) is a symmetric n × n matrix with ess infx∈Ω λmin(A(x)) > 0. We
assume that A is piecewise constant with respect to an initial finite element partition
τ0 of Ω specified below. To keep the exposition simple, we do not attempt to derive
results that hold uniformly in the size of jumps of ρ(A) over element interfaces,
although, under some conditions, this is likely possible, cf. [Ste05]. For f ∈ L2(Ω),
we interpret f(v) as

∫

Ω
fv.

Given some g ∈ H−1(Ω), we will be interested in g(u). With z ∈ H1
0 (Ω) we will

denote the solution of the dual problem

a(v, z) = g(v), (v ∈ H1
0 (Ω)). (2.2)

We set the energy norm on H1
0 (Ω) and dual norm on H−1(Ω) by

‖v‖E = a(v, v)
1
2 and ‖h‖E′ = sup

06=v∈H1
0 (Ω)

|h(v)|
‖v‖E

,

respectively.
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3. Finite element spaces. Given an essentially disjoint subdivision τ of Ω̄ into
(closed) n-simplices, called a partition, we will search approximations for u and z
from the finite element space

Vτ := H1
0 (Ω) ∩

∏

T∈τ

Pp(T ),

where 0 < p ∈ IN is some fixed constant. For approximating the functionals f and g,
we will make use of spaces

V∗
τ :=

∏

T∈τ

Pp−1(T ).

Although it is not a finite element space in the usual sense, we also use

W∗
τ :=

∏

T∈τ

{h ∈ H(div;T ) : Jh · nK∂T ∈ L2(∂T )} (3.1)

with n being a unit vector normal to ∂T , and J K∂T denoting the jump of its argument
over ∂T in the direction of n, defined to be zero on ∂Ω. Obviously, [V∗

τ ]
n ⊂W∗

τ .
Below, we specify the type of (nested) partitions we will consider, and recall some

results from [Ste08], generalizing upon known results for newest vertex bisection in
two dimensions.

For 0 ≤ k ≤ n− 1, a (closed) simplex spanned by k + 1 vertices of an n-simplex
T is called a hyperface of T . For k = n − 1, it will be called a true hyperface. A
partition τ is called conforming when the intersection of any two different T, T ′ ∈ τ is
either empty, or a hyperface of both simplices. Different simplices T , T ′ that share a
true hyperface will be called neighbours. (Actually, when Ω 6= int(Ω) above definition
of a conforming partition can be unnecessarily restrictive. We refer to [Ste08] for a
discussion of this matter.)

Simplices will be refined by means of bisection. In order to guarantee uniform
shape regularity of all descendants, a proper cyclic choice of the refinement edges
should be made. To that end, given {x0, . . . xn} ⊂ IRn, not on a joint (n − 1)-
dimensional hyperplane, we distinguish between n(n + 1)! tagged simplices given by
all possible ordered sequences (x0, x1, . . . , xn)γ and types γ ∈ {0, . . . , n− 1}. Given a
tagged simplex T = (x0, x1, . . . , xn)γ , its children are the tagged simplices

(x0,
x0+xn

2 , x1, . . . , xγ , xγ+1, . . . , xn−1)(γ+1)modn

and

(xn,
x0+xn

2 , x1, . . . , xγ , xn−1, . . . , xγ+1)(γ+1)modn,

where the sequences (xγ+1, . . . , xn−1) and (x1, . . . , xγ) should be read as being void
for γ = n− 1 and γ = 0, respectively. So these children are defined by bisecting the
edge x0xn of T , i.e., by connecting its midpoint with the other vertices x1, . . . , xn−1,
and by an appropriate ordering of their vertices, and by having type (γ + 1)modn.
See Figure 3.1 for an illustration. This bisection process was introduced in [Tra97],
and in different notations, in [Mau95]. The edge x0xn is called the refinement edge of
T . In the n = 2 case, the vertex opposite to this edge is known as the newest vertex.

Corresponding to a tagged simplex T = (x0, . . . , xn)γ , we set

TR = (xn, x1, . . . , xγ , xn−1, . . . , xγ+1, x0)γ ,
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Fig. 3.1. Bisection of a tagged tetrahedron of type 0 with the next two level cuts indicated.

which is the tagged simplex that has the same set of children as T , and in this sense
is equal to T . So actually we distinguish between 1

2n(n+ 1)! tagged simplices.
Given a fixed conforming initial partition τ0 of tagged simplices of some fixed

type γ,
we will exclusively consider partitions that can be created from τ0 by

recurrent bisections of tagged simplices, for short, descendants of τ0.
Simplices that can be created in this way are uniformly shape regular, only dependent
on τ0 and n. For the case that Ω might have slits, we assume that

∂Ω is the union of true hyperfaces of T ∈ τ0.
We will assume that the simplices from τ0 are tagged in a way such that any two
neighbours T = (x0, . . . , xn)γ , T

′ = (x′0, . . . , x
′
n)γ from P0 match in the sense that if

x0xn or x′0x
′
n is on T ∩ T ′, then either T and T ′ are reflected neighbours, meaning

that the ordered sequence of vertices of either T or TR coincides with that of T ′ on
all but one position, or the pair of neighbouring children of T and T ′ are reflected
neighbours. See Figure 3.2 for an illustration. It is known, see [BDD04] and the
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Fig. 3.2. Matching neighbours for n = 2, and their level 1 and 2 descendants. The neighbours
in the rightmost picture are not reflected neighbours, but the pair of their neighbouring children are.

references therein, that for any conforming partition into triangles there exists a local
numbering of the vertices so that the matching condition is satisfied. We do not now
whether the corresponding statement holds in more space dimensions. Yet we showed
that any conforming partition of n-simplices can be refined, inflating the number of
simplices by not more than an absolute constant factor, into a conforming partition
τ0 that allows a local numbering of the vertices so that the matching condition is
satisfied.

For applying a posteriori error estimators, we will need that the partitions τ
underlying the approximation spaces are conforming. So in the following

τ , τ ′, τ̂ etc. will always denote conforming partitions.
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Bisecting one or more simplices in a conforming partition τ generally results in a
non-conforming partition ̺. Conformity has to be restored by (recursively) bisecting
any simplex T ∈ ̺ that contains a vertex v of a T ′ ∈ ̺ that does not coincides with
any vertex of T (such a v is called a hanging vertex). This process, called completion,
results into the smallest conforming refinement of ̺.

Our adaptive method will be of the following form

for j := 1 to M

do create some, possibly non-conforming refinement ̺j of τj−1

complete ̺j to its smallest conforming refinement τj
endfor

As we will see, we will be able to bound
∑M

j=1 #̺j − #τj−1. Because of the
additional bisections made in the completion steps, however, generally #τM − #τ0
will be larger. The following crucial result, that relies on the matching condition in
the initial partition, shows that these additional bisections inflate the total number
of simplices by at most an absolute constant factor.

Theorem 3.1 (generalizes upon [BDD04, Theorem 2.4] for n = 2).

#τM −#τ0 .

M
∑

j=1

#̺j −#τj−1,

only dependent on τ0 and n, and in particular thus independently of M .

Remark 3.2. Note that this result in particular implies that any descendant ̺
of τ0 has a conforming refinement τ with #τ . #̺, only dependent on τ0 and n.
We end this section by introducing two more notations. For partitions τ ′, τ , we write
τ ′ ⊇ τ (τ ′ ⊃ τ) to denote that τ ′ is a (proper) refinement of τ . The smallest common
refinement of τ and τ ′ will be denoted as τ ∪ τ ′.

4. A posteriori estimators for the energy error. Given a partition τ , and
with uτ denoting the solution in Vτ of

a(uτ , vτ ) = f(vτ ), (vτ ∈ Vτ ), (4.1)

in this section we discuss properties of the common residual based a posteriori error
estimator for ‖u− uτ‖E. Since a( , ) is symmetric, an analogous results will apply to
‖z − zτ‖E , with zτ denoting the solution in Vτ of

a(vτ , zτ ) = g(vτ ), (vτ ∈ Vτ ). (4.2)

By formally viewingH1
0 (Ω) as Vτ corresponding to the infinitely uniformly refined

partition τ =∞, at some places we interpreted results derived for uτ to hold for the
solution u of (2.1) by substituting τ =∞.

For developing an adaptive finite element method that reduces the error in each
iteration, it will be needed to approximate the right-hand side by discrete functions.
Loosely speaking, in [MNS00] the error in this approximation is called data oscillation.
Being on a partition τ , it will be allowed to use functions from V∗

τ + div[V∗
τ ]
n, where

div := (−∇)′ : L2(Ω)n → H−1(Ω). Depending on the right-hand side at hand, it
might be more convenient to approximate it by functions from V∗

τ or from div[V∗
τ ]
n,

or by a combination of those. In view of this, we will write

f = f1 + divf2, (4.3)
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where f1 ∈ H−1(Ω) and f2 ∈ L2(Ω)n are going to be approximated by functions
from V∗

τ or from div[V∗
τ ]
n, respectively. Similarly, we write g = g1 + divg2.

Remark 4.1. Obviously, any f ∈ H−1(Ω) can be written in the above form with
vanishing f2. On the other hand, by taking f2 = −∇w with w ∈ H1

0 (Ω) being the
solution of

∫

Ω∇w · ∇v = f(v) (v ∈ H1
0 (Ω)), we see that we can equally well consider

a vanishing f1.
For ūτ ∈ Vτ , f̄

1 ∈ L2(Ω), and f̄2 ∈ W∗
τ (see (3.1)), where we have in mind

approximations to uτ , f
1, and f2, respectively, and T ∈ τ , we set the local error

indicator

ηT (f̄1, f̄2, ūτ ) :=diam(T )2‖f̄1 +∇ · [A∇ūτ + f̄2]‖2L2(T )+

diam(T )‖J[A∇ūτ + f̄2] · nK∂T ‖2L2(∂T ).

Note that the first term is the weighted local residual of the equation in strong form.
We set the energy error estimator

E(τ, f̄1, f̄2, ūτ ) := [
∑

T∈τ

ηT (f̄1, f̄2, ūτ )]
1
2 .

