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A Petrov-Galerkin discretization with optimal test space of a mild-weak
formulation of convection-diffusion equations in mixed form
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Motivated by the Discontinous Petrov-Galerkin method from [Numer. Methods Partial Differential Equa-
tions, 27 (2011), 70–105] by Demkowicz and Gopalakrishnan, we study a variational formulation of
second order elliptic equations in mixed form, that is obtained by piecewise integrating one of the two
equations in the system w.r.t. a partition of the domain into mesh cells. We apply a Petrov-Galerkin
discretization with optimal test functions, or equivalently, minimize the residual in the natural norm as-
sociated to the variational form. These optimal test functions can be found by solving local problems.
Well-posedness, uniformly in the partition, and optimal error estimates are demonstrated.
In the second part of the paper, the application to convection-diffusion problems is studied. The available
freedom in the variational formulation and in its optimal Petrov-Galerkin discretization is used to con-
struct a method that allows a (smooth) passing to a converging method in the convective limit, being a
necessary condition to retain convergence and having a bound on the cost for a vanishing diffusion. The
theoretical findings are illustrated by several numerical results.

Keywords: Petrov-Galerkin discretization, convection-diffusion, optimal test space, least-squares method,
mixed formulation, finite elements

1. Introduction

On a domain Ω ⊂ Rn, we consider the boundary value problem{
−divA∇u+b ·∇u+ γu = f on Ω ,

u =0 on ∂Ω ,
(1.1)

where A is positive definite, and b and γ are such that the standard variational formulation of this prob-
lem on H1

0 (Ω)×H1
0 (Ω) is well-posed. It is well-known that Galerkin discretizations of this variational

problem give unsatisfactory results in case of dominating convection. We will study a well-posed vari-
ational formulation of the mixed formulation σσσ −A2∇u =0 on Ω ,

−divA1σσσ +b ·∇u+ γu = f on Ω ,
u =0 on ∂Ω ,

(1.2)

where A = A1A2, and consider Petrov-Galerkin discretizations of it, where we take an optimal test
space (Demkowicz & Gopalakrishnan (2011b)).
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For an abstract variational problem of finding u ∈U such that b(u,v) = f (v) (v ∈ V ), given a trial
space Uh ⊂U , the optimal test space is Vh = R−1BUh, where (Bu)(v) := b(u,v), and R : V → V ′ is the
Riesz map. The resulting Petrov-Galerkin solution minimizes the residual in V ′ over the space Uh, and
so, for boundedly invertible B, it yields a quasi-best approximation to the solution in U from Uh. The
application of this approach for solving convection-diffusion problems can already be found in Barrett
& Morton (1984).

For a variational formulation of a boundary value problem, and V being an L2-space, the optimal test
space Vh is found by simply applying the differential operator in strong form to Uh. For other V , finding
the optimal test space Vh amounts to solving a symmetric, bounded and coercive variational problem
on V ×V for any basis function from a basis for Uh, or to solving a sufficiently accurate Galerkin
discretization of such a problem. A main contribution from Demkowicz & Gopalakrishnan (2011b)
is the idea to consider variational formulations where V is a “broken space”, so that the variational
problems that determine Vh are local problems.

In Demkowicz & Gopalakrishnan (2011b), also U is taken to be a broken space which, however, is
not essential, although convenient when one aims at applying hp-fem. Regardless whether the varia-
tional problems for the test functions are solved exactly, or approximately using a Galerkin discretiza-
tion, the Petrov-Galerkin solution is found by solving a symmetric positive definite matrix-vector prob-
lem.

In the current paper, we study a variational formulation of (1.2) obtained by piecewise integrating
the second equation by parts w.r.t. a partition of the domain Ω into mesh cells. This introduces the
“flux”, being the normal component of ub−A1σσσ on the skeleton, as a third independent variable. This
skeleton may or may not include parts of ∂Ω . We will call our formulation a mild-weak variational
formulation. It can be considered as intermediate between the mild formulation, where neither equation
is integrated by parts, and the ultra-weak formulation, where both first and second equation are piecewise
integrated by parts, giving rise to an additional fourth independent variable, called “trace”. Applying a
Petrov-Galerkin discretization with optimal test space, the mild or ultra-weak formulations result in the
common first order least squares method, or in the Discontinuous Petrov-Galerkin method with optimal
test space, DPG method for short, that was introduced in Demkowicz & Gopalakrishnan (2011b).

A reason for us to develop a modification of the DPG method is that with the ultra-weak formulation,
both u and σσσ are sought in L2-spaces. Consequently, assuming finite element spaces of sufficiently high
order, in order to obtain an a priori error bound of say O(hk) for u in L2(Ω), besides the natural condition
u ∈ Hk(Ω), it is needed that σσσ ∈ Hk(Ω)n, and so u ∈ Hk+1(Ω).

With the mild-weak formulation, u is sought in H1
0 (Ω), and σσσ in L2(Ω)n. We show well-posedness

of this formulation, and with that, optimal error estimates for the Petrov-Galerkin discretization with
optimal test space. For obtaining an a priori error bound O(hk) for u in H1

0 (Ω), it suffices to have u ∈
Hk+1(Ω) and f ∈ Hk(Ω). The last, additional, condition is needed to guarantee an error bound O(hk)
for the third variable, being the flux. Being a condition on the right-hand side, however, it is usually
harmless. By demonstrating approximation properties of the optimal test space, duality arguments even
give optimal error estimates for (σσσ ,u) in the space (H1(Ω)n)′×L2(Ω).

Although we already briefly mentioned convection-dominated problems, the discussion so far refers
to the problem (1.1) for fixed A, b, and γ . When we apply the aforementioned three methods –i.e.,
the standard first order least squares, the DPG method, and the method from the current paper– to the
convection-dominated problem defined by A = εId, b 6= 0 fixed, and γ = 0, for small ε the results are
much better than with standard Galerkin applied to the non-mixed variational formulation. The reason
is that all these three methods minimize the residual in some norm.
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On the other hand, as our numerical results with uniform meshes show, also with these methods,
for small ε , initially, i.e., with relatively large mesh-sizes, there is hardly no reduction of the error in
u in L2(Ω), and some oscillations are visible. The explanation is that in the limit ε = 0, the operator
associated to the bilinear form has an unbounded inverse, which has the consequence that for small ε >
0, some components of the difference of the solution and an approximation from Uh hardly contribute
to the residual, and therefore are hardly reduced in the least squares minimization.

In Demkowicz & Heuer (2011), this problem is tackled by equipping V with the problem dependent
“optimal test norm”, defined such that a residual measured in the resulting norm on V ′ is equal to
the standard, problem independent norm on U of the error. It turns out that the price to be paid for
taking this norm on V is that the variational problems on V , that determine the optimal test functions,
become increasingly close to singular when ε ↓ 0, and therefore are more and more difficult to solve
with a sufficient accuracy. Modified methods were proposed that aim at finding a compromise between
obtaining a best approximation in a nearly ε-independent norm, and getting well-conditioned variational
problems for the test functions. In Chan et al. (2012), it was proposed to modify the boundary condition
at the inflow boundary to ensure that solutions of the dual problem have no boundary layers.

Inspired by Cohen et al. (2012), the approach that we investigate is based on the observation that
to avoid a numerical solution method looses convergence or becomes increasingly more costly when
ε ↓ 0, a necessary condition is that the scheme is well-defined and convergent in the limit ε = 0. To
satisfy this condition, we use the available freedom in the Petrov-Galerkin discretization with optimal
test space of the mild-weak formulation by factorizing A = εId = A1A2 such that both factors vanish
for ε = 0; by excluding the outflow boundary from the skeleton, being the domain of definition of the
flux; by equipping the test space V with an ε-dependent norm; and finally by making the trial space for
the flux ε-dependent. For ε = 0 and a quasi-uniform mesh with mesh size h, the error in u in L2(Ω) is
shown to be O(h

1
2 ), which is the best that is possible since our piecewise polynomial trial space is in

H1
0 (Ω), whereas the solution generally does not vanish at the boundary outside its inflow part.

To verify the stability of the resulting method for convection dominated convection-diffusion prob-
lems, we performed numerical experiments in one and two dimensions using uniform meshes. The
method is, however, not restricted to such meshes, and (much) better results can be expected with a
proper local refinement in the layers.

A comparison in one dimension with the standard first order least squares method and the DPG
method shows that the new method performs much better (we have not yet compared to several variants
of the DPG method recently introduced in Demkowicz & Heuer (2011); Chan et al. (2012)). With our
method, in one and two dimensional examples, for h & ε we observed an error in u in L2(Ω) of order
h

1
2 . With a piecewise polynomial trial space in H1

0 (Ω), such an error is the best that is generally possible
for solutions that exhibit boundary or internal layers. For any fixed ε > 0, the aforementioned optimal
asymptotic error estimates for h ↓ 0 apply.

In one dimension, the optimal test functions could be determined analytically. In two-dimensions,
and for piecewise linear or quadratic trial functions, in those cases where the test functions could not be
found analytically, we replaced them by Galerkin approximations from the space of piecewise cubics.
We solved the symmetric, positive definite matrix-vector problem that defines the Petrov-Galerkin solu-
tion using the direct built-in matlab solver. With the new method we did not encounter any instabilities
due to ill-conditioning.

Finally, we note that there is a vast literature on various classes of numerical methods for solving
convection-diffusion problems. The aim of this work is to contribute to the development of Petrov-
Galerkin methods with optimal test spaces, or equivalently, to least squares methods. Since these meth-
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ods minimize the residual over the trial space in some norm, they have inherent stability properties, and
so have the potential to yield near-best approximations with respect to meshes that do not accurately
resolve the layers (other than with, e.g., methods based on Shishkin meshes). Since forming a least
squares functional essentially means doubling the order of the equation, and so squaring its condition
number, a common approach is to apply this technique on a reformulation of the equation as a first order
system.

This paper is organized as follows: In Section 2, a relation is established between Petrov-Galerkin
discretizations with optimal test functions and least squares methods.

In Section 3, we present the mild, ultra-weak and the new mild-weak variational formulations of
second order elliptic boundary value problems in mixed form. We show that the mild-weak variational
formulation is well-posed, and therefore gives rise to optimal error estimates in the “energy” space.

In Section 4, using duality arguments, we demonstrate optimal error estimates in a weaker norm.
In Section 5, we discuss the application to convection-dominated convection diffusion problems. We

present numerical results in one dimension, that show that a straightforward application of the Petrov-
Galerkin discretizations with optimal test spaces of the three variational formulations of the mixed
system do not yield satisfactory results for a near-vanishing diffusion.

We study a variational formulation of the pure convection problem obtained by piecewise integrating
the equation by parts w.r.t. a partition of Ω into mesh cells, and show that this formulation is well-
posed. We then construct a Petrov-Galerkin discretization with optimal test space of the mild-weak
variational formulation of convection-diffusion problem, that in the convective limit, becomes such
a discretization of this variational formulation of the pure convection problem. We present various
numerical experiments with solutions that have boundary and internal layers, which demonstrate the
stability of the resulting numerical solution method.

A summary and brief outlook is given in Section 6.

2. Petrov-Galerkin with optimal test spaces, and least-squares approximations

For some real Hilbert spaces U and V , a bilinear form b : U ×V → R, and with (Bu)(v) := b(u,v), let
B : U →V ′ be homeomorphism onto its range, i.e.,

‖Bu‖V ′ h ‖u‖U (u ∈U). (2.1)

Here and in the remainder of this work, by C . D we will mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D is defined as D.C,
and C h D as C . D and C & D.

In the application that is central in this work, ℑB will be equal to V ′, so that B : U→V ′ is boundedly
invertible. In this section, we include the possibility that ℑB (V ′ without additional difficulty.

With R ∈B(V,V ′) being the Riesz map, i.e., (Rv)(w) = 〈v,w〉V (w ∈ V ), we define T = R−1B ∈
B(U,V ). It satisfies

〈Tu,v〉V = b(u,v) (u ∈U, v ∈V ). (2.2)

Given a closed linear trial space Uh ⊂U , following Demkowicz & Gopalakrishnan (2011b) we set
the optimal test space

Vh := ℑ(T |Uh),

and, for given f ∈V ′, consider the Petrov-Galerkin problem of finding uh ∈Uh such that

b(uh,vh) = f (vh) (vh ∈Vh). (2.3)
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In the following proposition it is shown that solving the Petrov-Galerkin problem with optimal test
space, the optimal Petrov-Galerkin problem for short, is equal to the least squares problem of minimiz-
ing the residual in V ′.

PROPOSITION 2.1 It holds that uh = argminūh∈Uh
‖ f −Būh‖V ′ .

Proof. For any uh,wh ∈Uh,

〈 f −Buh,Bwh〉V ′ = 〈R−1( f −Buh),R−1Bwh〉V
= ( f −Buh)(R−1Bwh) = f (vh)−b(uh,vh).

where vh := R−1Bwh. Note that uh minimizes the residual when the left-hand side vanishes for any wh,
whereas it solves the Petrov-Galerkin problem when the right-hand side vanishes for any vh ∈Vh. �

Note that thanks to (2.1), the least squares problem, and so the optimal Petrov-Galerkin problem
have a unique solution.

Equipping U with energy-norm
‖ · ‖E := ‖B · ‖V ′ ,

we infer that uh is the best approximation w.r.t. ‖ · ‖E from Uh to

uls := argmin
u∈U

‖ f −Bu‖V ′ ,

and thus a quasi-best approximation w.r.t. ‖ · ‖U . Indeed, ‖ f −Bu‖2
V ′ = ‖ f −Buls‖2

V ′ + ‖Buls−Bu‖2
V ′

for any u ∈U , shows that uh = argminūh∈U ‖Buls−Būh‖V ′ . Clearly, uls = B−1 f when ℑB =V ′.

In special cases only, as when b corresponds to a boundary value problem and V is an L2-space, one
can expect to be able to determine the optimal test space exactly. Therefore, let Ṽh ⊂V be a sufficiently
large closed subspace such that in any case

∀0 6= wh ∈Uh, ∃ṽh ∈ Ṽh with b(wh, ṽh) 6= 0, (2.4)

which is satisfied for Ṽh = V thanks to (2.1). With Rh ∈B(Ṽh,Ṽ ′h) defined by (Rhṽh)(w̃h) = 〈ṽh, w̃h〉V
(w̃h ∈ Ṽh), we set Th = R−1

h B ∈B(U,Ṽh), i.e.,

〈Thu, ṽh〉V = b(u, ṽh) (u ∈U, ṽh ∈ Ṽh).

