Probabilistic Logic Programming

Lecture 1: Crash course in logic programming

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

June 4, 2024

Logic programming \leftarrow

- In logic programming, you can express facts and if-then rules.
- For example, think of Prolog.
- The goal is to get a computationally useful language to represent knowledge and reason with it.

Positive logic programs, without variables

Positive logic programs consist of rules and facts.

Rules are of the form:

 $1 a := b, c, d, ..., z.$

which represents the implication $(b \wedge c \wedge d \wedge \cdots \wedge z) \rightarrow a$

- a is called the head of the rule.
- \blacksquare b, c, d, ..., z is called the body of the rule.
- **Facts are of the form:**
	- ² a .

which represents the positive literal a.

Positive logic programs, without variables (ct'd)

For example, this is a positive logic program.

```
1 wet : - rainy.
2 rainy .
3 cloudy :- rainy .
4 windy :- cloudy , rainy .
5 warm :- sunny.
```
Positive logic programs, with variables

We can also use variables (and function symbols).

- The convention is to write variables starting with capital letters, and relation and function symbols starting with small letters.
- Variables are always universally quantified.

For example, in:

```
1 rainy (amsterdam).
```

```
2 rainy ( vienna ) .
```

```
3 \text{ wet}(\text{X}) :- rainy (\text{X}).
```
the rule on the third line is interpreted as:

 $\forall x.$ (Rainy(x) \rightarrow Wet(x))

(and rainy and wet are unary predicate symbols, and amsterdam and vienna are constant symbols).

Database semantics

The notion of interpretations in first-order logic is very general, and complicated to work with.

For example:

- \blacksquare there can be any number of objects;
- different constants can refer to the same objects;
- statements that are not mentioned can (in general) be true or false.
- \blacksquare In logic programming, typically what is called database semantics is used:
	- **T** "the objects mentioned are the only objects" (domain closure)
	- **Demoglects with different names are different objects'** (unique-names assumption)
	- "statements for which we have no reason to conclude that they are true, are false" (closed-world assumption)

■ These three assumptions mean that:

- we do not have to (explicitly) say what function symbols mean;
- we can represent objects simply by the terms that point to them;
- we can represent the meaning of a relation R by the set of atoms (over R) that are true—and then all atoms that are not in this set are false.
- \blacksquare In the context of logic programming, interpretations are sets of atoms:
	- all atoms in the set are true
	- all atoms not in the set are false

Models

Models are interpretations that make all rules of a program true.

For example, this is a positive logic program.

```
1 wet :- rainy.
2 rainy .
3 cloudy :- rainy .
4 windy :- cloudy , rainy .
5 warm :- sunny.
```
- Then the following are (some of the) interpretations for this program:
	- $I_1 = \{wet, \text{rainy}, \text{cloudy}, \text{windy}\}$
	- $I_2 = \{$ wet, rainy, cloudy, windy, sunny}
	- $I_3 = \{$ wet, rainy, cloudy, windy, sunny, warm $\}$
- \blacksquare Of these, I_1 and I_3 are models, and I_2 is not.

Connection to FOL: Herbrand interpretations

- Let φ be a first-order logic sentence.
- Then a Herbrand interpretation for φ is an interpretation (I,\cdot^I) such that:
	- If is the set of all terms that can be built using constant and function symbols appearing in φ .
	- For each term $t, t' = t$.

For example, take $\varphi = \forall x . (R(x, x) \rightarrow R(mother(alex), x))$.

■ Then for each Herbrand interpretation for φ :

 $I = \{alex, mother(alex), mother(mother(alex)), mother(mother(mother(alex))), \dots\},$ $alex' = alex$. $mother(alex)' = mother(alex)$, mother(mother(alex))^{$I =$} mother(mother(alex)), . . .

Remember (our version of) the closed-world assumption:

"statements for which we have no reason to conclude that they are true, are false"

- This is open to multiple interpretations
- Two ways to interpret this, that are commonly used in logic programming, are:
	- consider only minimal models of a logic program
	- consider only supported models of a logic program

Minimal models

- For positive logic programs, there is a unique minimal model.
	- **Minimal in terms of subset-inclusion.**

For example, for:

```
1 wet : - rainy.
2 rainy .
3 cloudy :- rainy .
4 windy :- cloudy , rainy .
5 warm :- sunny.
```
the minimal model is $\{w_t, \text{rainy}, \text{cloudy}, \text{windy}\}.$

 \blacksquare We can find this minimal model M with the following procedure:

- \blacksquare Start by putting all facts of the program into M.
- 2 Repeat until M does not change anymore:

If there is a rule $b \leftarrow c_1, \ldots, c_n$ where $c_1, \ldots, c_n \in M$, put b in M too.