The following Proposition 4.2 is a generalization of [Ste07, Theorem 4.1] valid for
A = Id, f2 = 0, and polynomial degree p = 1. This result in turn was a generalization
of [BMN02, Lemma 5.1(5.4)], see also [Ver96], in the sense that instead of ‖u− uτ‖E ,
the difference ‖uτ ′ − uτ‖E for any τ ′ ⊃ τ is estimated. Proposition 4.2 tells us that
this difference can be bounded from above by the square root of the sum of the local
error indicators corresponding to those simplices from τ that either are not in τ ′ since
they were refined, or have non-empty intersection with such simplices. By taking
τ ′ =∞, this result yields the known bound for ‖u− uτ‖E .

Proposition 4.2. Let τ ′ ⊃ τ be partitions, f1 ∈ L2(Ω), f2 ∈W∗
τ and

G = G(τ, τ ′) := {T ∈ τ : T ∩ T̃ 6= ∅ for some T̃ ∈ τ, T̃ 6∈ τ ′}.

Then we have

‖uτ ′ − uτ‖E ≤ C1

[

∑

T∈G

ηT (f1,f2, uτ)
]

1
2 ,

for some absolute constant C1 > 0. Note that #G . #τ ′ −#τ .
In particular, by taking τ ′ =∞, we have

‖u− uτ‖E ≤ C1E(τ, f1,f2, uτ ). (4.4)

Proof. We have ‖uτ ′ − uτ‖E = sup06=vτ′∈Vτ′

|a(uτ′−uτ ,vτ′)|
‖vτ′‖E

. For any vτ ′ ∈ Vτ ′ ,

vτ ∈ Vτ , we have

a(uτ ′ − uτ , vτ ′) = a(uτ ′ − uτ , vτ ′ − vτ )

=
∑

T

∫

T

f1(vτ ′ − vτ )− f2 · ∇(vτ ′ − vτ )−A∇uτ ′ · ∇(vτ ′ − vτ )

=
∑

T

{

(f1 +∇ · [A∇uτ + f2])(vτ ′ − vτ )−
∫

∂T

[A∇uτ + f2] · n(vτ ′ − vτ )
}

,
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where the last line follows by integration by parts. By taking vτ to be a suitable
local quasi-interpolant of vτ ′ as in [Ste07] (for p > 1, one may consult [KS08]) or,
alternatively, a Clément type interpolator, and applying a Cauchy Schwarz inequality,
one completes the proof.

Remark 4.3. For the lowest order elements, i.e., p = 1, a statement similar to
Proposition 4.2 is valid with error indicators consisting of the jump terms over the
interfaces only. As a consequence, along the lines that we will follow for elements of
general degree p, for p = 1 a cheaper goal-oriented adaptive finite element method
can be developed that has similar properties. Details can be found in Appendix A.

Next we study whether the error estimator also provides a lower bound for ‖u−
uτ‖E and, when τ ′ is a sufficient refinement of τ , for ‖uτ ′ − uτ‖E. In order to
derive such estimates, for the moment we further restrict the type of right-hand sides.
The proof of the following proposition will be derived along the lines of the proof
of [BMN02, Lemma 5.3] where the Stokes problem is considered (see also [MNS00,
Lemma 4.2] for the case p = 1 and f2 = 0). For convenience of the reader we include
it.

Proposition 4.4. Let τ ⊂ τ ′ be partitions, and let f1 ∈ V∗
τ , f2 ∈ [V∗

τ ]
n, and

ūτ ∈ Vτ .
(a). If T ∈ τ contains a vertex of τ ′ in its interior, then

diam(T )2‖f1 +∇ · [A∇ūτ + f2]‖2L2(T ) . |uτ ′ − ūτ |2H1(T ).

(b). If a joint true hyperface e of T1, T2 ∈ τ contains a vertex of τ ′ in its interior,

then

diam(e)‖J[A∇ūτ + f2] · nKe‖2L2(e)
. |uτ ′ − ūτ |2H1(T1∪T2)

+

2
∑

i=1

diam(Ti)
2‖f1 +∇ · [A∇ūτ + f2]‖2L2(Ti)

.

Proof. Let φT ∈ H1
0 (Ω) ∩∏

T ′∈τ ′ P1(T
′) be the canonical nodal basis function

associated to a vertex of τ ′ inside T . Writing RT = (f1+∇·[A∇ūτ+f2])|T ∈ Pd−1(T ),
and vτ ′ = RTφT ∈ Vτ ′ , using that supp vτ ′ ⊂ T , by integration by parts we get

∫

T

R2
T .

∫

T

R2
TφT =

∫

T

RT vτ ′ = (f1 + divf2)(vτ ′)−
∫

T

A∇ūτ · ∇v′τ

=

∫

T

A∇(uτ ′ − ūτ ) · ∇vτ ′ ,

and so by |vτ ′ |H1(T ) . diam(T )−1‖vτ ′‖L2(T ) . diam(T )−1‖RT ‖L2(T ), we infer (a).
Let φe ∈ H1

0 (Ω)∩∏

T ′∈τ ′ P1(T
′) be the canonical nodal basis function associated

to a vertex interior to e. Writing Je = J[A∇ūτ + f2] · nKe ∈ Pd−1(e), let J̄e ∈
Pd−1(T1 ∪ T2) denote its extension constant in the direction normal to e, and let
vτ ′ = J̄eφe ∈ Vτ ′ . Using that supp vτ ⊂ T1 ∪ T2, by integration by parts we get

∫

e

J2
e .

∫

e

J2
eφe =

∫

e

Jevτ ′ =

∫

T1∪T2

(A∇ūτ +f2) ·∇vτ ′ +

∫

T1∪T2

∇· (A∇ūτ +f2)vτ ′ .

From
∫

T1∪T2

f2 · ∇vτ ′ = −divf2(vτ ′) = −a(uτ ′, vτ ′) +

∫

T1∪T2

f1vτ ′ ,
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we infer
∫

e

J2
e . a(ūτ − uτ ′ , vτ ′) +

∫

T1∪T2

(f1 +∇ · (A∇ūτ + f2))vτ ′

.
[

|ūτ − uτ ′|H1(T1∪T2) diam(e)−1 +

2
∑

i=1

‖RTi
‖L2(Ti)

]

‖vτ ′‖L2(T1∪T2).

Using that ‖vτ ′‖L2(T1∪T2) h ‖J̄e‖L2(T1∪T2) h diam(e)
1
2 ‖Je‖L2(e), we infer (b).

In view of this last result, we will call a (possibly nonconforming) ̺ ⊃ τ a full

refinement with respect to T ∈ τ , when
T , and its neighbours in τ , as well as all true

hyperfaces of T all contain a vertex of ̺ in their interiors.

As a direct consequence of Proposition 4.4 we have
Corollary 4.5. Let τ be a partition, f1 ∈ V∗

τ , f2 ∈ [V∗
τ ]
n, and ūτ ∈ Vτ , and

let τ ′ ⊃ τ be a full refinement of τ with respect to all T from some F ⊂ τ . Then

c2
[

∑

T∈F

ηT (f1,f2, ūτ )
]

1
2 ≤ ‖uτ ′ − ūτ‖E , (4.5)

for some absolute constant c2 > 0. In particular, we have

c2E(τ, f1,f2, ūτ ) ≤ ‖u− ūτ‖E . (4.6)

Next, we investigate the stability of the energy error estimator.
Proposition 4.6. Let τ be a partition, f1 ∈ L2(Ω), f2 ∈W∗

τ , and vτ , wτ ∈ Vτ .

Then

c2|E(τ, f1,f2, vτ )− E(τ, f1,f2, wτ )| ≤ ‖vτ − wτ‖E .

Proof. For f̃1 ∈ L2(Ω) and f̃2 ∈W∗
τ and vτ , wτ ∈ Vτ , by two applications of the

triangle inequality in the form
∣

∣‖ · ‖ − ‖ · ‖
∣

∣

2 ≤ ‖ · − · ‖2, first for vectors and then for
functions, we have

|E(τ, f1,f2, vτ )− E(τ, f̃1, f̃2, wτ )| ≤ E(τ, f1 − f̃1,f2 − f̃2, vτ − wτ ).

By substituting f̃1 = f1 and f̃2 = f2, and by applying (4.6) the proof is completed.

5. An idealized goal-oriented adaptive finite element method. From
(2.2), and u− uτ ⊥a( , ) Vτ ∋ zτ , we have

|g(u)− g(uτ )| = |a(u− uτ , z)| = |a(u − uτ , z − zτ )| ≤ ‖u− uτ‖E‖z − zτ‖E. (5.1)

We will develop an adaptive method for minimizing the right-hand side of this ex-
pression.

Remark 5.1. A question that naturally arises is whether there is something to
be gained from using finite elements of different orders for the dual and the primal
problem. Note that the derivation of (5.1) remains valid if the dual solution is com-
puted in a lower order space, or for that matter, in any space that is a subspace of
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Vτ . But this will result in a larger ‖z − zτ‖E , worsening our error estimate, without
changing the actual error |g(u)− g(uτ )|.

And how about using a higher order space for the dual problem? In this case,
(5.1) does not hold any longer. As g(u) = f(z), we can approximate it by f(zτ ) with

|f(z)− f(zτ )| = |a(u, z − zτ )| = |a(u− uτ , z − zτ )| ≤ ‖u− uτ‖E‖z − zτ‖E . (5.2)

Thus, as before, we obtain a worse error estimate as if we had used the same higher
order space for the primal problem as well.

We conclude that with our approach there is no gain from using different orders,
and, accordingly, will only consider here spaces of equal order.

Up to and including the following Lemma 5.3, we start with discussing a method
for reducing ‖u− uτ‖E or similarly ‖z − zτ‖E separately. For some fixed

θ ∈ (0,
c2
C1

),

we will make use of the following routine to mark simplices for refinement:

MARK[τ, f̄1, f̄2, ūτ ]→ F
% f̄1 ∈ L2(Ω), f̄2 ∈W∗

τ , ūτ ∈ Vτ .