Note that Th|Uh is injective by (2.4). The solution Thu is the Galerkin approximation from the trial space
Ṽh ⊂V to the solution Tu of the bounded, symmetric and coercive variational problem (2.2) on V ×V .

The Petrov-Galerkin problem with an approximately optimal test space reads as finding ûh ∈ Uh
such that

b(ûh,vh) = f (vh) (vh ∈ ℑ(Th|Uh)). (2.5)

Writing vh = Thwh, we have b(ûh,vh) = 〈Thûh,Thwh〉V , and so, by the injectivity of Th|Uh , we conclude
that (2.5) has a unique solution, and moreover, that this variational problem is symmetric and coercive.
Taking Ṽh =V , in particular this holds true for (2.3).

When dimUh < ∞, and {φi : i ∈ I} is a basis for Uh, a basis for ℑTh|Uh is given by {Thφi : i ∈ I}.
A sufficient condition on Ṽh, dependent on Uh, such that also the Petrov-Galerkin solution with ap-

proximately optimal test space gives a quasi-best approximation to uls in U is given in (Gopalakrishnan
& Qiu, 2012, Thm. 2.1).
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REMARK 2.1 The Petrov-Galerkin problem (2.5) with the approximately optimal test space can equiv-
alently be written as a symmetric saddle-point system of finding (ûh, ŷh) ∈Uh×Ṽh that solves{

〈ŷh, ṽh〉V +b(ûh, ṽh) = f (ṽh) (ṽh ∈ Ṽh),
b(wh, ŷh) = 0 (wh ∈Uh).

This is the point of view taken in Cohen et al. (2012). To see this, note that for ṽh ∈ Ṽh, and ûh ∈Uh,
f (ṽh)−b(ûh, ṽh) = 〈R−1

h ( f −Bûh), ṽh〉V , so that the first equation in the saddle point system is equivalent
to ŷh = R−1

h ( f −Bûh). With this equality, the second equation 0 = b(wh, ŷh) = 〈R−1
h Bwh, ŷh〉V (wh ∈Uh)

is equivalent to 0 = 〈R−1
h ( f −Bûh),R−1

h Bwh〉V = ( f −Bûh)(R−1
h Bwh) (wh ∈Uh), or to b(ûh,vh) = f (vh)

(vh ∈ ℑTh|Uh ).
Writing the above ŷh as yh in the case that Ṽh =V , in (Cohen et al., 2012, Lemma 3.3) it was shown

that if Ṽh is chosen to be sufficiently large so that for some δ < 2, ‖yh− ŷh‖V 6 δ‖ŷh‖V , then

‖uls− ûh‖E +‖yh− ŷh‖V 6 4(1−δ/2)−2‖uls−uh‖E .

Moreover, for a particular V it is demonstrated how to control ‖yh− ŷh‖V using an a posteriori error
estimator and adaptivity.

3. Variational formulations of second order elliptic boundary value problems in mixed form

3.1 A mild-weak variational formulation

For some bounded Lipschitz domain Ω ⊂ Rn, a symmetric A ∈ L∞(Ω)n×n with A(·) & Id a.e., b ∈
L∞(Ω)n and γ ∈ L∞(Ω), we consider the boundary value problem{

−divA∇u+b ·∇u+ γu = f on Ω ,
u =0 on ∂Ω .

(3.1)

We assume that b and γ are such that for (Lu)(v) :=
∫

Ω

A∇u ·∇v+(b ·∇u+ γu)v,

L : H1
0 (Ω)→ H−1(Ω) is boundedly invertible.

(3.2)

Factorizing A = A1A2, where A1,A2 ∈ L∞(Ω)n×n, and introducing σσσ = A2∇u, our problem in
mixed form reads as  σσσ −A2∇u =0 on Ω ,

−divA1σσσ +b ·∇u+ γu = f on Ω ,
u =0 on ∂Ω .

(3.3)

REMARK 3.1 Obvious choices are A1 = A or A2 = A. For convection dominated convection-diffusion
problems, which will be discussed in Section 5, it will be relevant to consider a different factorization.

For any h from an index set of mesh parameters, let Ωh be a collection of disjoint open Lipschitz
domains such that Ω̄ = ∪K∈ΩhK̄. For any K1 6= K2 ∈ Ωh with measn−1(K̄1 ∩ K̄2) > 0, we fix n on
∂K1∩∂K2 to be the outward unit normal nK on ∂K for K being either K1 or K2. By setting n to be the
outward unit normal on ∂Ω , this defines n on ∪K∈Ωh∂K a.e.

For Γ+ being the union of ∂K∩∂Ω for all K in some subset of Ωh, we set the skeleton

∂Ω
◦
h = ∪K∈Ωh∂K \Γ+. (3.4)
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REMARK 3.2 Currently the choice of Γ+ is arbitrary. Canonical choices are Γ+ = /0 (as in Demkowicz
& Gopalakrishnan (2011a,b)), or Γ+ = ∂Ω . For convection dominated convection-diffusion problems, it
will turn out to be relevant to choose Γ+ as the the outflow boundary, so that ∂Ω ◦h ∩∂Ω is the complement
of the outflow boundary.

We are going to derive a variational formulation of the mixed problem, where the second equa-
tion of (3.3) will be integrated by parts on each “element” K ∈ Ωh individually. Note that div ∈
B(L∞(K)n,W 1

1 (K)′) and∫
K

wdivb =−
∫

K
b ·∇w+

∫
∂K

wb ·nK (w ∈W 1
1 (K)), (3.5)

so that ∫
K

vb ·∇u =
∫

K
−ub ·∇v−uvdivb+

∫
∂K

uvb ·nK (u,v ∈ H1(K)).

In case A1σσσ ∈ H(div;K), we have

−
∫

K
vdivA1σσσ =

∫
K

A1σσσ ·∇v−
∫

∂K
vA1σσσ ·nK (v ∈ H1(K)). (3.6)

By summing these relations over K ∈ Ωh, setting divh and ∇h by (divh b)|K = divb and (∇hv)|K = ∇v
(K ∈Ωh), and reading (ub−A1σσσ)|∂Ω◦h

·n as an additional independent variable θ , we end up with the
following mild-weak variational problem:

With U := L2(Ω)n×H1
0 (Ω)×H−

1
2 (∂Ω

◦
h ),V := L2(Ω)n×H1

0,Γ+(Ωh),

given f ∈ H1
0,Γ+(Ωh)

′, find (σσσ ,u,θ) ∈U such that for all (τττ,v) ∈V,

b(σσσ ,u,θ ,τττ,v) :=
∫

Ω

(σσσ −A2∇u) · τττ +(A1σσσ −ub) ·∇hv+(γ−divh b)uv

+
∫

∂Ω◦h

JvKθ

= f (v).

(3.7)

Here, for x ∈ ∂K∩∂K′, and with n pointing into K′,

JvK(x) := v|K(x)− v|K′(x),

and JvK(x) := vK(x) for x ∈ ∂Ω ∩∂K;

H1
0,Γ+(Ωh) := {v ∈ L2(Ω) : v|K ∈ H1

0,∂K∩Γ+
(K)(K ∈Ωh)}, (3.8)

equipped with the “broken” norm ‖v‖2
H1(Ωh)

:= ∑K∈Ωh
‖v|K‖2

H1(K)
; and

H−
1
2 (∂Ω

◦
h ) := {q|∂Ω◦h

·n : q ∈ H(div;Ω)}, (3.9)

equipped with quotient norm

‖θ‖
H−

1
2 (∂Ω◦h )

:= inf{‖q‖H(div;Ω) : q ∈ H(div;Ω), θ = q|∂Ω◦h
·n}.
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Here, for some bounded Lipschitz domain ϒ ⊂ Rn, and a measurable Ξ ⊂ ∂ϒ , we set H1
0,Ξ (ϒ ) := {u ∈

H1(ϒ ) : u = 0 on Ξ}. The above mapping q 7→ q|∂Ω◦h
· n is given a precise meaning as the unique

extension to H(div;Ω) of (D(Ω̄)n,‖·‖H(div;Ω))→H1
0,Γ+(Ωh)

′ : q 7→ (v 7→
∫

∂Ω◦h
JvKq ·n), that, as we will

see (in (3.15)), is bounded.

REMARK 3.3 Although U , V and b depend on h, we suppress this in our notation.

REMARK 3.4 For the solution (σσσ ,u,θ), it holds that σσσ = A2∇u. If f ∈ L2(Ω), then on each K ∈Ωh, by
definition of a weak divergence, we have divA1σσσ = b ·∇u+ γu− f ∈ L2(K), so that by an application
of (3.6) in the reversed direction, we infer that θ = (ub−A1σσσ)|∂Ω◦h

·n.

REMARK 3.5 Since u ∈H1
0 (Ω) in the variational formulation (3.7), there was no strict need to integrate

the term
∫

Ω
vb ·∇u by parts. For the application to convection dominated convection-diffusion prob-

lems, this integration by parts is useful, since in the natural “limit” variational formulation of the pure
convection problem, the space for u will be L2(Ω).

REMARK 3.6 The idea to introduce the “flux” (ub−A1σσσ)|∂Ω◦h
·n as an independent variable, rather

than, as with a common discontinuous Galerkin method, in a discretized setting to replace it on each
interface by some average of u and σσσ from both sides of this interface was introduced in Bottasso
et al. (2002). In Demkowicz & Gopalakrishnan (2011b,a), this idea was combined with the introduction
of optimal test spaces. Actually, in both Bottasso et al. (2002) and Demkowicz & Gopalakrishnan
(2011b,a), the system is considered where both equations from (3.3) are integrated by parts. This so-
called ultra-weak formulation will be considered in the next subsection.

In Subsection 3.3, we will show that the bilinear form b : U×V →R defines a boundedly invertible
operator. This means that given a closed trial space Uh ⊂U , we can run the Petrov-Galerkin method
with optimal test space Vh = ℑ(T |Uh).

Writing
(τττ,v) = T (σσσ ,u,θ)

and v = (vK)K∈Ωh , we have the explicit expression

τττ = σσσ −A2∇u, (3.10)

whereas for each K ∈Ωh, vK ∈ H1
0,∂K∩Γ+

(K) solves

〈vK , v̂〉H1(K) =
∫

K
(A1σσσ −ub) ·∇v̂+(γ−divb)uv̂+

∫
∂K

n>K n v̂θ (3.11)

(v̂∈H1
0,∂K∩Γ+

(K)). Note that n>K n is±1. So in the common situation that Uh is spanned by a local basis,
i.e., the support of each basis function extends to a uniformly bounded number of elements K ∈ Ωh,
a local basis of Vh can be found by solving O(#Ωh) of the above independent local problems on the
individual elements. Here the essential point is that v is sought in the “broken space” H1

0,Γ+(Ωh) as a
consequence of the application of integration by parts on the individual elements when setting up the
variational formulation.

3.2 Mild and ultra-weak variational formulations

The mild-weak variational formulation (3.7) of the mixed problem (3.3) is intermediate between the
variational form where neither of the equations is integrated by parts and the one where both equations
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are piecewise integrated by parts. The first one reads as
With U1 := H(div;Ω)×H1

0 (Ω),V1 := L2(Ω)n×L2(Ω),

given f ∈ L2(Ω), find (σσσ ,u) ∈U1 such that for all (τττ,v) ∈V1,

b1(σσσ ,u,τττ,v) :=
∫

Ω

(σσσ −A∇u) · τττ + v(−divσσσ +b ·∇u+ γu)

= f (v).

(3.12)

As shown in (Stevenson, 2013, (proof of) Thm. 3.1), under the assumptions that we made on A, b,
and γ , with (B1(σσσ ,u))(τττ,v) := b1(σσσ ,u,τττ,v), B1 : U1→V ′1 is boundedly invertible. The solution of the
Petrov Galerkin discretization of this mild variational formulation with trial space Uh ⊂U and optimal
test space solves the common first order least squares problem

argmin
(σh,uh)∈Uh

‖A∇uh−σh‖2
L2(Ω)n +‖ f +divσh−b ·∇uh− γuh‖2

L2(Ω)n . (3.13)

Note that T (σσσ ,u) = (σσσ −A∇u,−divσσσ +b ·∇u+ γu), which corresponds to simply applying the
operator in strong form.

Following Bottasso et al. (2002); Demkowicz & Gopalakrishnan (2011b,a), we give the second
alternative formulation, known as the ultra-weak formulation, where we restrict to b with divb = 0 and
γ = 0. With ∂Ωh = ∪K∈Ωh∂K, i.e., ∂Ωh = ∂Ω ◦h taking Γ+ = /0, it reads as

With U2 := L2(Ω)n×L2(Ω)×H
1
2

00(∂Ωh)×H−
1
2 (∂Ωh),

V2 := H(div;Ωh)×H1(Ωh), given f ∈ H1(Ωh)
′, find (σσσ ,u,ρ,θ) ∈U2 such that

b2(σσσ ,u,ρ,θ ,τττ,v) :=
∫

Ω

A−1
σσσ · τττ +udivh τττ +(σσσ −ub) ·∇hv

+
∫

∂Ωh

JvKθ − Jτττ ·nKρ

= f (v) ((τττ,v) ∈V2),

(3.14)

where ρ and θ replace the “trace” u|∂Ωh
and “flux” (ub−σσσ)|∂Ωh

·n, which are not defined on the full
function spaces L2(Ω) and L2(Ω)n for u and σσσ . Here

H(div;Ωh) := {τττ ∈ L2(Ω)n : divτττ|K ∈ H(div;K)(K ∈Ωh)},

equipped with the “broken” norm ‖τττ‖2
H(div;Ωh)

:= ∑K∈Ωh
‖τττ|K‖2

H(div;K); and

H
1
2

00(∂Ωh) := {u|∂Ωh
: u ∈ H1

0 (Ω)},

equipped with quotient norm

‖ρ‖
H

1
2

00(∂Ωh)
:= inf{‖u‖H1(Ω) : u ∈ H1

0 (Ω), ρ = u|∂Ωh
}.

As shown in Demkowicz & Gopalakrishnan (2011a), under the conditions we made on A and for
divergence-free b ∈ L∞(Ω)n, with (B2(σσσ ,u,ρ,θ))(τττ,v) := b2(σσσ ,u,ρ,θ ,τττ,v), B2 : U2 → V ′2 is bound-
edly invertible, uniformly in h.
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Although it can be expected that results can be generalized to γ 6= 0 and divb 6= 0, a non-divergence
free b requires some care since, only assuming that b ∈ L∞(Ω)n, a term

∫
K uvdivb only makes sense

when uv ∈W 1
1 (K).

