Meta Complexity

Lecture 4

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

June 3, 2025

What will we cover in this lecture?

- (Cryptographic and complexity-theoretic) pseudorandom generators
- Hardness amplification
- Derandomization

(Cryptographic) pseudorandom generators (PRGs)

Definition

Let $G : \{0,1\}^* \to \{0,1\}$ be a polynomial-time computable function. Let $\ell : \mathbb{N} \to \mathbb{N}$ be a polynomial-time computable function such that $\ell(n) > n$ for every n. Then G is a secure pseudorandom generator of stretch $\ell(n)$ if:

- $|G(x)| = \ell(|x|)$ for every $x \in \{0,1\}^*$; and
- for every probabilistic polynomial-time algorithm A there exists a negligible function *ϵ* : N → [0, 1] such that for every *n* ∈ N:

$$\left| \Pr[A(G(U_n)) = 1] - \Pr[A(U_{\ell(n)}) = 1] \right| < \epsilon(n)$$

(here U_n denotes the uniform distribution over $\{0, 1\}^n$).

Theorem (Haastad, Impagliazzo, Levin, Luby 1999)

If OWFs exist, then for every $c \in \mathbb{N}$, there exists a secure pseudorandom generator with stretch $\ell(n) = n^c$.

(Complexity-theoretic) pseudorandom generators (PRGs)

Definition

A distribution R over $\{0,1\}^m$ is (S,ϵ) -pseudorandom (for $S \in \mathbb{N}, \epsilon > 0$) if for every circuit C of size at most S:

$$|\Pr[C(R) = 1] - \Pr[C(U_m) = 1]| < \epsilon.$$

Definition

Let $S : \mathbb{N} \to \mathbb{N}$ be some function. A 2^{*n*}-time computable function $G : \{0,1\}^* \to \{0,1\}^*$ is an $S(\ell)$ -pseudorandom generator if:

- |G(z)| = S(|z|) for every $z \in \{0,1\}^*$; and
- for every $\ell \in \mathbb{N}$ the distribution $G(U_\ell)$ is $(S(\ell)^3, 1/10)$ -pseudorandom.

Suppose that there exists an $S(\ell)$ -pseudorandom generator for a time-constructible nondecreasing $S : \mathbb{N} \to \mathbb{N}$.

Then for every polynomial-time computable function $\ell : \mathbb{N} \to \mathbb{N}$ it holds that $\mathsf{BPTIME}(S(\ell(n))) \subseteq \mathsf{DTIME}(2^{c\ell(n)})$ for some constant c.

 In particular, if there exists a 2^{ϵℓ}-pseudorandom generator for some constant ϵ > 0, then BPP = P.

Worst-case and average-case hardness (repeated)

Definition

For $f : \{0,1\}^n \to \{0,1\}$ and $\rho \in [0,1]$ we define the ρ -average-case hardness of f, denoted $H^{\rho}_{avg}(f)$, to be the largest S such that for every circuit of size S:

$$\mathbb{P}_{x \in_{\mathsf{R}} \{0,1\}^n}[\mathcal{C}(x) = f(x)] < \rho.$$

We define the worst-case hardness of f, denoted $H_{wrs}(f)$, to equal $H^1_{avg}(f)$.

We define the *average-case hardness of f*, denoted $H_{avg}(f)$, to equal:

$$\max\left\{S:\mathsf{H}^{1/2+1/s}_{\mathsf{avg}}(f)\geq S\right\}.$$

■ Let $f \in E$ be such that $H_{wrs}(f)(n) \ge S(n)$ for some time-constructible nondecreasing function $S : \mathbb{N} \to \mathbb{N}$.

Then there exists a function $g \in E$ and a constant c > 0 such that $H_{avg}(g)(n) \ge S(n/c)^{1/c}$ for sufficiently large n.

• Let $S : \mathbb{N} \to \mathbb{N}$ be time-constructible and nondecreasing.

If there exists $f \in E$ such that $H_{avg}(f)(n) \ge S(n)$ for every n, then there exists an $S(\delta \ell)^{\delta}$ -pseudorandom generator for some constant $\delta > 0$. • Let $S : \mathbb{N} \to \mathbb{N}$ be time-constructible and nondecreasing.

If there exists $f \in E$ such that $H_{wrs}(f)(n) \ge S(n)$ for every n, then there exists an $S(\delta \ell)^{\delta}$ -pseudorandom generator for some constant $\delta > 0$.

In particular, if there exists f ∈ E and ε > 0 such that H_{wrs}(f)(n) ≥ 2^{εn} for every n, then BPP = P.

- (Cryptographic and complexity-theoretic) pseudorandom generators
- Hardness amplification
- Derandomization