Select, in O(#τ) operations, a set F ⊂ τ with, up to some absolute factor, minimal
cardinality such that

∑

T∈F

ηT (f̄1, f̄2, ūτ ) ≥ θ2 E(τ, f̄1, f̄2, ūτ )
2. (5.3)

Remark 5.2. Selecting F that satisfies (5.3) with truly minimal cardinality
would require the sorting of all ηT = ηT (f̄1, f̄2, ūτ ), which takes O(#τ log(#τ))
operations. The log-factor can be avoided by performing an approximate sorting
based on binning that we recall here: With N := #τ , we may discard all ηT ≤
(1 − θ2)E(τ, f̄1, f̄2, ūτ)

2/N . With M := maxT∈τ ηT , and q the smallest integer with
2−q−1M ≤ (1 − θ2)E(P c, f̄1, f̄2, wP c)2/N , we store the others in q + 1 bins corre-
sponding whether ηT is in [M, 1

2M), [12M, 1
4M), . . . , or [2−qM, 2−q−1M). Then we

build F by extracting ηT from the bins, starting with the first bin, and when it got
empty moving to the second bin and so on until (5.3) is satisfied. Let the resulting
F now contains ηT from the ℓth bin, but not from further bins. Then a minimal set
F̃ that satisfies (5.3) contains all ηT from the bins up to the (ℓ− 1)th one. Since any
two ηT in the ℓth bin differ at most a factor 2, we infer that the cardinality of the
contribution from the ℓth bin to F is at most twice at large as that to F̃ , so that
#F ≤ 2#F̃ . Assuming that each evaluation of ηT takes O(1) operations, the number
of operations and storage locations required by this procedure is O(q + #τ), with
q < log2(MN/[(1 − θ2)E(τ, f̄1, f̄2, ūτ )

2]) ≤ log2(N/(1 − θ2)) . log2(#τ) < #τ . The
assumption on the cost of evaluating ηT is satisfied when f̄1 ∈ V∗

τ and f̄2 ∈ [V∗
τ ]
n, as

will be the case in our applications.
Having a set of marked elements F , the next step is to apply

REFINE[τ, F ]→ τ ′

% Determines the smallest τ ′ ⊇ τ which is a full refinement

% with respect to all T ∈ F .

The cost of the call is O(#τ ′) operations.
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Using the results on the a posteriori error estimator derived in the previous sec-
tion, we have the following result:

Lemma 5.3. Let f1 ∈ V∗
τ , f2 ∈ [V∗

τ ]
n. Then for F = MARK[τ, f1,f2, uτ ], and

τ ′ ⊇ REFINE[τ, F ], we have

‖u− uτ ′‖E ≤ [1− c22θ
2

C2
1

]
1
2 ‖u− uτ‖E. (5.4)

Furthermore

#F . #τ̂ −#τ0

for any partition τ̂ for which

‖u− uτ̂‖E ≤ [1− C2
1θ

2

c22
]
1
2 ‖u− uτ‖E .

Proof. Since this is a key result, for convenience of the reader we recall the
arguments from [Ste07].

From

‖u− uτ‖2E = ‖u− uτ ′‖2E + ‖uτ ′ − uτ‖2E ,

and, by (4.5), (5.3) and (4.4),

‖uτ ′ − uτ‖E ≥ c2θE(τ, f1,f2, uτ ) ≥
c2θ

C1
‖u− uτ‖E ,

we conclude (5.4).
With τ̂ being a partition as in the statement of the theorem, let τ̆ = τ ∪ τ̂ . Then,

as τ and τ̂ , the partition τ̆ is a conforming descendant of τ0, ‖u− uτ̆‖E ≤ ‖u− uτ̂‖E ,
and

#τ̆ −#τ ≤ #τ̂ −#τ0.

To see the last statement, note that each simplex in τ̆ that is not in τ is in τ̂ . Therefore,
since τ ⊃ τ0, the number of bisections needed to create τ̆ from τ , which number is
equal to #τ̆ −#τ , is not larger than the number of bisections needed to create τ̂ from
τ0, which number is equal to #τ̂ −#τ0.

With G = G(τ, τ̆ ) from Proposition 4.2, we have

C2
1

∑

T∈G

ηT (f1,f2, uτ ) ≥ ‖uτ̆ − uτ‖2E = ‖u− uτ‖2E − ‖u− uτ̆‖2E

≥ C2
1θ

2

c22
‖u− uτ‖2E ≥ C2

1θ
2E(τ, f1,f2, uτ )

2,

by (4.6). By construction of F , we conclude that

#F . #G . #τ̆ −#τ ≤ #τ̂ −#τ0,

which completes the proof.
The idea of the goal-oriented adaptive finite element method will be to mark sets

of simplices for refinement corresponding to both primal and dual problems, and then
to perform the actual refinement corresponding to that set of marked simplices that
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has the smallest cardinality. In order to assess the quality of the method, we first
introduce the approximation classes As.

For s > 0, we define

As = {u ∈ H1
0 (Ω) : |u|As := sup

ε>0
ε inf
{τ :‖u−uτ‖E≤ε}

[#τ −#τ0]
s <∞}.

and equip it with norm ‖u‖As := ‖u‖E+|u|As . So As is the class of functions that can
be approximated within any given tolerance ε > 0 in ‖ ‖E by a continuous piecewise

polynomial of degree p on a partition τ with #τ −#τ0 ≤ ε−1/s|u|1/sAs .
Remark 5.4. Although in the definition of As we only consider conforming

descendants τ of τ0, in view of Remark 3.2, we note that these approximation classes
would remain the same if we would replace τ by any descendant ̺ of τ0, conforming
or not.

While the As contain Vτ for any s, and thus are never empty, only the range
s ≤ p/n is of interest, as even C∞ functions are only guaranteed to belong to As
for this range. Classical estimates show that for s ≤ p/n, H1+p(Ω) ∩ H1

0 (Ω) ⊂ As,
where it is sufficient to consider uniform refinements. The class As is much larger
than H1+p(Ω)∩H1

0 (Ω), which is the reason to consider adaptive methods in the first
place. A (near) characterization of As for s ≤ p/n in terms of Besov spaces can be
found in [BDDP02] (although there the case n = 2 and p = 1 is considered, results
easily generalize).

We now consider the following adaptive algorithm:
GOAFEM[f1,f2, g1, g2, ε]→ [τn, uτn

, zτn
]

% For this preliminary version of the Goal-Oriented Adaptive Finite Element
% Method, it is assumed that f1, g1 ∈ V∗

τ0 and f2, g2 ∈ [V∗
τ0 ]

n.

k := 0
while C1E(τk, f1,f2, uτk

) · C1E(τk, g1, g2, zτk
) > ε do

Fp := MARK[τk, f
1,f2, uτk

]
Fd := MARK[τk, g

1, g2, zτk
]

With F being the smallest of Fp and Fd, τk+1 := REFINE[τk, F ]
k := k + 1

end do

n:=k

Theorem 5.5. Let f1, g1 ∈ V∗
τ0 and f2, g2 ∈ [V∗

τ0 ]
n, then [τn, uτn

, zτn
] =

GOAFEM[f1,f2, g1, g2, ε] terminates, and ‖u − uτn
‖E‖z − zτn

‖E ≤ ε. If u ∈ As
and z ∈ At, then

#τn −#τ0 . ε−1/(s+t)(|u|As |z|At)1/(s+t),

only dependent on τ0, and on s or t when they tend to 0 or ∞.
Remark 5.6. Only assuming that u ∈ As and z ∈ At, given a partition τ ,

the generally smallest upper bound for the product of the errors in energy norm in
primal and dual solution that can be expected is [#τ−#τ0]

−s|u|As [#τ−#τ0]
−t|z|At .

Setting this expression equal to ε, one finds #τ −#τ0 = ε−1/(s+t)(|u|As |z|At)1/(s+t).
We conclude that the partition produced by GOAFEM is at most a constant factor
larger than the generally smallest partition τ for which ‖u − uτ‖E‖z − zτ‖E is less
than the prescribed tolerance.

Proof. Let Ek := ‖u−uτk
‖E‖z−zτk

‖E. Then Ek+1 ≤ [1− c22θ
2

C2
1

]
1
2Ek by (5.4), and

c2E(τk, f1,f2, uτk
)c2E(τk, g1, g2, zτk

) ≤ Ek by (4.6). So GOAFEM[f1,f2, g1, g2, ε]
terminates, with En ≤ C1E(τn, f1,f2, uτn

)C1E(τn, g1, g2, zτn
) ≤ ε by (4.4).
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With Fk being the set of marked cells inside the kth call of REFINE, Lemma 5.3
and the assumptions u ∈ As, z ∈ At show that

#Fk ≤ min{[1− C2
1θ

2

c22
]−

1
2s ‖u− uτk−1

‖−1/s
E |u|1/sAs , [1− C2

1θ
2

c22
]−

1
2t ‖z − zτk−1

‖−1/t
E |z|1/tAt }

. min{‖u− uτk−1
‖−1/s
E |u|1/sAs , ‖z − zτk−1

‖−1/t
E |z|1/tAt }

≤ max
δη≥Ek−1

min{δ−1/s|u|1/sAs , η
−1/t|z|1/tAt } = E

−1/(s+t)
k−1 (|u|As |z|At)1/(s+t).

The partition τk is smallest conforming refinement of the generally non-conforming ̺k,
defined as the smallest refinement of τk−1 which is a full refinement with respect to all
T ∈ Fk. From Theorem 3.1, #̺k −#τk−1 . #Fk, the majorized linear convergence

of k 7→ Ek−1, and En−1 >
c22
C2

1
ε, we conclude that

#τn −#τ0 .

n
∑

k=1

#Fk . E
−1/(s+t)
n−1 (|u|As |z|At)1/(s+t) . ε−1/(s+t)(|u|As |z|At)1/(s+t).

6. A practical goal-oriented adaptive finite element method. So far, we
assumed that f = f1 +divf2, g = g1 +divg2, with f1, g1 ∈ V∗

τ , f2, g2 ∈ [V∗
τ ]
n for any

partition τ that we encountered, i.e., we assumed that f1, g1 ∈ V∗
τ0 , f2, g2 ∈ [V∗

τ0 ]
n.

From now on, given a partition τ , we will approximate f, g ∈ H−1(Ω) by f1
τ ′ +divf2

τ ′ ,
g1
τ ′ + divg2

τ ′ , respectively, where f1
τ ′, g1

τ ′ ∈ V∗
τ ′ , f2

τ ′ , g2
τ ′ ∈ [V∗

τ ′ ]n and either τ ′ = τ , or,
when it is needed to have a smaller approximation error, τ ′ ⊃ τ . We will set

fτ ′ := f1
τ ′ + divf2

τ ′ , gτ ′ := g1
τ ′ + divg2

τ ′ .