Let us consider a Petrov-Galerkin discretization of the ultra-weak formulation with finite element
trial spaces w.r.t. Ωh and an optimal test space. Then, assuming a quasi-uniform Ωh with mesh-size
h, in order to obtain an error in U2 of O(hk), it is needed that σσσ ∈ Hk(Ω)n, u ∈ Hk(Ω), and, for
approximating ρ and θ , u∈Hk+1(Ω), ub−σσσ ∈Hk(Ω)n, and div(ub−σσσ)∈Hk(Ω). So, to approximate
u in L2(Ω) with an error O(hk), it does not suffice that u ∈ Hk(Ω), but it is needed that u ∈ Hk+1(Ω).
The avoidance of such an additional regularity condition was one reason to consider the mild-weak
variational formulation.

A similar problem seems to arise with the common first order least squares formulation. To approx-
imate the solution with finite element spaces w.r.t. a quasi-uniform partition with mesh-size h such that
the error in U1 is O(hk), it is needed, assuming Raviart-Thomas type spaces for σσσ , that σσσ ∈ Hk(Ω)n,
divσσσ ∈ Hk(Ω), and u ∈ Hk+1(Ω). In view of the relations σσσ = A∇u and divA∇u = b ·∇u+ γu− f ,
however, here the additional condition divσσσ ∈ Hk(Ω), needed to approximate u in H1

0 (Ω) with an er-
ror O(hk), is already satisfied under the additional smoothness condition f ∈ Hk(Ω), which, being a
smoothness condition on the right-hand side, is usually harmless.

REMARK 3.7 This sheds some other light on the discussion in Bramble et al. (1997), where the undesir-
ability of the additional smoothness requirement on σσσ was used as one reason to consider the variational
form in (3.12) for (σσσ ,u,τττ,v) ∈ L2(Ω)n×H1

0 (Ω)×L2(Ω)n×H−1(Ω).

Finally, we note that since, other than with the other two variational formulations, in the ultra-
weak formulation both σσσ and u are sought in L2-spaces, it allows for a convenient application with
nonconforming partitions.

3.3 Well-posedness

In this subsection, we prove the following result for the mild-weak variational formulation.

THEOREM 3.1 With (B(σσσ ,u,θ))(τττ,v) := b(σσσ ,u,θ ,τττ,v) from (3.7), it holds that B : U →V ′ is bound-
edly invertible with suph max(‖B‖U→V ′ ,‖B−1‖V ′→U )< ∞.

Our proof is inspired by a corresponding proof from Demkowicz & Gopalakrishnan (2011a) (see
also Causin & Sacco (2005)) for the ultra-weak formulation. Here we also allow divb 6= 0, γ 6= 0, and
dimensions n 6∈ {2,3}. Moreover, we include the possibility that parts of ∂Ω are excluded from the
skeleton ∂Ω ◦h , i.e., we allow Γ+ 6= /0 in (3.4), which will show up to be useful for convection dominated
problems.

We will make use of the following well-known consequence of the closed range theorem.

LEMMA 3.1 For reflexive Banach spaces X and Y , let G : X → Y ′ be linear. Then G is boundedly
invertible if and only if

(i). G is bounded,

(ii). ρ := inf0 6=y∈Y sup06=x∈X
(Gx)(y)
‖x‖X‖y‖Y > 0,

(iii). ∀0 6= x ∈ X , ∃y ∈ Y , with (Gx)(y) 6= 0,

and ‖G−1‖Y ′→X = 1
ρ

.

Rob Stevenson
(ii) Gives $G’$ injective and $\ran G’$ closed, so $G$ surj. Reflexivity not needed 
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Since G being boundedly invertible is equivalent to G′ being boundedly invertible, the roles of X and Y
in (ii) and (iii) can be interchanged.

To show Theorem 3.1 we start with some preparations. First we will show that for v ∈ H1
0,Γ+(Ωh),

the jump JvK, being a function on the skeleton ∂Ω ◦h , is an element of (H−
1
2 (∂Ω ◦h ))

′. In particular, using
that for v ∈ H1

0 (Ω) this jump is zero, we obtain the following result.

THEOREM 3.2 For v ∈ H1
0,Γ+(Ωh), it holds that JvK ∈ (H−

1
2 (∂Ω ◦h ))

′, and

‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
h inf

w∈H1
0 (Ω)
‖v−w‖H1(Ωh)

(v ∈ H1
0,Γ+(Ωh)).

Proof. For v ∈ H1
0,Γ+(Ωh), q ∈ H(div;Ω), we have∫

∂Ω◦h

JvKq ·n = ∑
K∈Ωh

∫
K

∇v ·q+ vdivq. ‖v‖H1(Ωh)
‖q‖H(div;Ω), (3.15)

showing that ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
. ‖v‖H1(Ωh)

.

Since for w ∈ H1
0 (Ω) and q ∈ H(div;Ω), it holds that

∫
Ω

∇w · q + wdivq = 0, it follows that
‖JwK‖

(H−
1
2 (∂Ω◦h ))

′
= 0. We infer that for v ∈ H1

0,Γ+(Ωh), ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
. infw∈H1

0 (Ω) ‖v−w‖H1(Ωh)
.

Given v ∈ H1
0,Γ+(Ωh), let w ∈ H1

0 (Ω) be the solution of
∫

Ω
∇w ·∇φ =

∫
Ω

∇hv ·∇φ (φ ∈ H1
0 (Ω)).

Define τττ := ∇h(v−w). Then divτττ = 0, and so

‖τττ‖2
L2(Ω)n =

∫
Ω

∇h(v−w) · τττ = ∑
K∈Ωh

∫
∂K

(v−w)τττ ·nK =
∫

∂Ω◦h

JvKτττ ·n

6

∫
∂Ω◦h

JvKτττ ·n
‖τττ‖H(div;Ω)

‖τττ‖H(div;Ω) 6 ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
‖τττ‖H(div;Ω),

or ‖∇h(v−w)‖L2(Ω)n 6 ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
.

Since ‖v−w‖L2(Ω) 6 ‖∇h(v−w)‖L2(Ω)+ ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
by Lemma 3.2 stated below, the proof

is completed. �

LEMMA 3.2 (Poincaré-type inequality, (Demkowicz & Gopalakrishnan, 2011a, Lemma 4.2)) It holds
that

‖v‖L2(Ω) . ‖∇hv‖L2(Ω)+‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
(v ∈ H1

0,Γ+(Ωh)).

Proof. For the reader’s convenience, we recall the proof from Demkowicz & Gopalakrishnan (2011a).
Given v ∈ H1

0,Γ+(Ωh), let w ∈ H1
0 (Ω) solve

∫
Ω

∇w ·∇φ =
∫

Ω
vφ (φ ∈ H1

0 (Ω)). Then ‖∇w‖2
L2(Ω) 6

‖v‖L2(Ω)‖w‖L2(Ω), and so ‖∇w‖L2(Ω). ‖v‖L2(Ω) by an application of the Poincaré inequality on H1
0 (Ω).

From

‖v‖2
L2(Ω) =

∫
Ω

−v∆w =
∫

Ω

∇w ·∇hv−
∫

∂Ω◦h

JvK
∂w
∂n

6 ‖∇w‖L2(Ω)‖∇hv‖L2(Ω)−

∫
∂Ω◦h

JvK ∂w
∂n

‖∇w‖H(div;Ω)
‖∇w‖H(div;Ω)

6 ‖∇w‖L2(Ω)‖∇hv‖L2(Ω)+‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
‖∇w‖H(div;Ω),
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‖∇w‖H(div;Ω) =
√
‖∇w‖2

L2(Ω)n +‖v‖2
L2(Ω)

, and ‖∇w‖L2(Ω) . ‖v‖L2(Ω), the proof follows. �

A direct consequence of Theorem 3.2 is that ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
. ‖v‖H1(Ωh)

(v ∈ H1
0,Γ+(Ωh)). Using

in addition that A1,A2 ∈ L∞(Ω)n×n, γ ∈ L∞(Ω), and b ∈ L∞(Ω)n, the latter showing that |
∫

K divbuv|.
‖uv‖W 1

1 (K) . ‖u‖H1(K)‖v‖H1(K) (cf. (3.5)), it follows that B : U → V ′ is bounded, i.e., condition (i) of
Lemma 3.1 applied to G = B is satisfied, and, moreover, that it holds true uniformly in h.

To show condition (iii) of Lemma 3.1, we will need a characterization of the dual of a certain trace
space. As an introduction, we recall some facts about quotient spaces.

For a normed linear space V , and a closed subspace M, the quotient space V/M is equipped with
‖v‖V/M = inf{ṽ∈V :v−ṽ∈M} ‖ṽ‖H . If V is a Banach (Hilbert) space, then so is V/M. With the annihilator
M◦ := { f ∈V ′ : f (M) = {0}}, being a closed subspace of V ′, we have (V/M)′ 'M◦.

For a linear space W , let G ∈ B(V,W ), so that kerG is closed. From G : V/kerG→ ℑG being
invertible, |||Gv||| := ‖v‖V/kerG = inf{ṽ∈V :Gṽ=Gv} ‖ṽ‖V defines a norm on ℑG, and (ℑG, |||·|||)hV/kerG.
From ‖Gv‖W 6 ‖G‖B(V,W )|||Gv|||, we have (ℑG, |||·|||) ↪→W .

We are going to apply these facts in the following situation. Let ϒ ⊂ Rn be a bounded Lipschitz
domain, and Ξ ⊂ ∂ϒ with |Ξ | > 0. Setting Ξ c = ∂ϒ \Ξ , the condition on ϒ ensures that the trace

mapping v 7→ v|Ξ ∈B(H1
0,Ξ c(ϒ ),L2(Ξ)). Its kernel is the space H1

0 (ϒ ). We define H
1
2

00(Ξ) := {v|Ξ : v ∈
H1

0,Ξ (ϒ )}, equipped with

‖v|Ξ‖
H

1
2

00(Ξ)
:= inf
{ṽ∈H1

0,Ξc (ϒ ):ṽ|Ξ=v|Ξ }
‖ṽ‖H1(ϒ ).

i.e., H
1
2

00(Ξ)'H1
0,Ξ c(ϒ )/H1

0 (ϒ ) (↪→ L2(Ξ), with the embedding being even dense), and so (H
1
2

00(Ξ))′ '
H1

0 (ϒ )◦ (⊂ H1
0,Ξ c(ϒ )′).

LEMMA 3.3 For ϒ ⊂ Rn being a bounded Lipschitz domain, and Ξ ⊂ ∂ϒ with |Ξ | > 0, we have

(H
1
2

00(Ξ))′ = {q ·n|Ξ : q ∈ H(div;ϒ )}, and

‖q ·n|Ξ‖
(H

1
2

00(Ξ))′
= inf
{q̃qq∈H(div;ϒ ):q̃qq·n|Ξ=q·n|Ξ }

‖q̃qq‖H(div;ϒ ), (3.16)

i.e., (H
1
2

00(Ξ))′ ' H(div;ϒ )/H0,Ξ (div;ϒ ), where H0,Ξ (div;ϒ ) := {q ∈ H(div;ϒ ) : q ·n|Ξ = 0}.

Proof. Given f ∈ (H
1
2

00(Ξ))′, define u ∈ H1
0,Ξ c(ϒ )⊂ H1(ϒ ) by∫

ϒ

∇u ·∇v+uv = f (v|Ξ ) (v ∈ H1
0,Ξ c(ϒ )). (3.17)

Then ‖u‖H1(ϒ ) = ‖ f‖
(H

1
2

00(Ξ))′
. Since f (v|Ξ ) vanishes for v ∈ H1

0 (ϒ ), setting q = ∇u, we find divq = u,

and so ∫
ϒ

q ·∇v+ vdivq = f (v|Ξ ) (v ∈ H1
0,Ξ c(ϒ )),

or q ·n|Ξ = f , and ‖q‖H(div;ϒ ) = ‖ f‖
(H

1
2

00(Ξ))′
.

Given q∈H(div;ϒ ), f := v 7→
∫

Ξ
q ·nv=

∫
ϒ

q ·∇v+vdivq∈ (H1
0,Ξ c(ϒ ))′, and it vanishes on H1

0 (ϒ ),

i.e., f ∈ (H
1
2

00(Ξ))′. From | f (v)| 6 ‖v‖H1(ϒ )‖q‖H(div;ϒ ), i.e., ‖ f‖
(H

1
2

00(Ξ))′
6 ‖q‖H(div;ϒ ), the proof is

completed. �
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REMARK 3.8 Let H
1
2 (Ξ) := {v|Ξ : v ∈ H1(ϒ )}, equipped with

‖v|Ξ‖
H

1
2 (Ξ)

:= inf
{ṽ∈H1(ϒ ):ṽ|Ξ=v|Ξ }

‖ṽ‖H1(ϒ ).

i.e., H
1
2 (Ξ)'H1(ϒ )/H1

0,Ξ (ϒ ). Then, in a similar way, one finds that H−
1
2 (Ξ) := (H

1
2 (Ξ))′ = {q ·n|Ξ :

q ∈ H0,Ξ c(div;ϒ )}, and

‖q ·n|Ξ‖
H−

1
2 (Ξ)

= inf
{q̃qq∈H0,Ξc (div;ϒ ):q̃qq·n|Ξ=q·n|Ξ }

‖q̃qq‖H(div;ϒ ), (3.18)

i.e., H−
1
2 (Ξ)'H0,Ξ c(div;ϒ )/H0(div;ϒ ). A comparison of (3.16) with (3.18) confirms that H−

1
2 (Ξ) ↪→

(H
1
2

00(Ξ))′, being a consequence of H
1
2

00(Ξ) ↪→ H
1
2 (Ξ).

It is known that the embedding H
1
2

00(Ξ) ↪→ H
1
2 (Ξ) is strict (see e.g. (Grisvard, 1985, Corollary

1.4.4.5)), i.e., there is a sequence (un)n∈N ⊂ H
1
2

00(Ξ) with ‖un‖
H

1
2 (Ξ)

= 1 and limn→∞ ‖un‖
H

1
2

00(Ξ)
= ∞.

Consequently, also the embedding H−
1
2 (Ξ) ↪→ (H

1
2

00(Ξ))′ is strict.