- A model M is a supported model of a logic program P if:
	- **for each atom a** \in **M, there is some rule a** \leftarrow β . in P such that M makes β true.
- In other words, M is a supported model of P if each atom a is "forced" to be in M by some rule $a \leftarrow \beta$.

For positive logic programs, the unique minimal model is also a supported model.

It is often useful to use negation in the body of rules: not (meaning \neg)

For example:

```
1 wet (X) : - rainy (X), not sunny (X).
```
- ² rainy (amsterdam).
- 3 rainbow (X) :- rainy (X) , sunny (X) .
- $4 \text{ warm}(X)$:- sunny (X) .
- In normal logic programs, rules are of the following form:
	- 1 a :- b_1 , ..., b_n , not c_1 , ..., not c_m .
- When allowing negation, we lose the property that there is a unique minimal (and supported) model

Stratified negation

- Negation is stratified in a program P if the following holds.
	- \blacksquare Draw a directed graph, where the nodes are the relation symbols appearing in P.
	- For every rule a :- b_1 , ..., b_n , not c_1 , ..., not c_m . in P:
		- Draw an edge labelled with $-$ (a negative edge) from the relation symbol in a to the relation symbol in c_i , for each $1 \le i \le m$.
		- **Draw an edge labelled with** $+$ (a positive edge) from the relation symbol in a to the relation symbol in b_i , for each $1 \le i \le n$.
	- If this graph has no cycles involving negative edges, then negation is stratified.

Iterated fixpoint model

For programs with stratified negation, we define iterated fixpoint models (IFMs)

- \blacksquare (Details of the definition on the next slide..)
- Every program with stratified negation has an IFM, and only one
- The IFM is a minimal model, and it is a supported model
- (But there might be models that are minimal and/or supported that are not the IFM)
- This model serves as "intended model"
	- We consider the unique IFM as the (only) meaning of the program
	- \blacksquare (Just like the unique minimal model for positive programs..)

Iterated fixpoint model (ct'd)

- We can compute the IFM of a program with stratified negation as follows: (At the same time, this procedure defines the IFM..)
	- **1** Assign a positive integer to each relation symbol such that:
		- When there is a negative edge from a to b, then the number assigned to a is strictly larger than that assigned to b.
		- \blacksquare When there is a positive edge from a to b, then the number assigned to a is at least as large as that assigned to b.

(We can do this because there are no cycles with negated edges.)

- 2 Start by putting all facts of the program into M.
- **3** Proceed in stages, one stage for each assigned integer *i*, going from low to high. In each stage i:
	- Repeat until M does not change anymore:

If there is a rule $b \leftarrow c_1, \ldots, c_n$, not $d_1, \ldots,$ not d_m . in P where $c_1, \ldots, c_n \in M$ and $d_1, \ldots, d_m \notin M$, and b is assigned the number i, then put b in M too.

Iterated fixpoint model (ct'd)

■ Take this example again:

```
1 wet (X) : - rainy (X), not sunny (X).
```

```
2 rainy ( amsterdam ) .
```

```
3 rainbow (X) :- rainy (X), sunny (X).
```

```
4 \text{ warm}(X) \text{ :-} \text{sumny}(X).
```
Assign 1 to rainy, rainbow, sunny, warm, and 2 to wet.

```
\blacksquare After stage 1, we end up with the interpretation
   M_1 = \{ \text{rainy}(\text{amsterdam}) \}
```

```
After stage 2, we end up with the interpretation
   M_2 = \{ \text{rainy}(\text{amsterdam}), \text{wet}(\text{amsterdam}) \}
```
 \blacksquare Then M_2 is the iterated fixpoint model

- On the previous slides, we assigned numbers to predicate symbols (for programs with variables)
- \blacksquare Instead, we could assign numbers to atoms (for ground programs, i.e., programs without variables)
- The procedure for computing the IFM works entirely similarly in that case

What if we want unstratified negation?