To be able to distinguish between primal or dual solutions corresponding to dif-
ferent right-hand sides, we introduce operators L : H1

0 (Ω) → H−1(Ω) by (Lv)(w) =
a(v, w) (v, w ∈ H1

0 (Ω)), and Lτ : Vτ → V′
τ by (Lτvτ )(wτ ) = a(vτ , wτ ) (vτ , wτ ∈ Vτ ).

The solutions u, z, uτ , zτ of (2.1), (2.2), (4.1), (4.2) can now be written as L−1f ,
(L′)−1g, L−1

τ f , (L′
τ )

−1g, respectively. Since in our case L′ = L and L′
τ = Lτ , for nota-

tional convenience we will drop the prime. Note that ‖L·‖E′ = ‖·‖E, ‖L−1
τ ‖E′→E ≤ 1,

and ‖(L−1 − L−1
τ )‖E′→E ≤ 1.

Furthermore, in view of controlling the cost of our adaptive solver, from now on
we will solve the arising Galerkin systems only approximately.

The following lemma generalizes upon Lemma 5.3, relaxing both the condition
that the right-hand is in V∗

τ + div[V∗
τ ]
n and the assumption that we have the exact

Galerkin solution available, assuming that the deviations from that ideal situation are
sufficiently small in a relative sense.

Lemma 6.1 ([Ste07, Lemmas 6.1, 6.2]). There exist positive constants ω =
ω(θ, C1, c2), and λ = λ(ω,C1, c2) such that for any f ∈ H−1(Ω), partition τ , f1

τ ∈ V∗
τ ,

f2
τ ∈ [V∗

τ ]
n, ūτ ∈ Vτ with

‖f − fτ‖E′ + ‖L−1
τ fτ − ūτ‖E ≤ ωE(τ, f1

τ ,f
2
τ , ūτ ), (6.1)

F := MARK[τ, f1
τ ,f

2
τ , ūτ ] satisfies

#F . #τ̂ −#τ0

for any partition τ̂ for which

‖u− uτ̂‖E ≤ λ‖u− ūτ‖E .
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Furthermore, given a

µ ∈
([

1− c22θ
2

C2
1

]
1
2 , 1

)

,

there exists an ω = ω(µ, θ, C1, c2) > 0, such that if (6.1) is valid for this ω, and for

τ ′ ⊇ REFINE[τ, F ], fτ ′ ∈ H−1(Ω) and ūτ ′ ∈ Vτ ′ ,

‖f − fτ ′‖E′ + ‖L−1
τ ′ fτ ′ − ūτ ′‖E ≤ ωE(τ, f1

τ ,f
2
τ , ūτ ),

then

‖u− ūτ ′‖E ≤ µ‖u− ūτ‖E .

For solving the Galerkin systems approximately, we assume that we have an
iterative solver of optimal type available:

GALSOLVE[τ, fτ , u
(0)
τ , δ]→ ūτ

% fτ ∈ (Vτ )
′, and u

(0)
τ ∈ Vτ , the latter being an initial approximation for an

% iterative solver. The output ūτ ∈ Vτ satisfies

‖L−1
τ fτ − ūτ‖E ≤ δ.

% The call requires . max{1, log(δ−1‖L−1
τ fτ − u(0)

τ ‖E)}#τ
% arithmetic operations.

Multigrid methods with local smoothing, or their additive variants (BPX) as precon-
ditioners in Conjugate Gradients, are known to be of this type.

A routine called RHSf , and analogously RHSg, will be needed to find a suffi-
ciently accurate approximation to the right-hand side f of the form f1

τ + divf2
τ with

f1
τ ∈ V∗

τ , f2
τ ∈ [V∗

τ ]
n. Since this might not be possible with respect to the current

partition, a call of RHSf may result in a further refinement.

RHSf [τ, δ]→ [τ ′, f1
τ ′,f2

τ ′ ]
% δ > 0. The output consists of f1

τ ′ ∈ V∗
τ ′ , and f2

τ ′ ∈ [V∗
τ ′ ]n, where τ ′ = τ , or,

% if necessary, τ ′ ⊃ τ , such that ‖f − fτ ′‖E′ ≤ δ.
Assuming that u ∈ As for some s > 0, the cost of approximating the right-

hand side f using RHSf will generally not dominate the other costs of our adaptive
method only if there is some constant cf such that for any δ > 0 and any partition τ ,
for [τ ′, ·, ·] := RHSf [τ, δ], it holds that

#τ ′ −#τ ≤ c1/sf δ−1/s,

and the number of arithmetic operations required by the call is . #τ ′. We will call
such a RHSf to be s-optimal with constant cf . Obviously, given s, such a routine
can only exist when f ∈ Ās, defined by

Ās = {f ∈ H−1(Ω) : sup
ε>0

ε inf
{τ :inff1

τ ∈V∗
τ ,f2

τ ∈[V∗
τ ]n ‖f−fτ‖E′≤ε}

[#τ −#τ0]
s <∞}.

On the one hand, u ∈ As implies that f ∈ Ās. Indeed, for any partition τ , let
f2
τ := −A∇uτ . Then f2

τ ∈ [V∗
τ ]
n, and ‖f − divf2

τ ‖E′ = ‖u − uτ‖E . On the other
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hand, knowing that f ∈ Ās is a different thing than knowing how to construct suitable
approximations. If s ∈ [ 1

n ,
p+1
n ] and f ∈ Hsn−1(Ω), then the best approximations f1

τ

to f from V∗
τ with respect to L2(Ω) using uniform refinements τ of τ0 are known

to converge with the required rate. For general f ∈ Ās, however, a realization of a
suitable routine RHSf has to depend on the functional f at hand.

Remark 6.2. When u and f are smooth, then u ∈ Ap/n and f ∈ Ā(p+1)/n.
Indeed, u is approximated by piecewise polynomials of degree p, and f by those of
degree p− 1 (apart from possible approximations from div[V∗

τ ]
n), whereas the errors

are measured in H1
0 (Ω) or H−1(Ω), respectively. Also for less smooth u and f , one

can expect that usually u ∈ As and f ∈ Ās′ for some s′ > s.

In our adaptive method, given some partition τ , for both computing the error
estimator and setting up the Galerkin system, we will replace f by an approximation
from V∗

τ ′ + div[V∗
τ ′ ]n where τ ′ ⊇ τ (and similarly for g). This has the advantages

that we can consider f 6∈ L2(Ω) + divW∗
τ , for which thus the error estimator is not

defined, and that we don’t have to care about quadrature errors on various places in
the algorithm.

Assuming f ∈ L2(Ω) + divWn
τ for any τ , another option followed in [MNS00], is

not to replace f by an approximation, but to check whether, on the current partition,
the error in the best approximation for f from V∗

τ (+div[V∗
τ ]
n), called data oscillation,

is sufficiently small relative to the error in the current approximation to u, and, if
not, to refine τ to achieve this. Convergence of this approach was shown, and it
can be expected that by applying suitable quadrature and inexact Galerkin solves,
optimal computational complexity can be shown as well. The observations at the
beginning of this remark indicate that “usually”, at least asymptotically, there will
be no refinements needed to reduce the data oscillation. This explains why common
adaptive methods that ignore data oscillation usually converge with optimal rates.

In addition to being s-optimal, we will have to assume that RHSf is linearly

convergent, with which we mean that for any d ∈ (0, 1), there exists a D > 0 such
that for any δ > 0, partitions τ and τ ′ ⊇ τ̂ where [τ̂ , ·, ·] := RHSf [τ, δ], the output
[τ ′′, ·, ·] := RHSf [τ

′, dδ] satisfies #τ ′′ ≤ D#τ ′.

Remark 6.3. Usually, a realization of [τ̂ , ·, ·] := RHSf [τ, δ] will be based on
the selection of τ̂ such that an upper bound for the error is less than the prescribed
tolerance. Since this upper bound will be an algebraically decreasing function of
#τ̂ −#τ0, linear convergence is obtained.

We now have the ingredients in hand to define our practical adaptive goal-oriented
finite element routine GOAFEM. Compared to the idealized version from the previ-
ous section, we will have to deal with the fact that when solving the Galerkin systems
only inexactly, and applying inexact right-hand sides, C1 times the a posteriori error
estimator E(·) is not necessarily an upper bound for the energy norm of the error. We
have to add corrections terms to obtain an upper bound. Furthermore, after applying
REFINE at either primal or dual side, we have to specify a tolerance for the error
in the new approximation of the right-hand side, and in that of the new approximate
Galerkin solution. In order to know that a subsequent REFINE results in an error
reduction, in view of Lemma 6.1 we would like to choose this tolerance smaller than
ω times the new error estimator, that, however, is not known yet. Although we can
expect that usually the new estimator is only some moderate factor less than the
existing one, it cannot be excluded that the new estimator is arbitrarily small, e.g.,
when we happen to have reached a partition on which the solution can be exactly
represented. In this case, an error reduction is immediate, and so we don’t have to
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rely on REFINE to achieve it.

GOAFEM[f, g, δp, δd, ε]→ [τ, ūτ , z̄τ ]
% Let ω ∈ (0, c2) be a constant not larger than the constants ω(θ, C1, c2) and

% ω(µ, θ, C1, c2) for some µ ∈ ([1− c2θ2

C2
1

]
1
2 , 1) mentioned in Lemma 6.1.

% Let 0 < β < [(
2+3C1c

−1
2

2+C1c
−1
2

+ C1c
−1
2 )(2 + C1(c

−1
2 + 2ω−1))]−1 be a constant.