Now we are ready to show condition (iii) of Lemma 3.1. Let (σσσ ,u,θ) ∈U with b(σσσ ,u,θ ,τττ,v) = 0
for all (((τ,v) ∈V . Then σσσ = A2∇u. By taking v ∈ H1

0 (Ω), from −
∫

Ω
ub ·∇v+divh buv =

∫
Ω

vb ·∇u−
∑K∈Ωh

∫
∂K uvb ·nk =

∫
Ω

vb ·∇u, it follows that
∫

Ω
A∇u ·∇v+(b ·∇u+γu)v = 0, or, by (3.2), that u = 0,

and so also σσσ = 0.
Writing θ = q|∂Ω◦h

·n for q ∈ H(div;Ω), from 0 =
∫

∂Ω◦h
JvKq ·n = ∑K∈Ωh

∫
K ∇v ·q+ vdivq for all

v ∈ H1
0,Γ+(Ωh), it follows that for any K ∈Ωh,

0 =
∫

K
∇v ·q+ vdivq =

∫
∂K\Γ+

vq ·nK (v ∈ H1
0,∂K∩Γ+

(K)).

Since v|∂K\∂Γ+
runs over H

1
2

00(∂K \Γ+), and q|K ∈ H(div;K), Lemma 3.3 shows that q ·nK vanishes on
∂K \Γ+, and thus that θ = 0. We conclude that condition (iii) of Lemma 3.1 is satisfied.

REMARK 3.9 We just showed that for any 0 6= θ ∈H−
1
2 (∂Ω ◦h ), there is a v∈H1

0,Γ+(Ωh) with
∫

∂Ω◦h
JvKθ 6=

0. As a consequence of Theorem 3.1 (whose proof still has to be completed), we even have that

inf
06=θ∈H−

1
2 (∂Ω◦h )

sup06=v∈H1
0,Γ+

(Ωh)

∫
∂Ω◦h

JvKθ

‖θ‖
H−

1
2 (∂Ω◦h )

‖v‖H1(Ωh)
> 0. Since, on the other hand, as a consequence

of Theorem 3.2, for any v ∈ H1
0,Γ+(Ωh)\H1

0 (Ω), there exists a θ ∈ H−
1
2 (∂Ω ◦h ) with

∫
∂Ω◦h

JvKθ 6= 0, we
conclude that we have the following relation between two function spaces on the skeleton ∂Ω ◦h :

(H1
0,Γ+(Ωh)/H1

0 (Ω))′ ' H(div;Ω)/{q ∈ H(div;Ω) : q|∂Ω◦h
·n = 0}. (3.19)

(So also for |Γ+|> 0, i.e., when a non-neglectable part of ∂Ω is excluded from the skeleton, no boundary
conditions should be included in H(div;Ω), actually contradicting (Ben Belgacem, 1999, Prop. 2.1).)
Note that (3.19) extends upon Theorem 3.2.

To verify the remaining condition (ii) of Lemma 3.1, we need the following auxiliary result.
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LEMMA 3.4 The linear mappings

L2(Ω)n×H1
0 (Ω)→ (L2(Ω)n×H1

0 (Ω))′ :
(σσσ ,u)→

[
(τττ,v) 7→

∫
Ω

(σσσ −A2∇u) · τττ +A1σσσ ·∇v+(b ·∇u+ γu)v
]

(τττ,v)→
[
(σσσ ,u) 7→

∫
Ω

σσσ · τττ−A1σσσ ·∇v+A2∇u · τττ +(b ·∇u+ γu)v
]

are boundedly invertible.

Proof. Clearly both mappings are bounded. Given f∈ L2(Ω)n and g∈H−1(Ω), the problems of finding
σσσ ∈ L2(Ω)n and u ∈ H1

0 (Ω) such that∫
Ω

(σσσ −A2∇u) · τττ +A1σσσ ·∇v+(b ·∇u+ γu)v = f(τττ)+g(v) (τττ ∈ L2(Ω)n, v ∈ H1
0 (Ω)),

or that of finding τττ ∈ L2(Ω)n and v ∈ H1
0 (Ω) such that∫

Ω

σσσ · τττ−A1σσσ ·∇v+A2∇u · τττ +(b ·∇u+ γu)v = f(σσσ)+g(u) (σσσ ∈ L2(Ω)n, u ∈ H1
0 (Ω)),

are equivalent to solving

σσσ −A2∇u = f, (Lu)(v) = g(v)− f(A>1 ∇v) (v ∈ H1
0 (Ω)), or

τττ−A>1 ∇v = f, (L′v)(u) = g(u)− f(A2∇u) (u ∈ H1
0 (Ω)),

respectively. The boundedness of L−1 : H−1(Ω)→H1
0 (Ω) ((3.2)), and thus of L′−1 : H−1(Ω)→H1

0 (Ω),
shows that both problems have a unique solution with ‖σσσ‖L2(Ω)n +‖u‖H1(Ω) . ‖g‖H−1(Ω)+‖f‖L2(Ω)n ,
or ‖τττ‖L2(Ω)n +‖v‖H1(Ω) . ‖g‖H−1(Ω)+‖f‖L2(Ω)n . �

Having verified the conditions (i), uniform in h, and (iii) of Lemma 3.1, the proof of Theorem 3.1 is
completed by the following result, being condition (ii) of Lemma 3.1, uniform in h.

THEOREM 3.3 One has inf
h

inf
06=(τττ,v)∈V

sup
06=(σσσ ,u,θ)∈U

b(σσσ ,u,θ ,τττ,v)
‖(σσσ ,u,θ)‖U‖(τττ,v)‖V

> 0.

Proof. Let 0 6= (τττ,v) ∈ L2(Ω)n×H1
0,Γ+(Ωh) be given. We solve (τττ1,v1) ∈ L2(Ω)n×H1

0 (Ω) from
∫

Ω

σσσ · τττ1−A1σσσ ·∇v1 =−
∫

Ω

A1σσσ ·∇hv,∫
Ω

A2∇u · τττ1 +(b ·∇u+ γu)v1 =
∫

Ω

(γ−divh b)vu−ub ·∇hv.
(3.20)

(σσσ ∈L2(Ω)n, u∈H1
0 (Ω)). The estimates |

∫
Ω

A1σσσ ·∇hv|. ‖v‖H1(Ωh)
‖σσσ‖L2(Ω)n and |

∫
Ω
(γ−divh b)vu−

ub ·∇hv| . ‖v‖H1(Ωh)
‖u‖H1(Ω), i.e., the boundedness of the functionals at the right-hand sides, to-

gether with Lemma 3.4 (second mapping) show that there exists a (unique) solution (τττ1,v1) with
‖τττ1‖L2(Ω)n +‖v1‖H1(Ω) . ‖v‖H1(Ωh)

, and so ‖τττ1‖L2(Ω)n +‖v1− v‖H1(Ωh)
. ‖v‖H1(Ωh)

.
From

−
∫

Ω

vudivh b = ∑
K∈Ωh

∫
K

b · (u∇v+ v∇u)−
∫

∂K
vub ·nk

=
∫

Ω

b · (u∇hv+ v∇u)−
∫

∂Ω◦h

JvKub ·n,
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and Jv1K = 0, it follows that an equivalent formulation of (3.20) is
∫

Ω

A1σσσ ·∇h(v− v1)−σσσ · τττ1 =0 (σσσ ∈ L2(Ω)n),∫
Ω

A2∇u · τττ1 +(v1− v)(b ·∇u+ γu)+
∫

∂Ω◦h

Jv− v1Kub ·n =0 (u ∈ H1
0 (Ω)),

so that v1 = v and τττ1 = 0 when v ∈ H1
0 (Ω). By Theorem 3.2, we conclude that

‖τττ1‖L2(Ω)n +‖v1− v‖H1(Ωh)
. inf

w∈H1
0 (Ω)
‖v−w‖H1(Ωh)

h ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
, and so

‖τττ‖L2(Ω)n +‖v‖H1(Ωh)
. ‖τττ− τττ1‖L2(Ω)n +‖v1‖H1(Ω)+‖JvK‖

(H−
1
2 (∂Ω◦h ))

′
. (3.21)

Substituting the equations from (3.20) in the definition of b shows that for all (σσσ ,u,θ) ∈U ,

b(σσσ ,u,θ ,τττ,v) =
∫

Ω

(σσσ −A2∇u) · (τττ− τττ1)+A1σσσ ·∇v1 +(b ·∇u+ γu)v1 +
∫

∂Ω◦h

JvKθ .

From Lemma 3.4 (first mapping) and Lemma 3.1, it follows that there exists an absolute constant
ρ > 0, and (σσσ ,u) ∈ L2(Ω)n×H1

0 (Ω) with ‖σσσ‖2
L2(Ω)n +‖u‖2

H1(Ω)
= ‖τττ− τττ1‖2

L2(Ω)n +‖v1‖2
H1(Ω)

and

ρ[‖τττ− τττ1‖2
L2(Ω)n +‖v1‖2

H1(Ω)]6
∫

Ω

(σσσ −A2∇u) · (τττ− τττ1)+A1σσσ ·∇v1 +(b ·∇u+ γu)v1.

By definition of a dual space, there exists a θ ∈ H−
1
2 (∂Ω ◦h ) with ‖θ‖

H−
1
2 (∂Ω◦h )

= ‖JvK‖
(H−

1
2 (∂Ω◦h ))

′
and

‖JvK‖2

(H−
1
2 (∂Ω◦h ))

′
=
∫

∂Ω◦h
JvKθ . We conclude that

min(ρ,1)
√
‖τττ− τττ1‖2

L2(Ω)n +‖v1‖2
H1(Ω)

+‖JvK‖2

(H−
1
2 (∂Ω◦h ))

′

6
b(σσσ ,u,θ ,τττ,v)√

‖σσσ‖2
L2(Ω)n +‖u‖2

H1(Ω)
+‖θ‖2

H−
1
2 (∂Ω◦h )

,

which, together with (3.21), completes the proof. �

3.4 Error estimates

Given f ∈ H1
0,Γ+(Ωh)

′, let (σσσ ,u,θ) ∈U = L2(Ω)n×H1
0 (Ω)×H−

1
2 (∂Ω ◦h ) denote the exact solution of

the mild-weak formulation (3.7), and for some closed trial space Uh ⊂U , let (σσσh,uh,θh) ∈Uh denote
its Petrov-Galerkin approximation with optimal test space Vh.

We will use the notation

W s
p(div;ϒ ) = {v ∈W s

p(ϒ )n : divv ∈W s
p(ϒ )},

equipped with norm ‖v‖W s
p(div;ϒ ) =

(
‖v‖p

W s
p(ϒ )n + ‖divv‖p

W s
p(ϒ )

) 1
p , with the usual adaptation for p = ∞.

The space W s
2 (div;ϒ ) will be denoted as Hs(div;ϒ ), so that in particular H0(div;ϒ ) = H(div;ϒ ).

In the following we think of Σ h ⊂ L2(Ω)n and Ph ⊂ H1
0 (Ω) being common finite element spaces

w.r.t. Ωh of order k and k+1, respectively, and Qh ⊂H(div;Ω), typically being a Raviart-Thomas space
w.r.t. Ωh of order k. We assume that Ωh is quasi-uniform, shape-regular, with mesh-size h.
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PROPOSITION 3.4 For a k ∈ N= {1,2, . . .}, let γ ∈W k
∞(Ω), b ∈W k

∞(div;Ω), and A1,A2 ∈W k
∞(Ω)n×n.

Let f ∈ Hk(Ω) and u ∈ Hk+1(Ω). Let Σ h ⊂ L2(Ω)n, Ph ⊂ H1
0 (Ω), and Qh ⊂ H(div;Ω) with

inf
σ̂σσh∈Σh

‖σ̂σσ − σ̂σσh‖L2(Ω)n . hk‖σ̂σσ‖Hk(Ω)n (σ̂σσ ∈ Hk(Ω)n), (3.22)

inf
ûh∈Ph

‖û− ûh‖H1(Ω) . hk‖û‖Hk+1(Ω) (û ∈ Hk+1(Ω)∩H1
0 (Ω)), (3.23)

inf
qh∈Qh

‖q−qh‖H(div;Ω) . hk‖q‖Hk(div;Ω) (q ∈ Hk(div;Ω)). (3.24)

Then with Uh = Σ h×Ph×{qh|∂Ω◦h
·n : qh ∈ Qh}, the Petrov-Galerkin approximation with optimal

test space Vh satisfies

‖σσσ −σσσh‖L2(Ω)n +‖u−uh‖H1(Ω)+‖θ −θh‖
H−

1
2 (∂Ω◦h )

. hk[‖u‖Hk+1(Ω)+‖ f‖Hk(Ω)

]
.

Proof. As shown in Proposition 2.1, the Petrov-Galerkin solution (σσσh,uh,θh) with optimal test space
Vh is the best approximation from Uh to (σσσ ,u,θ) in energy norm ‖ · ‖E = ‖B · ‖V ′ . Since, as shown in
Theorem 3.1, B : U → V ′ is boundedly invertible, uniformly in h, we infer that, up to some constant
multiple, this Petrov-Galerkin solution realizes the smallest error from Uh w.r.t ‖ · ‖U .

We have σσσ = A2∇u, and, from f ∈ L2(Ω), θ = (ub−A1σσσ)|∂Ω◦h
·n and−divA1σσσ +b ·∇u+γu = f

(cf. Remark 3.4).
From A1,A2 ∈W k

∞(Ω)n×n, b∈W k
∞(Ω)n, we have ‖σσσ‖Hk(Ω)n . ‖u‖Hk+1(Ω) and ‖ub−A1σσσ‖Hk(Ω)n .

‖u‖Hk+1(Ω). By div(ub−A1σσσ) = b ·∇u+ udivb+ f − b ·∇u− γu = udivb+ f − γu, and divb,γ ∈
W k

∞(Ω), we have ‖div(ub−A1σσσ)‖Hk(Ω) . ‖u‖Hk(Ω)+ ‖ f‖Hk(Ω). The proof is completed by the ap-
proximation properties of the spaces Σ h, Ph, and Qh. �

Apart from the additional smoothness condition on f , that is usually harmless, note that the regu-
larity condition on u is the mildest one that can be expected in view of the convergence order that is
realized.