What if we want to use negation, but it is not stratified in our knowledge base?

■ For example:

- 1 rainy :- not sunny.
- 2 sunny : not rainy.
- As mentioned, then there is not always a unique minimal model.
	- In this example, the following are minimal models: $\{rainv\}$ and $\{sunnv\}$.

ä What to do?

Minimality and supportedness does not capture what we want

- Not all minimal and supported models match our intuitions for what desirable models are (under the closed-world assumption)
- Consider for example the following normal logic program with unstratified negation:

1 rainy :- windy, not sunny. 2 windy :- rainy, not sunny.

 3 sunny : - not rainy.

- Then the model $M = \{ \text{rainy}, \text{window} \}$ is both minimal and supported
- But this model can be argued not to be in line with the closed-world assumption:
	- rainy and windy provide each other a reason for being true, but there is no "external" reason why they should be true

Answer Set Programming </>

- Answer Set Programming (ASP) assigns the so-called answer set semantics to logic programs with negations.
- In the basic language of ASP (normal logic programs), programs may contain facts and rules of the form:
	- 1 a :- b_1 , ..., b_n , not c_1 , ..., not c_m .
		- Negation does not have to be stratified.
		- It may contain variables, that must appear safely:
			- Every variable that appears in the head of a rule, must also appear in a non-negated atom in the body.
			- Every variable that appears in a negated atom in the body of a rule, must also appear in a non-negated atom in the body.
- \blacksquare Consider an interpretation M as an assumption for which atoms are true and which are false.
- $\mathbf 2$ Construct a (positive) variant $\mathsf P^{\mathcal M}$ of the program $\mathsf P$ that takes into account this assumption.
- **3** Check whether M is the (unique) minimal model of P^M .

Semantics of ASP

- \blacksquare Take a normal logic program P and an interpretation M.
- The reduct P^{M} of P w.r.t. M is obtained from P by:
	- **1** removing rules with not a in the body, for $a \in M$
	- 2 removing literals not b from all rules, for b $\notin M$
- An answer set of P is a set M that is the minimal model of P^{M}
- For example, take P to be:
	- $_1$ rainy : not sunny.
	- 2 sunny : not rainy.

```
and M = \{ \text{sumny} \}. Then P^M is:
```
¹ sunny .

and M is the minimal model of P^M .

Another example

Logic program P:

 1 a : - not b. $2 b$:- not a. $3 \text{ } c \text{ } : - \text{ } b$. 4 $b : -a.$

What are the answer sets of this program?

Answer sets:

¹ b c

Logic program $P^{\{b,c\}}$:

 1 a :- not b. $2 b : - \text{not } a.$

-
- $3 \text{ } c \text{ } : \text{ } b$.

4 $b : -a.$

 $\{b, c\}$ is the minimal model of $P^{\{b, c\}}$, and thus $\{b, c\}$ is an answer set of P.

Logic program $P^{\{\texttt{a},\texttt{b},\texttt{c}\}}$:

- 1 a :- not b.
- $2 b \div \text{not } a$.
- $3 \text{ } c \text{ } : \text{ } b$.
- 4 $b : -a.$

 ${a,b,c}$ is not the minimal model of $P^{\{a,b,c\}}$, and thus $\{a,b,c\}$ is not an answer set of P.

Yet another example

Logic program:

- low :- not high.
- high :- not low.
- left :- not right .
- 4 right :- not left.

Answer sets:

 low left low right high left high right

Using variables

Logic program:

- $_1$ num (1) .
- 2 num (2) .
- $3 \text{ left}(X)$:- not right (X) , num (X) . 4 right (X) : - not left (X) , num (X) .

Answer sets:

- $_1$ num (1) num (2) right (1) left (2)
- ² num (1) num (2) right (1) right (2)
- $_3$ num (1) num (2) left (1) left (2)
- ⁴ num (1) num (2) left (1) right (2)

Constraints

Constraints are rules without head, meaning that the body must be false.

Logic program:

- $_1$ num (1) .
- 2 num (2) .
- $3 \text{ left}(X)$:- not right (X) , num (X) .
- 4 right (X) : not left (X) , num (X) .

 $5:$ left (1). % it cannot be the case that left (1) is true

Answer sets:

- $_1$ num (1) num (2) right (1) left (2)
- 2 num (1) num (2) right (1) right (2)

Answer sets vs. models