τ := τ0, [τp, f
1
τp
,f2
τp

] := RHSf [τ, δp], [τd, g
1
τd
, g2
τd

] := RHSg[τ, δd]

ūτp
:= z̄τd

:= 0
do

ūτp
:= GALSOLVE[τp, fτp

, ūτp
, δp]

z̄τd
:= GALSOLVE[τd, gτd

, z̄τd
, δd]

σp := (2 + C1c
−1
2 )δp + C1E(τp, f1

τp
,f2
τp
, ūτp

)

σd := (2 + C1c
−1
2 )δd + C1E(τd, g1

τp
, g2
τp
, z̄τd

)

if σpσd ≤ ε then τ := τp ∪ τd, ūτ := ūτp
, z̄τ := z̄τd

stop endif

if 2δp ≤ ωE(τp, f1
τp
,f2
τp
, ūτp

) then Fp := MARK[τ, f1
τp
,f2
τp
, ūτp

]

else Fp := ∅ endif
if 2δd ≤ ωE(τd, g1

τp
, g2
τp
, z̄τd

) then Fd := MARK[τ, g1
τp
, g2
τp
, z̄τd

]

else Fd := ∅ endif
if #τp −#τ + #Fp ≤ #τd −#τ + #Fd
then τ := REFINE[τp, Fp], δp := min(δp, βσp)

[τp, f
1
τp
,f2
τp

] := RHSf [τ, δp], τd := τ ∪ τd
else τ := REFINE[τd, Fd], δd := min(δd, βσd)

τp := τ ∪ τp, [τd, g
1
τp
, g2
τp

] := RHSg[τ, δd]

endif

enddo

Theorem 6.4. [τ, ūτ , z̄τ ] = GOAFEM[f, g, δp, δd, ε] terminates, and

‖u− ūτ‖E‖z − z̄τ‖E ≤ ε.

If u ∈ As, z ∈ At, RHSf (RHSg) is s-optimal (t-optimal) with constant cf (cg),
δp > cf , and δd > cg, then

#τ . #τ0 + ε−1/(s+t)
[

(|u|1/sAs + c
1/s
f )s(|z|1/tAt + c1/tg )t

]1/(s+t)
.

If, additionally, ‖f‖E′ . δp, ‖g‖E′ . δd, and δpδd . ‖u−uτ0‖E‖z−zτ0‖E+ε, then the

number of arithmetic operations and storage locations required by the call are bounded
by some absolute multiple of the same expression. The constant factors involved in

these bounds may depend only on τ0, and on s or t when they tends to 0 or ∞, and
concerning the cost, on the constants involved in the additional assumptions.

Remark 6.5. The condition δp > cf implies that for a call [τ ′, ·, ·] = RHS[τ, δp],
we have τ ′ = τ .

Proof. We start with collecting a few useful estimates. At evaluation of σp, by
(4.4) and Proposition 4.6, we have

‖u− ūτp
‖E ≤ ‖u− L−1fτp

‖E + ‖(L−1 − L−1
τp

)fτp
‖E + ‖L−1

τp
fτp
− ūτp

‖E
≤ δp + C1E(τp, f1

τp
,f2
τp
, L−1

τp
fτp

) + ‖L−1
τp
fτp
− ūτp

‖E
≤ δp + C1E(τp, f1

τp
,f2
τp
, ūτp

) + (C1c
−1
2 + 1)‖L−1

τp
fτp
− ūτp

‖E
≤ (2 + C1c

−1
2 )δp + C1E(τp, f1

τp
,f2
τp
, ūτp

) =: σp, (6.2)



Goal-oriented adaptive finite element methods 17

and, by Corollary 4.5,

E(τp, f1
τp
,f2
τp
, ūτp

) ≤ c−1
2 ‖L−1fτp

− ūτp
‖E

≤ c−1
2 [‖u− uτp

‖E + ‖(L−1 − L−1
τp

)(fτp
− f)‖E + ‖L−1

τp
fτp
− ūτp

‖E]

≤ c−1
2 ‖u− uτp

‖E + c−1
2 2δp. (6.3)

So if 2δp ≤ ωE(τp, f1
τp
,f2
τp
, ūτp

), then E(τp, f1
τp
,f2
τp
, ūτp

) ≤ [c2 − ω]−1‖u− uτp
‖E , and

so

σp ≤ D‖u− uτp
‖E where D :=

(1+ 1
2C1c

−1
2 )ω+C1

c2−ω
. (6.4)

Now we are ready to show majorized linear convergence of σpσd. Consider any

two instances σ
(A)
p and σ

(B)
p of σp, where σ

(A)
p has been computed preceding to σ

(B)
p .

With δ
(A)
p , δ

(B)
p and τ

(A)
p , τ

(B)
p being the corresponding tolerances and partitions,

from (6.3), δ
(B)
p ≤ δ(A)

p , and τ
(B)
p ⊇ τ (A)

p , and so ‖u− u
τ
(B)
p
‖E ≤ ‖u− ūτ (A)

p
‖E ≤ σ(A)

p

by (6.2), we have

σ(B)
p = (2 + C1c

−1
2 )δ(B)

p + C1E(τ (B)
p , f1

τ
(B)
p

,f2

τ
(B)
p

, ū
τ
(B)
p

)

≤ (2 + 3C1c
−1
2 )δ(A)

p + C1c
−1
2 σ(A)

p

≤ Kσ(A)
p where K :=

2+3C1c
−1
2

2+C1c
−1
2

+ C1c
−1
2 . (6.5)

Let us denote with τ
(i)
p , δ

(i)
p , f1

τ
(i)
p

, f2

τ
(i)
p

, ū
τ
(i)
p

, σ
(i)
p the instances of τp, δp,

f1
τp

, f2
τp

, ūτp
, σp at the moment of the ith call of REFINE[τp, Fp]. If 2δ

(i)
p >

ωE(τ (i)
p , f1

τ
(i)
p

,f2

τ
(i)
p

, ū
τ
(i)
p

), then for any k < i,

σ(i)
p < (2 + C1(c

−1
2 + 2ω−1))δ(i)p ≤ (2 + C1(c

−1
2 + 2ω−1))βσ(k)

p .

If, for some k ∈ IN0, 2δ
(j)
p ≤ ωE(τ (j)

p , f1

τ
(j)
p

,f2

τ
(j)
p

, ū
τ
(j)
p

) for j = i, . . . , i − k, then by

(6.4), Lemma 6.1, where we use that δ
(j)
p ≤ δ(j−1)

p , and (6.2),

σ(i)
p ≤ D‖u− ūτ (i)

p
‖E ≤ Dµk‖u− ūτ (i−k)

p
‖E ≤ Dµkσ(i−k)

p .

Since (2 + C1(c
−1
2 + 2ω−1))β < 1/K by definition of β, from (6.5) we conclude that

for any α ∈ (0, 1) there exists an M such that σ
(i+M)
p ≤ ασ

(i)
p . Since all results

derived so far are equally valid at the dual side, by taking α < 1/K we infer that by
2M iterations of the loop inside GOAFEM, the product σpσd is reduced by a factor
αK < 1. Indeed, either σp or σp is reduced by a factor α, whereas the other cannot
increase by a factor larger than K.

Next, we bound the cardinality of the output partition. If GOAFEM terminates
as a result of the first evaluation of the test σpσd ≤ ε, then by the assumptions that
δp > cf and δd > cg, the output partition τp ∪ τd = τ0. In the following, we consider
the case that initially σpσd > ε.

At evaluation of the test #τp −#τ + #Fp ≤ #τd −#τ + #Fd, we have

#τp −#τ ≤ (βK−1σp)
−1/sc

1/s
f . (6.6)
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Indeed, the current #τp −#τ is not larger than this difference at the moment of the
most recent call of RHSf [τ, δp]. By the assumption of RHSf being s-optimal, the
latter difference was zero when at that time δp > cf . Otherwise, since δp > cf by
assumption, this δp was equal to β times the minimum of all values attained by σp
up to that moment. Using (6.5), and the fact that RHSf is s-optimal with constant
cf , we end up with (6.6).

If, at evaluation of the test #τp −#τ + #Fp ≤ #τd −#τ + #Fd, Fp 6= ∅, i.e., if
in the preceding lines 2δp ≤ ωE(τp, f1

τp
,f2
τp
, ūτp

) and Fp := MARK[τ, f1
τp
,f2
τp
, ūτp

],
an application of Lemma 6.1 and the assumption that u ∈ As show that then

#Fp . ‖u− ūτp
‖−1/s
E |u|1/sAs . σ−1/s

p |u|1/sAs (6.7)

by (6.4).
Clearly, results analogous to (6.6) and (6.7) are valid at the dual side. Now with

σp,j , σd,j being the instances of σp, σd at the jth evaluation of the test #τp −#τ +
#Fp ≤ #τd −#τ + #Fd, with n being the last one, an application of Theorem 3.1
shows that for τ being the output of the call of REFINE following this last test,
being thus the last call of REFINE, we have

#τ −#τ0 .

n
∑

j=1

min{σ−1/s
p,j (|u|1/sAs + c

1/s
f ), σ

−1/t
d,j (|z|1/tAt + c1/tg )}

≤
n

∑

j=1

(σp,jσd,j)
−1/(s+t)[(|u|1/sAs + c

1/s
f )s(|z|1/tAt + c1/tg )t]1/(s+t)

. ε−1/(s+t)[(|u|1/sAs + c
1/s
f )s(|z|1/tAt + c1/tg )t]1/(s+t), (6.8)

by the majorized linear convergence of (σp,jσd,j)j and σp,nσd,n > ε.
Suppose that this last call of REFINE took place at the primal side. Then

the output partition of GOAFEM is τp ∪ τd, where [τp, ·, ·] := RHSf [τ, δp] and
τd := τ ∪ τd. As we have seen, if δp ≤ cf , i.e., if possibly τp ) τ , then δp is larger
than βK−1 times the current σp, that, by its definition, is larger than 2+C1c

−1
2 times

the previous value of δp, denoted as δ
(prev)
p . A call of RHSf [·, δ(prev)

p ] has been made

inside GOAFEM, and so τ ⊇ τ ′ with [τ ′, ·, ·] := RHSf [·, δ(prev)
p ]. The assumption of

RHSf being linearly convergent shows that #τp . #τ .
The current #τd−#τ is not larger than this difference at the moment of the last

call of RHSg, and so analogously we find that #τd . #τ . We conclude that

#τp ∪ τd . #τ . #τ0 + ε−1/(s+t)[(|u|1/sAs + c
1/s
f )s(|z|1/tAt + c1/tg )t]1/(s+t). (6.9)

Finally, we have to bound the cost of the algorithm. At the moment of the first
call of GALSOLVE[τp, fτp

, ūτp
, δp], we have

‖L−1
τp
fτp
− ūτp

‖E ≤ ‖fτp
− f‖E′ + ‖f‖E′ ≤ δp + ‖f‖E′ . δp,

by assumption. We now consider any further call. From (6.3), ‖u− uτ0‖E ≤ ‖f‖E′ .
δp by assumption, and (6.5), we have that the current δp and σp at the moment of
such a call satisfy σp . δp. As a consequence, we have

‖L−1
τp
fτp
− ūτp

‖E ≤ ‖(L−1 − L−1
τp

)fτp
‖E + ‖L−1fτp

− ūτp
‖E ≤ 2‖L−1fτp

− ūτp
‖E

≤ 2[‖f − fτp
‖E′ + ‖u− ūτp

‖E ] ≤ 2δp + 2σp . δp.
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By the assumption of GALSOLVE being an optimal iterative solver, we conclude
that the cost of these calls are O(#τp).