Although, to establish well-posedness of the continuous variational problem (3.7), it was needed to
treat θ =(ub−A1σσσ)|∂Ω◦h

·n as an independent variable, it is not needed to do so with its Petrov-Galerkin
discretization:

PROPOSITION 3.5 For a k ∈ N = {1,2, . . .}, let γ ∈W k
∞(Ω), b ∈W k

∞(div;Ω), A−1
1 ∈ L∞(Ω)n×n, and

A ∈W k
∞(Ω)n×n. Let f ∈ Hk(Ω) and u ∈ Hk+1(Ω). Let Ph ⊂ H1

0 (Ω) and Qh ⊂ H(div;Ω) satisfy (3.23)
and (3.24), respectively.

Then the Petrov-Galerkin approximation from

Uh := {(A−1
1 σ̂σσh, ûh,(ûhb− σ̂σσh)|∂Ω◦h

·n) : (σ̂σσh, ûh) ∈Qh×Ph},

with optimal test space Vh, satisfies

‖σσσ −σσσh‖L2(Ω)n +‖u−uh‖H1(Ω)+‖θ −θh‖
H−

1
2 (∂Ω◦h )

. hk[‖u‖Hk+1(Ω)+‖ f‖Hk(Ω)

]
.
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Proof. The proof follows from θ = (ub−A1σσσ)|∂Ω◦h
·n, and so

inf
(σ̂σσh,ûh,θ̂h)∈Uh

‖σσσ −A−1
1 σ̂σσh‖L2(Ω)n +‖u− ûh‖H1(Ω)+‖θ − θ̂h‖

H−
1
2 (∂Ω◦h )

6 inf
(σ̂σσh,ûh)∈Qh×Ph

‖A−1
1 ‖L∞(Ω)n×‖A1σσσ − σ̂σσh‖L2(Ω)n +‖u− ûh‖H1(Ω)

+‖(u− ûh)b‖H(div;Ω)+‖A1σσσ − σ̂σσh‖H(div;Ω)

. hk[‖u‖Hk+1(Ω)+‖ f‖Hk(Ω)

]
,

similarly to the proof of Proposition 3.4, by using A1σσσ = A∇u and divA1σσσ = b ·∇u+ γu− f . �
Note that a price that has to be paid for the avoidance of an independent discrete flux variable is that

the space Qh for σσσh used in Proposition 3.5 is richer than that is needed for the approximation of σσσ

itself.

REMARK 3.10 If, instead of A−1
1 ∈ L∞(Ω)n×n and A∈W k

∞(Ω)n×n, we impose that A1,A2 ∈W k
∞(Ω)n×n

and A1 be scalar valued, so that multiplication with A1 maps H(div;Ω) into itself, then the statement of
Proposition 3.5 is also valid with Uh reading as {(σ̂σσh, ûh,(ûhb−A1σ̂σσh)|∂Ω◦h

·n) : (σ̂σσh, ûh) ∈Qh×Ph}.

4. Higher order rates in a weaker norm

For the optimal Petrov-Galerkin discretization of the mild-weak formulation (3.7), we demonstrate
higher order rates in a weaker norm by applying a duality argument. The common ingredients are
regularity of the adjoint equation (Lemma 4.1), for which we will need H2(Ω)-regularity of the adjoint
of the original boundary value problem (3.1), and an approximation property of the optimal test space
Vh = ℑ(T |Uh). For the latter we will use H2(Ω)-regularity of the primal version of the original boundary
value problem (Lemma 4.2).

LEMMA 4.1 Let A1,A2 ∈W 1
∞(Ω)n×n and (L′)−1 : L2(Ω)→ H2(Ω)∩H1

0 (Ω) be bounded. Then for
ψψψ ∈ H1(Ω)n and φ ∈ L2(Ω), the solution (τττ,v) ∈V = L2(Ω)n×H1

0,Γ+(Ωh) of

b(σ ,u,θ ,τττ,v) =
∫

Ω

ψψψ ·σ +φu ((σ ,u,θ) ∈U = L2(Ω)n×H1
0 (Ω)×H−

1
2 (∂Ω

◦
h ))

is in H1(Ω)n× (H2(Ω)∩H1
0 (Ω)), and

‖τττ‖H1(Ω)n +‖v‖H2(Ω) . ‖ψψψ‖H1(Ω)n +‖φ‖L2(Ω).

Proof. The system of equations reads as
∫

Ω
−A2∇u · τττ−ub ·∇hv+(γ−divh b)uv =

∫
Ω

φu (u ∈ H1
0 (Ω)),∫

Ω
σ · τττ +A1σ ·∇hv =

∫
Ω

ψψψ ·σ (σ ∈ L2(Ω)n),∫
∂Ω◦h

JvKθ =0 (θ ∈ H−
1
2 (∂Ω ◦h )),

and so τττ = ψψψ−A>1 ∇hv. By substituting this, and by using that
∫

Ω
−uvdivh b =

∫
Ω

b · (v∇u+u∇hv)−∫
∂Ω◦h

JvKub ·n, we obtain the equivalent system{ ∫
Ω

A∇u ·∇hv+ vb ·∇u+ γuv =
∫

Ω
φu+A2∇u ·ψψψ (u ∈ H1

0 (Ω)),∫
∂Ω◦h

JvKθ =0 (θ ∈ H−
1
2 (∂Ω ◦h )).
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By our assumption on A2,
∫

Ω
A2∇u ·ψψψ = −

∫
Ω

udivA>2 ψψψ , and ‖φ − divA>2 ψψψ‖L2(Ω) . ‖φ‖L2(Ω) +

‖ψψψ‖H1(Ω). We conclude that the solution of the last system is given by v = (L′)−1(φ −divA>2 ψψψ) which
completes the proof. �

Knowing that our mapping B : U →V ′ is boundedly invertible, the corresponding mapping T : U →
V is boundedly invertible. In the next lemma, we will show that T is regular, in the sense that T−1 maps,
boundedly, a subspace of smooth functions of V into a subspace of smooth functions of U .

LEMMA 4.2 Let A1,A2 ∈W 1
∞(Ω)n×n, b∈W 1

∞(div;Ω), and γ ∈W 1
∞(Ω), and let L−1 : L2(Ω)→H2(Ω)∩

H1
0 (Ω) be bounded. Then for (τττ,v)∈H1(Ω)n×H2(Ω), the solution (σ ,u,θ)∈U =L2(Ω)n×H1

0 (Ω)×
H−

1
2 (∂Ω ◦h ) of

b(σ ,u,θ , τ̂ττ, v̂) = 〈τττ, τ̂ττ〉L2(Ω)n + 〈v, v̂〉H1(Ωh)
((τ̂ττ, v̂) ∈ L2(Ω)n×H1

0,Γ+(Ωh)) (4.1)

satisfies σ ∈ H1(Ω)n, u ∈ H2(Ω)∩H1
0 (Ω), and θ = q|∂Ω◦h

·n for some q ∈ H1(div;Ω), with

‖σ‖H1(Ω)n +‖u‖H2(Ω)+‖q‖H1(div;Ω) . ‖τττ‖H1(Ω)n +‖v‖H2(Ω). (4.2)

REMARK 4.1 If, additionally, v = 0 on Γ+, then v ∈ H1
0,Γ+(Ωh), and so (σ ,u,θ) = T−1(τττ,v).

Proof. Let u solve Lu = divA1τττ + v−∆v, σ := A2∇u+ τττ , and q := ub−A∇u−A1τττ +∇v. Then
from the assumptions, we have u ∈ H2(Ω)∩H1

0 (Ω), σ ∈ H1(Ω)n, q ∈ H1(Ω)n, and divq = udivb+
b ·∇u−divA∇u−divA1τττ +∆v = udivb+ v− γu ∈ H1(Ω), and (4.2) is valid.

The definitions of u and θ = q|∂Ω◦h
·n show that∫

Ω

(−divA∇u+b ·∇u+ γu)v̂+
∫

∂Ω◦h

Jv̂K(θ +(A∇u+A1τττ−ub−∇v) ·n)

=
∫

Ω

(divA1τττ + v−∆v)v̂ (v̂ ∈ H1
0,Γ+(Ωh)),

or ∫
Ω

−div(A∇u+A1τττ−ub)v̂+(γ−divh b)v̂+
∫

∂Ω◦h

Jv̂K(θ +(A∇u+A1τττ−ub) ·n)

=
∫

Ω

(v−∆v)v̂+
∫

∂Ω◦h

∂v
∂n

Jv̂K (v̂ ∈ H1
0,Γ+(Ωh)).

By applying integration by parts at both sides, we arrive at∫
Ω

(A∇u+A1τττ−ub) ·∇hv̂+(γ−divh b)v̂+
∫

∂Ω◦h

Jv̂Kθ = 〈v, v̂〉H1(Ωh)
(v̂ ∈ H1

0,Γ+(Ωh)),

or, by definition of σ ,∫
Ω

(σ −A2∇u) · τ̂ττ +(A1σ −ub) ·∇hv̂+(γ−divh b)v̂+
∫

∂Ω◦h

Jv̂Kθ = 〈v, v̂〉H1(Ωh)
+ 〈τττ, τ̂ττ〉L2(Ω)n

((τ̂ττ, v̂) ∈ L2(Ω)n×H1
0,Γ+(Ωh)), which is (4.1). �

As a corollary, we will see that approximation properties of Uh give rise to approximation properties
of the optimal test space Vh.
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COROLLARY 4.1 Let Uh ⊂U be such that for σ ∈ H1(Ω)n, u ∈ H2(Ω)∩H1
0 (Ω), θ = q|∂Ω◦h

·n with
q ∈ H1(div;Ω),

inf
(σh,uh,θh)∈Uh

‖σ−σh‖L2(Ω)n +‖u−uh‖H1(Ω)+‖θ −θh‖
H−

1
2 (∂Ω◦h )

. h[‖σ‖H1(Ω)n +‖u‖H2(Ω)+‖q‖H1(div;Ω)].

Then, under the conditions of Lemma 4.2, for (τττ,v) ∈ H1(Ω)n× (H2(Ω)∩H1
0,Γ+(Ωh)),

inf
(τττh,vh)∈Vh

‖τττ− τττh‖L2(Ω)n +‖v− vh‖H1(Ωh)
. h[‖τττ‖H1(Ω)n +‖v‖H2(Ω)].

Proof. Let (σ ,u,θ) = T−1(τττ,v), and θ = q|∂Ω◦h
·n as in Lemma 4.2. Then, from Vh = ℑ(T |Uh),

inf
(τττh,vh)∈Vh

‖(τττ,v)− (τττh,vh)‖V h inf
(σh,uh,θh)∈Uh

‖(σ ,u,θ)− (σh,uh,θh)‖U

. h[‖σ‖H1(Ω)n +‖u‖H2(Ω)+‖q‖H1(div;Ω)]. h[‖τττ‖H1(Ω)n +‖v‖H2(Ω)],

by Lemma 4.2. �
Having established regularity of the adjoint equation and approximation properties of the optimal

test space Vh, we are ready to derive improved error estimates in weaker norms by applying a duality
argument.

THEOREM 4.1 Let A1,A2 ∈W 1
∞(Ω)n×n, b ∈W 1

∞(div;Ω), and γ ∈W 1
∞(Ω). Let L−1, (L′)−1 : L2(Ω)→

H2(Ω)∩H1
0 (Ω) be bounded, and let Uh ⊂ U be such that for σ ∈ H1(Ω)n, u ∈ H2(Ω)∩H1

0 (Ω),
θ = q|∂Ω◦h

·n with q ∈ H1(div;Ω),

inf
(σh,uh,θh)∈Uh

‖σ−σh‖L2(Ω)n +‖u−uh‖H1(Ω)+‖θ −θh‖
H−

1
2 (∂Ω◦h )

. h[‖σ‖H1(Ω)n +‖u‖H2(Ω)+‖q‖H1(div;Ω)].
(4.3)

Then for (σσσ ,u,θ)∈ L2(Ω)n×H1
0 (Ω)×H−

1
2 (∂Ω ◦h ) being the exact solution of (3.7), and (σσσh,uh,θh)∈

Uh its Petrov-Galerkin approximation with optimal test space Vh, we have

‖σσσ −σσσh‖(H1(Ω)n)′ +‖u−uh‖L2(Ω) . h[‖σσσ −σσσh‖L2(Ω)n +‖u−uh‖H1(Ω)+‖θ −θh‖
H−

1
2 (∂Ω◦h )

]

Proof. Given ψψψ ∈H1(Ω)n and φ ∈ L2(Ω), let (τττ,v) ∈V = L2(Ω)n×H1
0,Γ+(Ωh) denote the solution of

b(σ̂σσ , û, θ̂ ,τττ,v) =
∫

Ω

ψψψ · σ̂σσ +φ û ((σ̂σσ , û, θ̂) ∈U = L2(Ω)n×H1
0 (Ω)×H−

1
2 (∂Ω

◦
h )). (4.4)

Then ∫
Ω

ψψψ · (σσσ −σσσh)+φ(u−uh) = b(σσσ −σσσh,u−uh,θ −θh,τττ,v)

= inf
(τττh,vh)∈Vh

b(σσσ −σσσh,u−uh,θ −θh,τττ− τττh,v− vh)

. [‖σσσ −σσσh‖L2(Ω)n +‖u−uh‖H1(Ω)+‖θ −θh‖
H−

1
2 (∂Ω◦h )

]×h[‖ψψψ‖H1(Ω)n +‖φ‖L2(Ω)],

by applications of Corollary 4.1 and Lemma 4.1, from which the result follows. �
The assumption (4.3) corresponds to the approximation assumptions on Uh from Proposition 3.4 for

k = 1.
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REMARK 4.2 If (4.3) would be needed only for θ = (ub−A1σ)|∂Ω◦h
·n, then, alternatively, the space

Uh from Proposition 3.5 or Remark 3.10 could be applied. Considering the proof of Corollary 4.1,
however, for (τττ,v) ∈ H1(Ω)n ×H2(Ω) and (σ ,u,θ) = T−1(τττ,v), the case θ = (ub−A1σ)|∂Ω◦h

· n
corresponds to (∇v)|∂Ω◦h

·n = 0, which can only be expected when v = 0. In the proof of Theorem 4.1,
only for φ = divA>2 ψψψ , the v-component of the solution of (4.4) is zero. With this restriction on φ , this
proof does not yield useful estimates for σσσ −σσσh or u− uh. We conclude that for the space Uh from
Proposition 3.5, i.e., without an independent discrete flux variable, we have not established improved
error estimates in norms weaker than that on U .