The number of arithmetic operations needed for the calls MARK[τ, f1
τp
,f2
τp
, ūτp

],
τ := REFINE[τp, Fp], and [τp, ·, ·] := RHSf [τ, δp] are O(#τ), O(#τ), and O(#τp),
respectively. Moreover, we know that #τp . #τ , and that #τ −#τ0 as function of
the iteration count is majorized by a linearly increasing sequence with upper bound
(6.8). From the assumption that δpδd . ‖u − uτ0‖E‖z − zτ0‖E + ε, the first σpσd .
‖u − uτ0‖E‖z − zτ0‖E + ε, meaning that after some absolute constant number of
iterations, either the current τ is unequal to τ0 or the algorithm has terminated.
Together, above observations show that the total cost is bounded by some absolute
multiple of the right-hand side of (6.9).

Remark 6.6. The functions ūτ , z̄τ produced by GOAFEM are not the exact
Galerkin approximations, and so ‖u − ūτ‖E‖z − z̄τ‖E is not necessarily an upper
bound for |g(u)− g(ūτ )|. Writing

g(u)− g(ūτ) = a(u− ūτ , z) = a(u− ūτ , z− zτ) = a(u− ūτ , z− z̄τ )−a(u− ūτ , zτ − z̄τ ),

and using that ‖u− ūτ‖E ≤ σp, ‖z − z̄τ‖E ≤ σd, ‖zτ − z̄τ‖ ≤ δd ≤ (2 + C1c
−1
2 )−1σd,

and σpσd ≤ ε, we end up with |g(u)− g(ūτ )| ≤ [1 + (2 + C1c
−1
2 )−1]ε.

7. Numerical experiments. In this section we will consider the performance
of the GOAFEM routine in practice. As many real-world problems require the
evaluation of functionals that are unbounded on H1

0 (Ω), we will also consider such a
problem. As GOAFEM can only handle bounded functionals, we need to do some
additional work. Following [BS01], we will apply a so-called extraction functional,
a technique that we recall below. An alternative approach would be to apply an
regularized functional as suggested in [OR76, BR96]. This approach can be applied
more generally since no Green’s function is needed. On the other hand, it introduces
an additional error that can only be controlled in terms of higher order derivatives of
the solution beyond those that are needed for the functional to be well defined.

7.1. Extraction functionals. Let g̃ be some functional defined on the solution
u of (2.1), but that is unbounded onH1

0 (Ω). With f being the right hand side of (2.1),
we write g̃(u) = g(u) + M(f), where g ∈ H−1(Ω), and M a functional on f . Since
u and f are related via an invertible operator, this is always possible, even for any
g ∈ H−1(Ω). Yet, we would like to do this under the additional constraint that M(f)
can be computed within any given tolerance at low cost. Basically, this additional
condition requires that a Green’s function for the differential operator is available.

We consider A = Id, i.e., the Poisson problem, on a two-dimensional domain Ω,
and, for some x̄ ∈ Ω, g̃ = g̃x̄ given by

g̃x̄(u) =
∂u

∂x1
(x̄),

assuming that u is sufficiently smooth. With (r, θ) denoting polar coordinates centered
at x̄, we have △ log r

2π = δx̄, and so −△ cosθ
2πr = g̃x̄, in the sense that for any smooth

test function φ ∈ D(IR2), −
∫

IR2
cosθ
2πr △φ = g̃x̄(φ). Generally, this formula cannot be

applied with φ replaced by the solution u of (2.1). Indeed, in the general case this
function has a non-vanishing normal derivative at the boundary of Ω, and therefore
its zero extension is not sufficiently smooth. Therefore, with wx̄0 := cosθ

2πr , wx̄1 being a
sufficiently smooth function equal to wx̄0 outside some open Σ ⋐ Ω that contains x̄,
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and wx̄ := wx̄0 − wx̄1 , for any φ ∈ D(IR2) we write

g̃x̄(φ) = −
∫

IR2

wx̄1△φ−
∫

IR2

wx̄△φ

=

∫

IR2

△(−wx̄1 )φ +

∫

Ω

wx̄(−△φ)

=: gx̄(φ) +Mx̄(−△φ).

Clearly, gx̄ extends to a bounded functional on L1(IR
2), with gx̄(v) =

∫

Ω△(−wx̄1 )v
when supp v ⊂ Ω. In particular, gx̄ is bounded on H1

0 (Ω), which enables us to use
GOAFEM to evaluate it. Moreover, since suppwx̄ ⋐ Ω, under some mild conditions
above reformulation can be shown to be applicable to u. The details are as follows:

Proposition 7.1. If

(a). f ∈ L2(Ω),
(b). u is continuously differentiable at x̄,
(c). in a neighbourhood of x̄, f is in Lp for some p > 2.

then

g̃x̄(u) = gx̄(u) +Mx̄(f)

Proof. Let B(x̄; ε) be the ball centered at x̄ with radius ε, small enough such
that B(x̄; ε) ⋐ Ω. Since u,wx̄ ∈ H1(Ω\B(x̄; ε)), △u ∈ L2(Ω\B(x̄; ε)) by (a), △wx̄ ∈
L2(Ω\B(x̄; ε)), and suppwx̄ ⋐ Ω, integration by parts shows that

∫

∂B(x̄;ε)

wx̄
∂u

∂n
− u∂w

x̄

∂n
=

∫

Ω\B(x̄;ε)

u△wx̄ − wx̄△u, (7.1)

where n is the outward pointing normal of ∂B(x̄; ε).
We have limε↓0

∫

Ω\B(x̄;ε)
u△wx̄ = − limε↓0

∫

Ω\B(x̄;ε)
u△wx̄1 = gx̄(u).

Since |
∫

B(x̄;ε) w
x̄
0f | ≤ ‖f‖Lp(B(x̄;ε))‖wx̄0‖Lq(B(x̄;ε)) ( 1

p + 1
q = 1), and furthermore

‖wx̄0‖Lq(B(x̄;ε)) = [
∫ ε

0

∫ 2π

0 | cosθ2πr |qr]1/q → 0 when ε ↓ 0 and q < 2, from (c) we conclude
that − limε↓0

∫

Ω\B(x̄;ε)
wx̄△u =

∫

Ω
wx̄f = Mx̄(f).

The contributions of wx̄1 to the left hand side of (7.1) vanish when ε ↓ 0.

From
∫

∂B(x̄;ε)
wx̄0

∂u
∂n =

∫ 2π

0
(cosθ ∂u

∂x1
+ sinθ ∂u

∂x2
) cosθ

2πε εdθ, and (b), we infer that

limε↓0

∫

∂B(x̄;ε)
wx̄0

∂u
∂n = 1

2
∂u
∂x1

(x̄).

From

∫

∂B(x̄;ε)

u
∂wx̄0
∂n

= −1
2πε

∫ 2π

0

cosθ udθ = 1
2πε

∫ 2π

0

sinθ ∂u∂θ dθ

= 1
2π

∫ 2π

0

sinθ (− sinθ ∂u
∂x1

+ cosθ ∂u
∂x2

)dθ,

and (b), we infer that − limε↓0

∫

∂B(x̄;ε) u
x̄ ∂w

x̄
0

∂n = 1
2
∂u
∂x1

(x̄). Together, above observa-

tions give the proof.

7.2. Implementation. The implementation of the GOAFEM routine is, es-
sentially, as described above, with the sole difference that we did not approximate the
right-hand sides for setting up the Galerkin systems and computing the a posteriori
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error estimators, but instead used quadrature directly. This was possible, and in view
of Remark 6.2 reasonable, because in our experiments, either the right-hand sides are
very smooth, or are already in V∗

τ0 + div[V∗
τ0 ]

n.
For all experiments, we used p = 2, i.e., quadratic Lagrange elements.
The GALSOLVE routine we use solves the linear systems with the Conjugate

Gradient method using the well-known Bramble-Pasciak-Xu (BPX) preconditioner.
All routines were implemented in Common Lisp, and run using the SBCL com-

piler and run-time environment. This allowed for a short development time and well
instrumented code. With regards to efficiency, the only effort made in that direction
consisted in making sure that the asymptotics were correct. While an efficient im-
plementation would be possible with moderate effort (see [Neu03]), for our purposes
convenience and correctness were the most important considerations.

As in one of the experiments we use the extraction functional for the partial
derivative at a a point introduced above, we also have to solve a quadrature problem.
For this we used the adaptive cubature routine Cuhre [BEG91] as implemented in the
Cuba cubature package [Hah05].

7.3. Experiments. To test GOAFEM, we chose two distinct situations. For
the first example, we want to compute a partial derivative at a point of a function
given as the solution of a Poisson problem, thus illustrating the applicability of our
method to this situation.

In our second example, we consider a problem in which the singularities of the
solutions to the primal and dual problems are spatially separated.