5. Convection dominated convection-diffusion problem

In the remainder of this paper, we consider (3.1) with A = A(ε) = ε Id for ε > 0, and γ = 0, i.e.,{
−ε∆u+b ·∇u = f on Ω ,

u =0 on ∂Ω .
(5.1)

5.1 Numerical test in one dimension

We tested the optimal Petrov-Galerkin discretizations of the three variational formulations of the mixed
system, –i.e., mild, mild-weak and ultra-weak,– as well as the Galerkin discretization of the standard
variational formulation of the non-mixed system, all for the one-dimensional equation{

−εu′′+u′ = f on Ω ,
u =0 on ∂Ω ,

where f (x) = x, and Ωh = {((i− 1)h, ih) : 1 6 i 6 h−1 =: n ∈ N}. One directly verifies that u(x) =
1
2 x2 + εx+( 1

2 + ε)(ex/ε −1)/(1− e1/ε), which has a “layer” at the outflow boundary x = 1.
For the mild-weak formulation, we took Γ+ = /0, and so ∂Ω ◦h = {ih : 0 6 i 6 n}, A2(ε) = A(ε) =

ε , and thus A1(ε) = 1, discontinuous piecewise linears for σσσh, and continuous piecewise linears,
zero at {0,1}, for uh, and θh ∈ {g : ∂Ω ◦h → R} ' Rn+1. We replaced the standard squared norm
∑

n
i=1 ‖v‖2

H1((i−1)h,ih) on H1(Ωh) by the uniformly equivalent one ∑
n
i=1 |v|2H1((i−1)h,ih)+ h|v(ih−)|2, with

which, in this one-dimensional setting, the optimal test functions could be determined analytically from
(3.11).

For the ultra-weak formulation, we used discontinuous piecewise linears for σσσh and uh, θh ∈ Rn+1,
and ρh ∈Rn−1. For determining the optimal test functions, we used the norms on the broken H(div;Ωh)
and H1(Ωh) spaces as in (Demkowicz & Gopalakrishnan, 2011b, (4.8)) that allow to find the optimal
test functions analytically.

Finally, for the Galerkin method, we took continuous piecewise linear trial functions.
In Figure 1, the L2(0,1)-errors in uh vs. 1/h are given for ε = 10−4. The curves for the mild

and mild-weak Petrov-Galerkin solutions are indistinguishable, although the solutions are actually not
equal. For small h, the ultra-weak Petrov-Galerkin solution suffers from instabilities caused by very
ill-conditioned linear systems.

Exact and approximate solutions u and uh for h = 1
16 and ε = 10−4 are shown in Figure 2. The left

picture in Figure 2 confirms the familiar fact that for relatively large mesh-sizes, the Galerkin approx-
imations are unstable. Since the Petrov-Galerkin discretizations with optimal test-spaces minimize the
residual in some norm, as expected they are more stable. On the other hand, initially, i.e., for relatively
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for the one-dimensional convection-diffusion equation with ε = 10−4.
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FIG. 2. Exact solution u and the Galerkin (left), mild/mild-weak, and ultra-weak Petrov-Galerkin approximations uh for h = 1
16

and ε = 10−4.

large h, also the Petrov-Galerkin discretizations do not yield quasi-optimal approximations from the trial
space.

The latter can be understood by noticing that the Petrov-Galerkin methods minimize the error over
the trial space in ‖B · ‖V ′ , where B : U → V ′ is the operator associated to the bilinear form. From the
variational problem not being well-posed for ε = 0, we infer that limε↓0 inf06=u∈U ‖Bu‖V ′/‖u‖U = 0.
Consequently, for small ε , some components of the difference between the solution and an approxima-
tion from the trial space Uh, typically near-constants, are hardly measured in ‖B · ‖V ′ , and therefore they
will hardly be reduced in the least squares minimization, cf. Cohen et al. (2012). This results in Petrov-
Galerkin approximations that have some oscillations at out- and inflow boundaries. These oscillations,
however, are much smaller than with the Galerkin solution.

A way to improve results for the Petrov-Galerkin discretizations is to change the norm on V . Since
for any fixed ε > 0, B : U→V ′, and so B′ : V →U ′ are boundedly invertible, ‖B′ · ‖U ′ defines a norm on
V . Equipping V ′ with the corresponding dual norm, one infers that ‖B · ‖V ′ = ‖ · ‖U , so that an optimal
Petrov-Galerkin method yields the best approximation from the trial space to u w.r.t. the original (ε-
independent) norm ‖ · ‖U on U . For this reason, the norm ‖B′ · ‖U ′ on V is called the optimal test norm.
Such an approach has been investigated in a somewhat different context in Dahmen et al. (2012); Cohen
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et al. (2012), and for the ultra-weak formulation in Demkowicz & Heuer (2011).
Unfortunately, it turns out that for the resulting optimal Petrov-Galerkin discretization of the ultra-

weak formulation, the variational problems on V , that determine the optimal test functions, are singu-
larly perturbed ones with solutions that exhibit boundary layers, which for ε ↓ 0 are increasingly difficult
to resolve with a sufficient accuracy. Therefore, modified methods are proposed that aim at finding a
good compromise between obtaining a best approximation in a nearly ε-independent norm, and get-
ting easy-to-solve variational problems for the test functions. In Chan et al. (2012), additionally it was
proposed to modify the boundary condition at the inflow boundary to ensure that solutions of the dual
problem have no boundary layers.

Inspired by Cohen et al. (2012), the approach that we will investigate for the convection-dominated
case is based on the observation that to avoid that a numerical solution method looses convergence or
becomes increasingly more costly when ε ↓ 0, a necessary condition is that the scheme is well-defined
and convergent in the limit case ε = 0. Since the latter requires that this limit problem is well-posed, in
the next subsection we start with studying variational formulations of the pure-convection problem.

5.2 Limit problem: Pure convection

We are searching for a variational formulation of the convection-diffusion problem in mixed form that
is also well-defined in the limit case ε = 0. This can only be expected when (5.1) for ε = 0 allows a
well-posed variational formulation, which is only possible when for ε = 0 the homogeneous Dirichlet
boundary conditions are restricted to the inflow boundary. We set

Γ− := {x ∈ ∂Ω : b(x) ·n(x)< 0}, Γ+ := {x ∈ ∂Ω : b(x) ·n(x)> 0}, (5.2)

and with that fix the skeleton ∂Ω ◦h = ∪K∈Ωh∂K\Γ+.
Canonical variational formulations of the convection problem are finding u, zero on Γ−, such that∫

Ω

vb ·∇u =
∫

Ω

f v

for all test functions v, or finding u such that

−
∫

Ω

udiv(vb) =
∫

Ω

f v

for all test functions v that vanish at Γ+. To arrive at the second formulation by using integration by
parts, we used that

∫
∂Ω\Γ+ uvb ·n vanishes because of the Dirichlet boundary condition on Γ− –which

with this formulation is a natural one–, and by b ·n = 0 on ∂Ω \ (Γ+∪Γ−).
Relevant Hilbert spaces for these variational formulations are

H(b;Ω) := {u ∈ L2(Ω) : b ·∇u ∈ L2(Ω)},

equipped with ‖u‖2
H(b;Ω) := ‖u‖2

L2(Ω)+‖b ·∇u‖2
L2(Ω), its closed subspace

H0,Γ−(b;Ω) := closH(b;Ω){u ∈C(Ω̄)∩H(b;Ω) : u = 0 on Γ−},

and H0,Γ+(b;Ω) defined analogously.
In this subsection, we assume that b ∈W∞(div;Ω), and that

H0,Γ−(b;Ω)→ L2(Ω) : u 7→ b ·∇u is boundedly invertible, (5.3)
H0,Γ+(b;Ω)→ L2(Ω) : v 7→ −divvb is boundedly invertible. (5.4)
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These latter two assumptions are readily verified for non-zero, constant b, but are not satisfied for any
vector field b, as when flow curves associated to ±b do not reach the boundary. The assumptions (5.3)
and (5.4) mean that the first or second variational form associated to the convection problem is well-
posed over H0,Γ−(b;Ω)×L2(Ω) or L2(Ω)×H0,Γ+(b;Ω), respectively. Sufficient conditions on b and
Γ− for (5.3) or (5.4) to be valid can be found in De Sterck et al. (2004).

Piecewise integration by parts of the convection equation leads to the following problem
With U0 := L2(Ω)×H(b;∂Ω

◦
h ),V 0 := H0,Γ+(b;Ωh),

given f ∈ H0,Γ+(b;Ωh)
′,find (u0,θ 0) ∈U0 such that for all v ∈V 0,

b(u0,θ 0,v) :=
∫

Ω

−u0(b ·∇hv− vdivb)+
∫

∂Ω◦h

JvKθ
0 = f (v).

(5.5)

Here H0,Γ+(b;Ωh) is the closure in {v ∈ L2(Ω) : b ·∇hv ∈ L2(Ω)} –equipped with squared “broken”
norm ‖v‖2

H(b;Ωh)
:= ‖v‖2

L2(Ω)+‖b ·∇hv‖2
L2(Ω)– of its subspace consisting of the functions that addition-

ally are piecewise continuous w.r.t. Ω̄ = ∪K∈ΩhK̄ and vanish at Γ+; and

H(b;∂Ω
◦
h ) := {wb|∂Ω◦h

·n : w ∈ H0,Γ−(b;Ω)},

equipped with quotient norm

‖θ‖H(b;∂Ω◦h )
:= inf{‖w‖H(b;Ω) : θ = wb|∂Ω◦h

·n, w ∈ H0,Γ−(b;Ω)}.

Note that if f ∈ L2(Ω), or, equivalently, u0 ∈ H0,Γ−(b;Ω), then

θ
0 = u0b|∂Ω◦h

·n. (5.6)

THEOREM 5.1 With (B(u,θ))(v) := b(u,θ ,v), it holds that B : U0→ V 0′ is boundedly invertible with
suph max(‖B‖U0→V 0 ′ ,‖B−1‖V 0 ′→U0)< ∞.

For proving this theorem, we need the following result (cf. Thm. 3.2):

LEMMA 5.1 For v ∈ H0,Γ+(b;Ωh), it holds that JvK ∈ (H(b;∂Ω ◦h ))
′, and

‖JvK‖H(b;∂Ω◦h )
′ h inf

z∈H0,Γ+ (b;Ω)
‖v− z‖H(b;Ωh) (v ∈ H0,Γ+(b;Ωh)).

Proof. For v ∈ H0,Γ+(b;Ωh), w ∈ H0,Γ−(b;Ω), we have∫
∂Ω◦h

JvKwb ·n = ∑
K∈Ωh

∫
K

∇v ·bw+ v(b ·∇w+wdivb). ‖v‖H(b;Ωh)‖w‖H(b;Ω), (5.7)

showing that ‖JvK‖H(b;∂Ω◦h )
′ . ‖v‖H(b;Ωh). Since for z ∈ H0,Γ+(b;Ω), and w ∈ H0,Γ−(b;Ω),

∫
Ω

∇z ·
bw+ z(b ·∇w+wdivb) = 0, it follows that ‖JzK‖H(b;∂Ω◦h )

′ = 0. We infer that for v ∈ H0,Γ+(b;Ωh),
‖JvK‖H(b;∂Ω◦h )

′ . infz∈H0,Γ+ (b;Ω) ‖v− z‖H(b;Ωh).
Given v ∈ H0,Γ+(b;Ωh), let z ∈ H0,Γ+(b;Ω) be the solution of divzb = divh vb whose existence is

guaranteed by (5.4). From 0 = divh(v− z)b = (v− z)divb+b ·∇h(v− z) and b ∈W∞(div;Ω), we have
‖b ·∇h(v− z)‖L2(Ω) . ‖v− z‖L2(Ω).
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By (5.3), there exists a w ∈H0,Γ−(b;Ω) with b ·∇w = v− z and ‖w‖H(b;Ω) . ‖v− z‖L2(Ω). From the
definitions of z and w, we have

‖v− z‖2
L2(Ω) =

∫
Ω

(v− z)b ·∇w = ∑
K∈Ωh

∫
K
(v− z)b ·∇w

= ∑
K∈Ωh

∫
K

div(v− z)wb = ∑
K∈Ωh

∫
∂K

(v− z)wb ·nK =
∫

∂Ω◦h

JvKwb ·n

6 ‖JvK‖H(b;∂Ω◦h )
′‖w‖H(b;Ω) . ‖JvK‖H(b;∂Ω◦h )

′‖v− z‖L2(Ω),

or ‖v− z‖L2(Ω) . ‖JvK‖H(b;∂Ω◦h )
′ , which completes the proof. �

Proof of Theorem 5.1. The boundedness of B, uniformly in h, follows easily from (5.7).
Now let (u,θ) ∈U0 be such that b(u,θ ,v) = 0 for all v ∈ H0,Γ+(b;Ωh). Considering all v from the

subspace H0,Γ+(b;Ω) shows that u = 0 by (5.4). By now considering all v with suppv ⊂ K ∈ Ωh, we
infer that θ |∂K\Γ+ = 0, and so θ = 0.

Finally, let v ∈ H0,Γ+(b;Ωh) be given. By (5.4), there exists a v1 ∈ H0,Γ+(b;Ω) with divv1b =
divh v1b, and ‖v1‖H(b;Ω) . ‖v‖H(b;Ωh), and so ‖v1− v‖H(b;Ωh) . ‖v‖H(b;Ωh). Moreover, we have v1 = v
when v ∈ H0,Γ+(b;Ω), and so

‖v1− v‖H(b;Ωh) . inf
z∈H0,Γ+ (b;Ω)

‖v− z‖H(b;Ωh) . ‖JvK‖H(b;∂Ω◦h )
′ ,

by Lemma 5.1.
From (5.4) and Lemma 3.1, we deduce that there exists a u ∈ L2(Ω) with ‖u‖L2(Ω) = ‖v1‖H(b;Ω)

and
‖v1‖2

H(b;Ω) .−
∫

Ω

udivv1b =−
∫

Ω

udivh vb.

By definition of a dual norm, there exists a θ ∈ H(b;∂Ω ◦h ) with ‖θ‖2
H(b;∂Ω◦h )

= ‖JvK‖2
H(b;∂Ω◦h )

′ =∫
∂Ω◦h

JvKθ . We conclude that

‖v‖H(b;Ωh) .
√
‖v1‖2

H(b;Ω)
+‖JvK‖2

H(b;∂Ω◦h )
′ .

b(u,θ ,v)√
‖u‖2

L2(Ω)
+‖θ‖2

H(b;∂Ω◦h )

.

Having verified all three conditions of Lemma 3.1 for the operator B, where (i) and (ii) hold uniformly
in h, the proof is completed. �

As with the diffusion problem discussed in Sect. 3.1, given a closed trial space U0
h ⊂U0, we can run a

Petrov-Galerkin discretization of the pure convection problem (5.5) with optimal test space V 0
h =ℑT |U0

h
.

Here T : U0→V 0 =H0,Γ+(b;Ωh) is defined by v= (vK)K∈Ωh = T (u0,θ 0), with vK ∈H0,∂K∩Γ+
(b;K) :=

{z ∈ L2(K) : b ·∇z ∈ L2(K), z = 0 on ∂K∩Γ+} being the solution of

〈vK , v̂〉L2(K)+ 〈b ·∇vK ,b ·∇v̂〉L2(K) =
∫

K
−u0(b ·∇v̂− v̂divb)+

∫
∂K

n>K n v̂θ
0

(v̂ ∈ H0,∂K∩Γ+
(b;K)).

As a direct consequence of Proposition 2.1, Theorem 3.21, the definition of H(b,∂Ω ◦h ), and (5.6),
we have the following error estimate:
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COROLLARY 5.1 For a k ∈ N, let the solution of (5.5) satisfy u0 ∈ Hk+1(Ω). Let Ph ⊂ L2(Ω), and
Wh ⊂ H0,Γ−(b;Ω) with

inf
ûh∈Ph

‖û− ûh‖L2(Ω) . hk‖û‖Hk(Ω) (û ∈ Hk(Ω)∩H1
0,Γ−(Ω)),

inf
wh∈Wh

‖w−wh‖H(b;Ω) . hk‖w‖Hk+1(Ω) (w ∈ Hk+1(Ω)∩H1
0,Γ−(Ω)). (5.8)

Then the Petrov-Galerkin approximation (u0
h,θ

0
h ) from U0

h = {(ûh,whb|∂Ω◦h
· n) : (ûh,wh) ∈ Ph×Wh}

with optimal test space V 0
h satisfies

‖u0−u0
h‖L2(Ω)+‖θ 0−θ

0
h ‖H(b;∂Ω◦h )

. hk‖u0‖Hk+1(Ω).

Clearly, (5.8) is satisfied when infwh∈Wh ‖w−wh‖H1(Ω). hk‖w‖Hk+1(Ω) for w∈Hk+1(Ω)∩H1
0,Γ−(Ω).

In view of this estimate, thinking of Ph and Wh being common finite element spaces, the order of Wh
should be one higher than the order of Ph.

Under conditions on Wh, it might be possible to approximate u0 in H0,Γ−(b;Ω) from Wh, and so
θ0 in H(b;∂Ω ◦h ) from {whb|∂Ω◦h

· n : wh ∈Wh}, with an error of O(hk) under the relaxed conditions
u0 ∈ Hk(Ω) and f = b ·∇u0 ∈ Hk(Ω), replacing the additional smoothness condition u0 ∈ Hk+1(Ω).

5.3 A Petrov-Galerkin discretization that allows passing to the convective limit

We consider the mild-weak variational formulation (3.7) for the convection-diffusion problem, and as-
sume that b ∈W∞(div;Ω). In view of the limit case ε = 0 analyzed in §5.2, we now fix

Γ− := {x ∈ ∂Ω : b(x) ·n(x)< 0}, Γ+ := {x ∈ ∂Ω : b(x) ·n(x)> 0},

that latter which determines the skeleton ∂Ω ◦h = ∪K∈Ωh∂K\Γ+, and so the function spaces H−
1
2 (∂Ω ◦h ),

H(b;∂Ω ◦h ) on the skeleton, and their duals, as well as the “broken” spaces H1
0,Γ+(Ωh) and H0,Γ+(b;Ωh).

With a factorization of A(ε) = ε Id as A(ε) = A1(ε)A2(ε), the mild-weak variational problem reads
as finding 

(σσσ ,u,θ) ∈U = L2(Ω)n×H1
0 (Ω)×H−

1
2 (∂Ω

◦
h ), such that∫

Ω

(σσσ −A2(ε)∇u) · τττ +(A1(ε)σσσ −ub) ·∇hv−uvdivb+
∫

∂Ω◦h

JvKθ = f (v)

for all (τττ,v) ∈V = L2(Ω)n×H1
0,Γ+(Ωh).

(5.9)

We will select A1(ε) and A2(ε) in such a way that they both vanish for ε = 0. Then (5.9) for ε = 0
reads as a well-posed decoupled system of equations σσσ = 0, and the variational formulation (5.5) of the
pure convection problem. Recalling the definitions U0 = L2(Ω)×H(b;∂Ω ◦h ) and V 0 = H0,Γ+(b;Ωh)
for the spaces in (5.5) for (u,θ) and v, respectively, in order to achieve this we will equip the test space
H1

0,Γ+(Ωh) with an ε-dependent norm that for ε = 0 reduces to the norm on H0,Γ+(b;Ωh).
For an optimal Petrov-Galerkin discretization, it remains to specify trial spaces. Since H1

0 (Ω) ↪→
L2(Ω) is dense, a trial space for u that is suitable for ε > 0, is also applicable for ε = 0. Since for
w ∈ H(b;Ω), one has wb ∈ H(div;Ω) with ‖wb‖H(div;Ω) . ‖w‖H(b;Ω), it holds that H(b;∂Ω ◦h ) ↪→
H−

1
2 (∂Ω ◦h ). So a trial space for θ that is applicable for ε = 0, may also be applied for ε > 0. Since,
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however, H(b;∂Ω ◦h ) ↪→ H−
1
2 (∂Ω ◦h ) is not dense, such a choice cannot be expected to give rise to a

convergent scheme for ε > 0. Therefore, using that for f ∈ L2(Ω), it holds that θ = (ub−A1(ε)σσσ)|∂Ω◦h
·

n), we will approximate θ by a linear combination of an element from the trial space for ε = 0 and
A1(ε)σ̂σσh|∂Ω◦h

·n with σ̂σσh from the trial space for σσσ . This latter construction is described precisely in the
following proposition.

PROPOSITION 5.2 Let H1
0,Γ+(Ωh) be equipped with squared norm

µ(ε)‖∇hv‖2
L2(Ω)+‖v‖

2
H(b;Ωh)

. (5.10)

where µ(ε) > 0 for ε > 0. Let A1(ε) ∈W 1
∞(Ω) be scalar valued. For some Qh ⊂ H(div;Ω) and

U0
h ⊂ H1

0 (Ω)×H(b;∂Ω ◦h ), let the trial space

Uh(ε) = {(σ̂σσh, ûh, θ̂h−A1(ε)σ̂σσh|∂Ω◦h
·n) : σ̂σσh ∈Qh, (ûh, θ̂h) ∈U0

h } . (5.11)

Then Uh(ε) ⊂U and U0
h ⊂U0, defined in (5.5). When furthermore A1(0) = A2(0) = 0 and µ(0) = 0,

then the Petrov-Galerkin solution (σσσh,uh,θh) ∈Uh(ε) with corresponding optimal test space Vh(ε) of
(5.9) also exists uniquely for ε = 0 (for ε = 0, reading V as L2(Ω)n×H0,Γ+(b;Ωh)). For ε = 0, it
satisfies σσσh = 0, whereas (uh,θh) is the Petrov-Galerkin solution with optimal test space V 0

h of the pure
convection problem (5.5) with trial space U0

h .

Proof. Already we know that H(b;∂Ω ◦h ) ↪→ H−
1
2 (∂Ω ◦h ). Since multiplication with A1(ε) maps

H(div;Ω) into itself, we infer that Uh(ε)⊂U . From H1
0 (Ω)⊂ L2(Ω), one has U0

h ⊂U0.
Let ε = 0. Since both A1(0) and A2(0) are zero, the equations for σσσh and (uh,θh) are fully decou-

pled. The optimal test space ℑT |Uh(0) is the Cartesian product of Qh and, by the selection of the norm on
V and µ(0) = 0, the optimal test space V 0

h of the Petrov-Galerkin discretization of the pure convection
problem with trial space U0

h , giving the solution (σσσh,uh,θh) as stated. �
We recall that the optimal test space Vh(ε) is ℑT |Uh(ε), with (τττ,v) = T (σσσ ,u,θ) given by τττ = σσσ −

A2(ε)∇u, and v = (vK)|K∈Ωh , where vK ∈ H1
0,∂K∩Γ+

(K) solves

µ(ε)〈∇vK ,∇v̂〉L2(K)n + 〈vK , v̂〉L2(K)+ 〈b ·∇vK ,b ·∇v̂〉L2(K)n

=
∫

K
(A1(ε)σσσ −ub) ·∇v̂−uv̂divb+

∫
∂K\Γ+

n>K nv̂θ (v̂ ∈ H1
0,∂K∩Γ+

(K)),
(5.12)

where, for ε = 0, H1
0,∂K∩Γ+

(K) should read as H0,∂K∩Γ+
(b;K) (cf. (3.11)). For σ̂σσh ∈Qh, and (ûh, θ̂h) ∈

U0
h , substituting (σσσ ,u,θ) = (σ̂σσh, ûh, θ̂h−A1(ε)σ̂σσh|∂Ω◦h

·n) in the right-hand side of (5.12), by applying
integration by parts it reads as∫

K
−ûhb ·∇v̂− ûhv̂divb− v̂divA1(ε)σ̂σσh +

∫
∂K

n>K nv̂θ̂h.

It defines a uniformly in ε ∈ [0,1] bounded linear functional on H0,∂K∩Γ+
(b;K), and so on H1

0,∂K∩Γ+
(K)

equipped with squared norm µ(ε)‖∇ · ‖2
L2(K)n + ‖ · ‖2

H(b;K). Since consequently (5.12) is well-posed
uniformly in ε ∈ [0,1], we do not expect (nor observe) solutions that exhibit boundary layers.

Let us discuss the selection in Proposition 5.2 of Qh and U0
h , and so of Uh(ε), in relation to error

estimates for quasi-uniform meshes. Let Qh be a space that satisfies (3.24), e.g., a Raviart-Thomas space
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w.r.t. Ωh of order k. Let Wh ⊂ H1
0,Γ−(Ω), Ph ⊂ H1

0 (Ω) be finite element spaces w.r.t. Ωh of orders `> k
and k, respectively, with Ph ⊂Wh. With Ih : Wh→ Ph being the interpolant w.r.t. the nodal variables of
Ph, we set Rh := ℑ(I− Ih). We take

U0
h = {(ûh,(ûh + rh)b|∂Ω◦h

·n) : ûh ∈ Ph, rh ∈ Rh}, (5.13)

so that

Uh(ε) = {
(
σ̂σσh, ûh,((ûh + rh)b−A1(ε)σ̂σσh)|∂Ω◦h

·n
)

: (σ̂σσh, ûh,rh) ∈Qh×Ph×Rh} . (5.14)

REMARK 5.1 In most of our numerical experiments, we will take Ph = Wh ∩H1
0 (Ω), in which case

supprh ⊂ ∪{K∈Ωh:∂K∩(∂Ω\Γ−)6= /0}K for any rh ∈ Rh.
For n = 1, and with the obvious choice of the nodal variables, it holds that Rh|Ω◦h = {0}, so that the

trial space Uh(ε) is equal to that from Remark 3.10.

The space Uh(ε) from (5.14) includes that from Remark 3.10. Since furthermore for any fixed ε > 0,
the norm defined in (5.10) is equivalent to the standard norm on V , the optimal error estimates from that
remark apply.

In order to obtain favorable results as function of simultaneously the discretisation and ε , it is nec-
essary that for ε = 0 the Petrov-Galerkin approximations are converging for h→ 0 to (u0,θ 0) ∈U0 =
L2(Ω)×H(b;∂Ω ◦h ), being the solution of the pure convection problem.

For Qh : H1(Ω)→Wh being, say, the Scott-Zhang quasi-interpolator (Scott & Zhang (1990)), we
have

‖(I−Qh)w‖L2(Ω)+h|(I−Qh)w|H1(Ω) . hs‖w‖Hs(Ω)

(s ∈ [1, `]\N+{ 1
2}, w ∈ Hs(Ω)∩H1

0,Γ−(Ω)), and by the H1(Ω)-stability of Qh,

‖(I− Ih)Qhw‖L2(Ω) . h
1
2 ‖Qhw‖H1(Ω) . h

1
2 ‖w‖H1(Ω) (w ∈ H1

0,Γ−(Ω)). (5.15)

Therefore, selecting ûh = IhQhu0, and rh = (I− Ih)Qhu0, using θ 0 = u0b|∂Ω◦h
·n, we infer that for the

ε = 0 case

‖(u0,θ 0)− (uh,θh)‖U0 . inf
ûh∈Ph,rh∈Rh

‖(u0,θ 0)− (ûh,(ûh + rh)b|∂Ω◦h
·n)‖U0

. ‖(I− IhQh)u0‖L2(Ω)+‖(I−Qh)u0‖H(b;Ω)

6 ‖(I−Qh)u0‖L2(Ω)+‖(I− Ih)Qhu0‖L2(Ω)+ |(I−Qh)u0|H1(Ω)

. h
1
2 ‖u0‖Hs(Ω)

(5.16)

when u0 ∈ Hs(Ω)∩H1
0,Γ−(Ω) for some s > 3

2 .

REMARK 5.2 The reduced rate 1
2 in (5.15) and, consequently, in (5.16), is due to the mismatch between

the boundary conditions generally satisfied by u0, and those that are incorporated in Ph in view of the
application for ε > 0. In these circumstances, this rate is the best that generally can be expected. As
follows from Corollary 5.1, without this mismatch, the error in the space U0 would be O(hmin(`−1,k))
assuming that u0 ∈ Hmin(`,k+1)(Ω).
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Because for ε ↓ 0 the exact solution u converges in L2(Ω) to that of the pure convection problem, for
ε > 0, and h being relatively large compared to ε , an error in uh as for ε = 0 can be expected, i.e., ∼ h

1
2

in L2(Ω). This is also what we will observe in our numerical experiments. Note, again, that generally
this is the best that can be realized with continuous piecewise polynomial approximation, zero at ∂Ω ,
w.r.t. a quasi-uniform partition, and better results can only be achieved by a proper local refinement
towards ∂Ω \Γ−).