Example 7.2. Let Ω = (0, 1)2. We consider problem (2.1), choosing the right-
hand side f = 1 (i.e., f(v) =

∫

Ω vdx). We will test the performance of GOAFEM

on the task of computing

∂u

∂x1
(x̄).

with x̄ = (π7 ,
49
100 ). The initial partition is as indicated in Figure 7.1, with (1

2 ,
1
2 ) being

Fig. 7.1. Initial partition τ0 corresponding to Example 7.2

the newest vertex of all 4 triangles.
Following the discussion from Subsect. 7.1, we take wx̄1 = ψwx̄0 , and thus wx̄ =

(1−ψ)wx̄0 , with ψ being a sufficiently smooth function, 1 outside some neighboorhoud
of x̄ inside Ω, and 0 on some smaller neighbourhood of x̄. Proposition 7.1 shows that
∂u
∂x1

(x̄) =
∫

Ω u△(−ψwx̄0 ) +
∫

Ω(1 − ψ)wx̄0f . Writing (θ, r) for the polar coordinates
around x̄, we chose

ψ(θ, r) :=
∫ r

0
ψ∗(s)ds /

∫ ∞

0
ψ∗(s)ds, (7.2)

with ψ∗ a spline function of order 6, with support [0.1, 0.45].
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We evaluated
∫

Ω
(1 − ψ)wx̄0f using the adaptive quadrature routine Cuhre. To

obtain precision of 10−12 it needed 216515 integrand evaluations. On current off-the-
shelf hardware, it takes only a few seconds.

To approximate
∫

Ω u△(−ψwx̄0 ) we used GOAFEM. Since the right-hand sides
1 and △(−ψwx̄0 ) of primal and dual problem are smooth, their solutions are in
Ap/n = A1, so that the error in the functional is O([#τ −#τ0]

−2). We compared the
results with those obtained with the corresponding non-goal oriented adaptive finite
element method AFEM for minimizing the error in energy norm, which is obtained
by applying refinements always because of the markings at primal side.

The solutions of primal and dual problem are in H3−ε(Ω) for any ε > 0, but,
because the right-hand sides do not vanish at the corners, they are not in H3(Ω). Re-
calling that we use quadratic elements, as a consequence, (fully) optimal convergence
rates with respect to ‖ ‖E are not obtained using uniform refinements. On the other
hand, since the (weak) singularities in primal and dual solution are solely caused by
the shape of the domain, the same local refinements near the corners are appropriate
for both primal and dual problem. Therefore, in view of (1.1), we may expect that
also with AFEM the error in the functional is O([#τ −#τ0]

−2). On the other hand,
since quantitatively the right-hand side, and so the solution of the dual problem are
not that smooth, see Figure 7.2, we may hope that the application of GOAFEM

 0

 0.5

 1
 0

 0.5

 1

-80

 0

 80

Fig. 7.2. Right-hand side of the dual problem corresponding to Example 7.2

yields quantitatively better results.
In Figure 7.3, we show errors in

∫

Ω
u△(−ψwx̄0 ) as function of #τ −#τ0. The re-

sults confirm that for both GOAFEM and AFEM, these errors areO([#τ−#τ0]
−2),

where on average for GOAFEM the errors are smaller. In 7.4, we show partitions
produced by GOAFEM and AFEM. With AFEM local refinements are only made
towards the corners, whereas with GOAFEM additional local refinements are made
in areas where quantitatively the dual solution is non smooth due to oscillations in
its right-hand side.

Example 7.3. As in Example 7.2, we consider Poisson’s problem on the unit
square. We now take as initial partition the one that is obtained from the partition
from Figure 7.1 by 2 uniform refinements. We define the right-hand sides f and g of
primal and dual problem by

f(v) = −
∫

Tf

∂v

∂x1
, g(v) = −

∫

Tg

∂v

∂x1
, (7.3)

where Tf and Tg are the simplices {(0, 0), (1
2 , 0), (0, 1

2 )}, and {(1, 1), (1
2 , 1), (1, 1

2 )},
respectively, see Figure 7.5. That is, with χf being the characteristic function of Tf ,



Goal-oriented adaptive finite element methods 23

10-2

10-4

10-6

10-8

10-10

101 102 103 104

Fig. 7.3. Error in the functional vs. #τ − #τ0 using GOAFEM (solid) and AFEM (dashed)
corresponding to Example 7.2, and a curve C[#τ − #τ0]−2

 0

 0.5

 1

 0  0.5  1
 0

 0.5

 1

 0  0.5  1

Fig. 7.4. Partitions produced by AFEM and GOAFEM with nearly equal number of triangles
for Example 7.2

f = div[χf 0]T . So in view of (4.3), here we write f as f1 + divf2 with vanishing
f1, and benefit from the fact that f2 ∈ [V ∗

τ0 ]
2. Similarly for g.

The primal solution has a singularity along the line connecting the points (1
2 , 0)

and (0, 1
2 ), see Figure 7.6, and similarly the dual solution has one along the line con-

necting (1, 1
2 ) and (1

2 , 1). Since the non-goal oriented adaptive finite element routine
AFEM does not see the latter singularity, it behaves much worse than GOAFEM

as appears from Figure 7.7. For GOAFEM we observe an error O([#τ − #τ0]
−2),

which, since p/n = 1, is equal to the best possible rate predicted by Theorem 6.4. In
Figure 7.8, we show partitions produced by AFEM and GOAFEM, respectively.

Appendix A. A cheaper adaptive algorithm for lowest order elements.
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Fig. 7.5. Initial partition τ0 corresponding to Example 7.3, and Tf (left bottom), Tg (right top)
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Fig. 7.6. Primal solution corresponding to Example 7.3)

Inspired by [CV99], for lowest order elements, i.e., for

Vτ = H1
0 (Ω) ∩

∏

T∈τ

P1(T ), and V∗
τ =

∏

T∈τ

P0(T ),

we construct a cheaper a posteriori error estimator for the energy norm, which will be
used to construct a cheaper GOAFEM. We start with constructing a new biorthog-
onal projector.

For k ∈ IN0 and T ∈ τ , we define the ring Rk(τ, T ) by R0(τ, T ) = T , and,
for k > 0, by Rk(τ, T ) = ∪{T ′∈τ :T ′∩Rk−1(τ,T ) 6=∅}T

′. We set NT = {vertices of T },
N τ = ∪T∈τNT , and Nτ = N τ ∩ Ω. Under the assumption that for some absolute
constant k̄ ∈ IN0,

Rk̄(τ, T ) ∩Nτ 6= ∅, (T ∈ τ), (A.1)

we will construct a projector Pτ onto Vτ such that for any p ∈ [1,∞],

‖v − Pτv‖Lp(T ) . inf
vτ∈Vτ

‖v − vτ‖Lp(Rk̄+2(τ,T )) (v ∈ Lp(Ω), T ∈ τ), (A.2)

and

‖v − Pτv‖Lp(T ) + diam(T )|v − Pτv|W 1
p (T ) . diam(T )m|v|Wm

p (Rk̄+3(τ,T )) (A.3)

(v ∈
◦

W 1
p (Ω) ∩Wm

p (Ω), m ∈ {1, 2}, T ∈ τ), and such that for its L2(Ω)-adjoint,

‖h− P ∗
τ h‖Lp(T ) . inf

s∈P0(Ω)
‖h− s‖Lp(Rk̄+2(τ,T )) (h ∈ Lp(Ω), T ∈ τ). (A.4)

Remark A.1. The assumption (A.1) is not always satisfied as illustrated in
Figure A.1. On the other hand, since a sequence of refinements towards the boundary



Goal-oriented adaptive finite element methods 25

10
-10

10
-8

10
-6

10
-4

10
2

10
3

10
4

Fig. 7.7. Error in the functional vs. #τ − #τ0 using GOAFEM (solid) and AFEM (dashed)
corresponding to example 7.3, and a curve C[#τ − #τ0]−2

Fig. 7.8. Partitions produced by AFEM and GOAFEM with nearly equal number of triangles
for Example 7.3

without creating interior vertices as in the right picture of Figure A.1 doesn’t change
Vτ , (A.1) is not an essential restriction.

We will modify the construction of a so-called quasi-interpolator from [Osw94].

Let {λ(T )
a : a ∈ NT } denote the barycentric coordinates of T , i.e., λ

(T )
a ∈ P1(T ) and

λ
(T )
a (b) = δab (a, b ∈ NT ). For a ∈ NT , we set

µ(T )
a = n+1

vol(T ) ((n+ 1)λ(T )
a −

∑

a6=b∈NT

λ
(T )
b ).

Then {λ(T )
a : a ∈ NT } and {µ(T )

a : a ∈ NT } are L2(T )-biorthogonal collections.

Since ‖λ(T )
a ‖Lp(T ) h vol(T )

1
p
− 1

p′ ‖λ(T )
a ‖Lp′(T ), and similarly for µ

(T )
a , we have that

‖λ(T )
a ‖Lp(T )‖µ(T )

a ‖Lq(T ) h 1 ( 1
p + 1

q = 1), independently of T .
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Fig. A.1. Partition τ0 with newest vertices indicated with arrows, and a family of descendants
τ with Nτ = {•}

For any a ∈ N τ , we define φa, ψa by φa|T =

{

λ
(T )
a when a ∈ NT
0 otherwise

, and ψa|T =

{

caTµ
(T )
a when a ∈ NT

0 otherwise
, where the caT are uniformly bounded constants with

∑

{T∈τ :a∈NT} caT = 1. Thanks to the last property, the collections {φa : a ∈ N τ} and

{ψa : a ∈ N τ} are L2(Ω)-biorthogonal. In [Osw94], caT was chosen to be 1 for one T ∋
a and zero otherwise. In view of obtaining (A.4), we take caT = vol(T )

P

{T ′∈τ:a∈N
T ′ }

vol(T ′) .

Then for any T ∈ τ ,
∑

a∈Nτ

〈1, φa〉ψa|T =
∑

a∈NT

∑

{T ′∈τ :a∈NT′}

vol(T ′)
n+1 caTµ

(T )
a = vol(T )

n+1

∑

a∈NT

µ(T )
a = 1,

i.e., this is the (unique) choice of the caT such that P0(Ω) ⊂ span{ψa : a ∈ N τ}.
Next, we remove degrees of freedom associated to b ∈ N τ\Nτ . For each b ∈

N τ\Nτ , we select an a ∈ ∪{T∈τ :b∈Nτ}Rk̄(τ, T ) ∩ Nτ , with k̄ from assumption (A.1),
and update

ψa ← ψa +
〈1, φb〉L2(Ω)

〈1, φa〉L2(Ω)
ψb.