REMARK 5.3 All above considerations concerning the selection of U0
h , and with that of Uh(ε), would

equally well apply to the choice U0
h = {(ûh,whb|∂Ω◦h

· n) : ûh ∈ Ph, wh ∈ Wh}. The space U0
h from

(5.13) is, however, of lower dimension, and, moreover, it turns out that the use of ûh for approximating
simultaneously u and the flux θ has the effect that undesirable oscillations near the outflow boundary
are damped.

Finally in this subsection, we discuss a relation between our method and the common first order
least squares method (3.13), in the case of Qh being the lowest order Raviart-Thomas space w.r.t. Ωh,
Wh being the space of continuous piecewise linears w.r.t. Ωh, zero at Γ−, Ph = Wh ∩H1

0 (Ω), and, for
each ε , A1(ε) being a constant. For (σ̂σσh, ûh, θ̂h) ∈Uh(ε), and

(
τττ,(vK)K∈Ωh

)
= T (σ̂σσh, ûh, θ̂h), as always

we have τττ = σ̂σσh−A2(ε)∇ûh, cf. (3.10).
For rh = 0 in (5.14), i.e., θ̂h = (ûhb−A1(ε)σ̂σσh)|∂Ω◦h

·n, a “reversed” integration by parts shows that

b(σ̂σσh, ûh, θ̂h,τττ,v) =
∫

Ω

(σ̂σσh−A2(ε)∇ûh) · τττ +(b ·∇ûh−divA1(ε)σ̂σσh)v,

so that vK ∈ H1
0,∂K∩Γ+

(K) solves

µ(ε)〈∇vK ,∇v̂〉L2(K)+ 〈vK , v̂〉L2(K)+ 〈b ·∇vK ,b ·∇v̂〉L2(K)

=
∫

K
(b ·∇ûh−divA1(ε)σ̂σσh)v̂ (v̂ ∈ H1

0,∂K∩Γ+
(K)).

(5.17)

By our assumptions on Qh and Ph, and from A1(ε) being a constant, (b ·∇ûh− divA1(ε)σ̂σσh)|K is a
constant. We conclude that for K with ∂K ∩Γ+ = /0, we have the explicit expression vK = (b ·∇ûh−
divA1(ε)σ̂σσh)|K . For the remaining K along Γ+, the local boundary value problem (5.17) has to be
(approximately) solved.

For (σ̂σσh, ûh, θ̂h) = (0,0,rhb|∂Ω◦h
·n) for some rh ∈ Rh, we have vK = 0 when ∂K ∩ (∂Ω \Γ−) 6= /0,

whereas for the remaining K, vK ∈ H1
0,∂K∩Γ+

(K) has to be (approximately) solved from

µ(ε)〈∇vK ,∇v̂〉L2(K)+ 〈vK , v̂〉L2(K)+ 〈b ·∇vK ,b ·∇v̂〉L2(K)

=
∫

∂K
n>K nv̂rhb|∂Ω◦h

·n (v̂ ∈ H1
0,∂K∩Γ+

(K)).
(5.18)

We conclude that if it would not be that for K with ∂K ∩Γ+ 6= /0, vK form (5.17) is unequal to
(b ·∇ûh − divA1(ε)σ̂σσh)|K , and, for n > 1, additional trial and so test functions, defined by (5.18),
supported near ∂Ω \Γ− are added, then the first two components of the solution (σσσh,uh,θh) of our
Petrov-Galerkin method with lowest order trial space and corresponding optimal test space would be
equal to argmin(σ̂σσh,ûh)∈Qh×Ph

‖σ̂σσh−A2(ε)∇ûh‖2
L2(Ω)n + ‖b ·∇ûh− divA1(ε)σ̂σσh‖2

L2(Ω). That is, up to a
harmless scaling of σσσh, they would be the solution of the common first order least squares method (3.13)
with trial space Qh×Ph.
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5.4 Numerical results

We applied the optimal Petrov-Galerkin method to the mild-weak variational formulation (3.7) of the
convection-diffusion problem (5.1) on Ω = (0,1) or Ω = (0,1)2, with uniform partitions Ωh into subin-
tervals of length h, or into isosceles right angled triangles with legs of length h and hypothenuses parallel
to the vector (1,1), respectively.

As motivated in Subsection 5.3, we selected the following options: We took Γ− and Γ+ as the in-
and outflow boundary, which fixes the definitions of the last factors of both U = L2(Ω)n×H1

0 (Ω)×
H−

1
2 (∂Ω ◦h ) and V = L2(Ω)n×H0,Γ+(Ωh). We equipped H0,Γ+(Ωh) with the ε-dependent norm from

(5.10), where µ(ε) = ε . To set up the mixed formulation, we factorized A(ε) = εI = A1(ε)A2(ε),
where A1(0) = A2(0) = 0. In particular, we took A1(ε) = ε1/3I, A2(ε) = ε2/3I for n = 1, and A1(ε) =
A2(ε) = ε1/2I for n = 2, respectively. These choices for Ai(ε) turned out to give approximately the best
results.

Finally, we selected the trial space as in (5.14), where here we took Qh to be the lowest order
Raviart-Thomas space w.r.t. Ωh for n = 2, or the space of continuous piecewise linears w.r.t Ωh for
n = 1, respectively, and Ph to be the space of continuous piecewise linears w.r.t. Ωh, zero at ∂Ω . In
all but the last experiment, we took Wh to be the space of continuous piecewise linears w.r.t. Ωh, zero
at ∂Ω−. Note that the free variables in the resulting flux space are all supported near the complement
of the inflow boundary. In the last experiment we will take Wh to be the space of continuous piecewise
quadratics w.r.t. Ωh, zero at ∂Ω−, meaning that for the approximation of the flux, we will add an
additional free quadratic bubble, multiplied with b ·n, associated to each interior edge.

With these choices we satisfy the conditions formulated in §5.3 for having an optimal Petrov-
Galerkin solver that also applies in the limit case of the pure convection problem. The latter can be
viewed as a necessary condition for having a robust solver, i.e., a solver that does not loose convergence
or becomes increasingly costly for ε ↓ 0.

The solutions of the boundary value problems (5.12) on the elements K ∈ Ωh, that determine the
optimal test functions, could be solved analytically for n = 1. As shown at the end of the previous sub-
section, for n = 2 and Wh being the space of continuous piecewise linears, the boundary value problems
(5.12) could be solved analytically for any K with ∂K ∩ (∂Ω \Γ−) 6= /0. For the remaining K, the solu-
tions of these boundary value problems were replaced by their Galerkin approximations from the space
of cubics on K that vanish at ∂K ∩Γ+. For Wh being the space of continuous piecewise quadratics, the
solutions of the boundary value problems for the optimal test functions corresponding to the additional
quadratic bubbles were replaced by their Galerkin approximations from again the space of cubics on K
that, when K∩Γ+ 6= /0, vanish at ∂K∩Γ+.

Both the problems that define the optimal test functions, and the resulting Petrov-Galerkin discretiza-
tions were solved with the built-in matlab solver. In doing so, we never encountered instabilities due
to ill-conditioning.

For n = 1, and with b = 1, and f (x) = x, in Figure 3 the L2(0,1)-errors in uh vs. 1/h are given for
various ε , and the exact and approximate solutions u and uh are shown for ε = 10−4 and h = 1

16 . Note
the large improvement compared to the results from Figure 2. For any fixed ε > 0, the error in uh in
L2(0,1) appears to be O(h2). Note that in the current setting of not having an independent flux variable,
we do not have a proof of this optimal error estimate in L2(0,1), cf. Remark 4.2.

For n = 2, we considered three test problems. In the first problem, b = [2 1]>, and the right-hand
side f is prescribed such that the exact solution is

u(x,y) = [x+(eb1x/ε −1)/(1− eb1/ε)] · [y+(eb1y/ε −1)/(1− eb2/ε)], (5.19)
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FIG. 3. L2(0,1)-error in uh vs. 1/h in the “robust” optimal Petrov-Galerkin approximation of the mild-weak variational formula-
tion of the one-dimensional convection-diffusion equation for various ε (left); and the exact and approximate solutions u and uh
for ε = 10−4 and h = 1

16 (right).

which has typical boundary layers at the top and right outflow boundaries. In Figure 4, the L2((0,1)2)-
errors in uh vs. 1/h are given for various ε , and the approximate solution uh for ε = 10−6 and h = 1

16
is shown. As in the one-dimensional case, the boundary layer is captured inside the elements that have
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(left); and the approximate solution uh for ε = 10−6 and h = 1
16 (right).

non-empty intersection with the outflow boundary, and no oscillations occur.

In the second two-dimensional problem, b = [1 1]>, and f (x,y) = 1− x for y > x, and f (x,y) = 0
for y < x. The exact solution for ε = 0 is u0(x,y) = x− 1

2 x2 for y > x and u0(x,y) = 0 otherwise. The
solution has an internal layer that is aligned with the grid and, for ε > 0, boundary layers at the outflow
boundary. In Figure 5, the approximate solution uh for ε = 10−6 and h = 1

16 is shown.
The behavior at the outflow boundary is similar as with the previous test problem, and the internal
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FIG. 5. The approximate solution uh for h = 1
16 for the “robust” optimal Petrov-Galerkin approximation of the mild-weak varia-

tional formulation of the two-dimensional convection-diffusion equation for ε = 10−6, b = [1 1]>, and f (x,y) = 1− x for y > x,
and f (x,y) = 0 for y < x.

layer is captured inside a strip that has a width of two elements.

In the third and last two-dimensional problem, b = [2 1]> and f (x,y) = 1− x for y > 1
2 x+ 1

4 , and
f (x,y) = 0 otherwise. The exact solution for ε = 0 is u0(x,y) = 1

2 x− 1
4 x2 for y > 1

2 x+ 1
4 and u0(x,y) = 0

otherwise. The solution has an internal layer that is not aligned with the grid and, for ε > 0, boundary
layers at the outflow boundary. In Figure 6, the approximate solution uh for ε = 10−6 and h = 1

16
is shown. Again, the behavior at the outflow boundary is similar as in the first two-dimensional test
problem. In this example, however, we observe a “smearing” of the internal layer, as well as, unlike as
with the other examples, some under or overshoot at both sides of this layer.

For this reason, we repeated the experiment where we replaced the space Wh of continuous piecewise
linears by the space of continuous piecewise quadratics, meaning that we enriched the trial space for
the flux by a quadratic bubble for each interior edge. In Figure 6, the resulting approximate solution uh
for ε = 10−6 and h = 1

32 is shown. In this case, the “numerical layer” has been sharpened to a width
of approximately 5-6 elements, but the amplitude of the under and overshoot has not been reduced. It
seems also not to be reduced by further mesh refinements, and the same under and overshoots are visible
for ε = 0.

We infer that this oscillation is not caused by an unstable discretization, but that it is an instance
of a Gibbs-type phenomenon, caused by the approximation of a discontinuous function by continuous
piecewise linears. A similar oscillation can already be observed with the best L2 -approximation of a
smooth function on R that has a discontinuity at a non-dyadic point by continuous piecewise linears
w.r.t. uniform partitions generated by dyadic refinements.

The oscillation along the internal layer in Figure 7 is directed perpendicularly to the flow direction b.
Potential other Gibbs type oscillations, e.g. at the outflow boundary, were prevented by the simultaneous
use of uh as approximation for u, and as an ingredient in the approximation for the flux θ , cf. Remark 5.3.
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FIG. 6. The approximate solution uh from two perspectives for h = 1
32 for the “robust” optimal Petrov-Galerkin approximation

of the mild-weak variational formulation of the two-dimensional convection-diffusion equation for ε = 10−6, b = [2 1]>, and
f (x,y) = 1− x for y > 1

2 x+ 1
4 , and f (x,y) = 0 otherwise.

Oscillations in the approximation for θ in the direction of the flow are penalized by the norm on the flux
space that for ε = 0 reads as the norm on H(b;∂Ω ◦h ).

Finally, for comparison we repeated the second and third two-dimensional tests with the optimal
Petrov-Galerkin method of the mild variational formulation of the mixed system, i.e., we solved the
usual first order least squares problem (3.13) with trial space Qh×Ph, i.e., the lowest order Raviart-
Thomas space for σσσh, and the space of continuous piecewise linears, zero at ∂Ω , for uh. The uh-
component of the solutions are illustrated in Figure 8.

6. Conclusion

We studied a mild-weak variational formulation of second order elliptic boundary value problems in
mixed form constructed by piecewise integrating by parts one of the two equations in the system w.r.t. a
partition of the domain into cells. It was shown that the variational formulation is well-posed, uniformly
in the partition. We applied a Petrov-Galerkin discretization with optimal test space, or equivalently,
minimized the residual over a given trial space. The required optimal test functions can be found by
solving local boundary problems on the individual cells. Optimal error estimates in the natural norm
were demonstrated, as well as, using duality arguments, in a weaker norm. Other than with the ultra-
weak formulation studied in Demkowicz & Gopalakrishnan (2011b), which inspired this work, these
optimal error estimates are valid under minimal regularity assumptions on the solution together with an
additional smoothness assumption on the right-hand side, which is usually harmless.

In the second part of this paper, we applied our optimal Petrov-Galerkin method to convection-
dominated convection-diffusion problems. Although for such problems least squares methods are more
stable than the standard Galerkin discretization, not necessarily they give satisfactory results for small
diffusion, as we illustrated with some one-dimensional numerical experiments. Generally, the operator
associated to the variational form has an unbounded inverse in the convective limit, meaning that for
small diffusion some error components are hardly measured in the residual, and so are hardly reduced
in the least squares minimization.
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FIG. 7. Illustration as in Figure 6, but now with the trial space for the flux enriched with quadratic bubbles.

We used the available freedom in the mild-weak variational formulation, and in its optimal Petrov-
Galerkin discretization, to construct a discretization that in the convective limit is an optimal Petrov-
Galerkin discretization of a well-posed variational formulation of the convection problem. Numerical
results show that the method performs very well for convection dominated problems.

For any fixed diffusion term, the optimal error estimates apply, whereas for the pure convection
problem we showed an error estimate that is suboptimal, due to the essential boundary conditions in-
corporated in our trial space at the whole of the boundary. Error estimates that are explicit in both the
mesh-size and the diffusion term are still lacking.

The approximation of internal or boundary layers with continuous finite elements has the disadvan-
tage that oscillations easily occur, even if one could realize best L2 approximations. For this reason, we
plan to investigate whether a similar approach can be applied with discontinuous elements. Other open
research topics include a posteriori error estimators and adaptivity.
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