Note that an ψa might be involved in more than 1 updates. Since

〈1, φb〉L2(Ω)ψb + 〈1, φa〉L2(Ω)ψa = 〈1, φa〉L2(Ω)

[

ψa +
〈1, φb〉L2(Ω)

〈1, φa〉L2(Ω)
ψb

]

,

the resulting collection {ψa : a ∈ Nτ}, thus with the generally redefined ψa, contains
P0(Ω) in its span, and is L2(Ω)-biorthogonal to {φa : a ∈ Nτ}, the latter being the
standard nodal basis for Vτ . We set the projector Pτv :=

∑

a∈Nτ
〈v, ψa〉L2(Ω)φa, that

has L2(Ω)-adjoint P ∗
τ h :=

∑

a∈Nτ
〈h, φa〉L2(Ω)ψa.

By construction,

suppφa ⊂
⋃

{T∈τ :a∈NT}

R0(τ, T ), suppψa ⊂
⋃

{T∈τ :a∈NT}

Rk̄+1(τ, T ).

Furthermore, due to the fact that any two T, T ′ ∈ τ with T ∩ T ′ 6= ∅ have uniformly
comparable diameters, and all simplices from all partitions are uniformly shape reg-
ular, we have ‖φa‖Lp(Ω) h ‖φa‖Lp(T ), ‖ψa‖Lp(Ω) h ‖ψa‖Lp(T ) for any T in suppφa or
suppψa, respectively. We infer that for any T ∈ τ ,

‖Pτv‖Lp(T ) ≤
∑

a∈NT

‖v‖Lp(suppψa)‖ψa‖Lq(Ω)‖φa‖Lp(T ) . ‖v‖Lp(Rk̄+2(τ,T )),
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(v ∈ Lp(Ω)), which, since Pτ reproduces Vτ , implies (A.2). By a standard inverse
inequality, we also have

‖Pτv‖Lp(T ) + diam(T )|Pτv|W 1
p (T ) . ‖v‖Lp(Rk̄+2(τ,T )) (v ∈ Lp(Ω)),

which, again by the reproduction of Vτ ⊂W 1
p (Ω), gives

‖v−Pτv‖Lp(T ) + diam(T )|v − Pτv|W 1
p (T )

. inf
vτ∈Vτ

[‖v − vτ‖Lp(Rk̄+2(τ,T )) + diam(T )|v − vτ |W 1
p (T )], (v ∈W 1

p (Ω)).

By now selecting vτ to be the Scott-Zhang interpolation ([SZ90]) of v ∈
◦

W 1
p (Ω) ∩

Wm
p (Ω) (m = 1, 2) in C(Ω)∩∏

T∈τ P1(T ), that, by our assumption made in Sect.2 of
∂Ω being the union of true hyperfaces of T ∈ τ0, preserves the homogeneous boundary
conditions, i.e., vτ ∈ Vτ , we end up with (A.3).

Analogously, we find that for any T ∈ τ ,

‖P ∗
τ h‖Lp(T ) .

∑

{a∈Nτ :T⊂∪{T ′∈τ:a∈N
T ′ }

Rk̄+1(τ,T
′)}

‖v‖Lp(suppφa) . ‖v‖Lp(Rk̄+2(τ,T ))

(v ∈ Lp(Ω)), which, since P ∗
τ reproduces P0(Ω), gives (A.4).

Following an idea from [CV99], using the projection Pτ now we will show that for
the lowest order elements, and a restricted class of right-hand sides, the a posteriori
error estimator consisting of the face contributions only is already an upper bound
for the energy norm error. In the following, let Eτ denote the set of interior true
hyperfaces of τ .

Proposition A.2. Let τ ′ ⊃ τ be partitions, f1 ∈ ImP ∗
τ , f2 ∈ [V∗

τ ]
n and

G = G(τ, τ ′) := {e ∈ Eτ : ∀T ∈ τ, T ∋ e, ∃T ′ ∈ Rk̄+2(τ, T ) with T ′ 6∈ τ ′}.

Then, with for e ∈ Eτ , ηe(uτ ,f2) := diam(e)‖J[A∇uτ + f2] · nKe‖2L2(e)
, we have

‖uτ ′ − uτ‖E ≤ C̄1

[

∑

e∈G

ηe(uτ ,f
2)

]
1
2 ,

for some absolute constant C̄1 > 0. Note that #G . #τ ′ − #τ , and that G = Eτ
when τ ′ =∞, in which case thus uτ ′ = u.

Proof. We have ‖uτ ′−uτ‖E = sup06=vτ′∈Vτ′

|a(uτ′−uτ ,vτ′ )|
‖vτ′‖E

, whereas for each vτ ′ ∈
Vτ ′ , a(uτ ′ − uτ , vτ ′) = a(uτ ′ − uτ , vτ ′ − vτ ) for any vτ ∈ Vτ . Following an idea from
[CV99], we select vτ = Pτvτ ′ . Then, since f1 ⊥L2(Ω) (I −Pτ )vτ ′ , and, on each T ∈ τ ,
∇ · [A∇uτ + f2] = 0, following the proof of Proposition 4.2 we find that

a(uτ ′ − uτ , vτ ′ − vτ ) = −
∑

e∈Eτ

∫

e

J(A∇uτ + f2) · nK(vτ ′ − Pτvτ ′).

Using the property (A.3) (and (A.2)) of the projector Pτ , the remainder of the proof
can follow the lines indicated in the proof of Proposition 4.2.

Although we are not going to apply it in this way, Proposition A.2 gives rise to
the following upper bound for error in the energy norm for general f ∈ H−1(Ω):
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Corollary A.3. For f ∈ H−1(Ω), and any f2
τ ∈ [V∗

τ ]
n, we have

‖u− uτ‖E ≤ C̄1

[

∑

e∈Eτ

ηe(uτ ,f
2
τ )

]
1
2 + (C̄1c

−1
2 + 1) inf

f1
τ∈ImP∗

τ

‖f − (f1
τ + divf2

τ )‖E′ ,

where, when f̃ := f − divf2
τ ∈ L2(Ω), the second term can be bounded by

‖(I −P ∗
τ )f̃‖E′ .

{

∑

T∈τ

diam(T )2
∥

∥f̃ − vol(Rk̄+2(τ, T ))−1
∫

Rk̄+2(τ,T )f̃
∥

∥

2

L2(Rk̄+2(τ,T ))

}
1
2

.

This result improves upon the result from [CV99] derived using a modified Clément
interpolator, in the sense that for smooth f̃ , in the last expression all terms are
O( diam(T )2), also for T near the boundary and an f̃ that does not vanish on ∂Ω.

Proof. By writing u−uτ = (L−1−L−1
τ )(f1

τ +divf2
τ )+(L−1−L−1

τ )(f−(f1
τ +divf2

τ ))
for arbitrary f1

τ ∈ ImP ∗
τ , and by applying Propositions A.2 and 4.6 to the first term,

as well as ‖L−1
τ ‖E′→E ≤ 1, and ‖(L−1 − L−1

τ )‖E′→E ≤ 1, the first claim follows.
The second claim follows from

‖f̃ − P ∗
τ f̃‖E′ = sup

06=v∈H1
0 (Ω)

|
∫

Ω
(f̃ − P ∗

τ f̃)(v − Pτv)|
‖v‖E

≤ sup
06=v∈H1

0 (Ω)

∑

T∈τ ‖f̃ − P ∗
τ f̃‖L2(T )‖v − Pτv‖L2(T )

‖v‖E
,

and the application of (A.3) and (A.4).
We apply Proposition A.2 as follows. Let us redefine MARK[τ, f̄2, ūτ ]→ F

% f̄2 ∈ [V∗
τ ]
n, ūτ ∈ Vτ .

Select, in O(#τ) operations, a set F ⊂ Eτ with, up to some absolute factor, minimal
cardinality such that

∑

e∈F

ηe(f̄
2, ūτ ) ≥ θ2

∑

e∈Eτ

ηe(f̄
2, ūτ ),

REFINE[τ, F ]→ τ ′

% Determines the smallest τ ′ ⊇ τ for which all true

% hyperfaces e ∈ F as well as all T ∈ τ adjacent to some e ∈ F contain a

% vertex of τ ′ in their interiors,

RHSf [τ, δ]→ [τ ′, f1
τ ′,f2

τ ′ ]
% δ > 0. The output consists of f1

τ ′ ∈ ImP ∗
τ ′ , and f2

τ ′ ∈ [V∗
τ ′ ]n, where τ ′ = τ , or,

% if necessary, τ ′ ⊃ τ , such that ‖f − fτ ′‖E′ ≤ δ,
and analogously, RHSg[τ, δ]. Then with C1 reading as C̄1, and E(τp, f1

τp
,f2
τp
, ūτp

)

as
∑

e∈Eτp
ηe(f

2
τp
, ūτp

), and similarly at the dual side, all statements concerning the

algorithm GOAFEM from Sect. 6 are still valid, whereas the evaluation of energy
error estimators at primal and dual side has become cheaper.

Remark A.4. Thinking of approximations f1
τ + divf2

τ for f with f2
τ = 0,

thanks to (A.4) one can expect that the approximations produced by the new routine
RHSf are qualitatively as good as those by the old one. Since, because of (A.3),
Pτ : H1

0 (Ω) → H1
0 (Ω) is bounded, uniformly in τ , P ∗

τ has a unique extension to a
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uniformly bounded operator H−1(Ω)→ H−1(Ω), reading as P ∗
τ f =

∑

a∈Nτ
f(φa)ψa.

Therefore, a natural choice for f1
τ ′ in [τ ′, f1

τ ′ ] = RHSf [τ, δ] is f1
τ ′ = P ∗

τ ′f , for simplic-
ity ignoring quadrature errors. Since (P ∗

τ ′f)(vτ ′) = f(vτ ′) for all vτ ′ ∈ Vτ ′ , instead
of constructing an approximation to f , in this case a call RHSf [τ, δ] merely consists
of producing a τ ′ ⊇ τ with ‖f − P ∗

τ f‖H−1(Ω) ≤ δ, which for f ∈ L2(Ω) can be done
based on the second estimate from Corollary A.3. Obviously, similar remarks apply
to approximations for g.
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