Meta Complexity

Lecture 3

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

June 3, 2025

What will we cover in this lecture?

- Natural proofs
- Learning

- Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function and let $c \ge 1$.
- Any proof that f does not have n^c -sized circuits can be viewed as exhibiting some property that f has, and which every function with an n^c -sized circuit does not have.
- That is, such a proof can be viewed as providing a predicate \mathcal{P} on Boolean functions such that $\mathcal{P}(f) = 1$ and:

$$\mathcal{P}(g) = 0$$
 for every $g \in SIZE(n^c)$ (*n^c*-usefulness)

- We say that such a predicate *P* is *natural* if in addition to *n^c*-usefulness it satisfies the following two conditions:
 - Constructiveness: There is a $2^{O(n)}$ -time algorithm that on input (the truth table of) a function $g : \{0,1\}^n \to \{0,1\}$ outputs $\mathcal{P}(g)$ —i.e., a polynomial-time algorithm.
 - Largeness: The probability that a random function g : {0,1}ⁿ → {0,1} satisfies P(g) = 1 is at least ¹/n.

Theorem (Razborov-Rudich 1997)

Suppose that subexponentially strong¹ one-way functions exist.

Then there exists a constant c such that there is no n^c -useful natural property \mathcal{P} .

¹A OWF is called *subexponentially strong* if it resists inverting even by a $2^{n^{\epsilon}}$ -time adversary, for some fixed $\epsilon > 0$.

- If MCSP \in P, then there exists a n^c -useful natural property \mathcal{P} for each $c \geq 1$:
 - Take the property \mathcal{P} of not having circuits of size $\leq n^c$.
 - By definition, this is *n^c*-useful.
 - Because $MCSP \in P$, the property P is constructive.
 - It is also large, because there are 2^{2^n} functions $g : \{0,1\}^n \to \{0,1\}$ and there are only $\leq 2^{O(n^c \log n^c)}$ circuits of size $\leq n^c$.

Probably Approximately Correct (PAC) learning

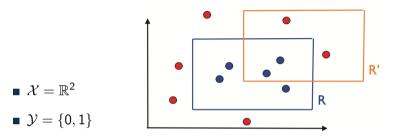
- PAC-learnability is a theoretical notion of what is learnable
- Basic setup:
 - $\blacksquare A set \mathcal{X} of examples$
 - A set $\mathcal Y$ of *labels*
 - A *concept* is a function $c : \mathcal{X} \to \mathcal{Y}$
 - A *concept class* C is a set of concepts
 - Examples are drawn independently and identically distributed (i.i.d.) according to some distribution D

The learning problem

- The learning problem is to:
 - learn a concept $c \in C$,
 - **•** based on some samples $x_i \in \mathcal{X}$, together with their correct label $c(x_i) \in \mathcal{Y}$
 - and to learn it *approximately correctly*.
- Ingredients:
 - You're **not** given the concept *c*.
 - Based on a *hypothesis set H*. (a set of concepts)
 - You're given some samples $S = (x_1, \ldots, x_m)$ together with their labels $(c(x_1), \ldots, c(x_m))$, drawn according to the distribution D.
 - Goal: select some $h_S \in H$ that has a small enough error R(h):

$$R(h) = \Pr_{x \sim D} \left[h(x) \neq c(x) \right]$$

Example: learning a rectangle



- C = H = "all rectangles in \mathbb{R}^{2} "
- D is any distribution over \mathbb{R}^2
- Blue dots indicate examples with label 1, red dots indicate examples with label 0
- R is the concept c that is to be learned, and R' is a hypothesis

Definition of PAC-learnable

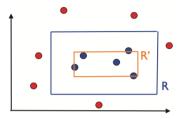
- A concept class *C* is PAC-learnable using the hypothesis class *H* if:
 - there exists a probabilistic algorithm \mathcal{A} and a polynomial p,
 - such that for all $\epsilon > 0$ and $\delta > 0$, for all distributions D on \mathcal{X} , and for each concept $c \in C$,
 - for each $m \ge p(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \text{size}(c))$ it holds that:

$$\Pr_{S \sim D^m}[R(h_S) \leq \epsilon] \geq 1 - \delta,$$

where $h_S \in H$ is the hypothesis computed by algorithm \mathcal{A} when given samples S, where n is the size needed to represent an element $x \in \mathcal{X}$, and where size(c) is the size needed to represent the concept c.

• If \mathcal{A} also runs in time $p(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \text{size}(c))$, then C is efficiently PAC-learnable.

Back to the example



- A PAC-learning algorithm *A* for this example problem is one that does the following:
 - Given a large enough sample *S* of examples
 - outputs the smallest rectangle R' that contains all sampled examples with label 1 (all blue dots)
- One can prove that for any D and any $\epsilon > 0$, $\delta > 0$, this algorithm outputs (with probability $\geq 1 \delta$) a hypothesis h that has error $R(h) \leq \epsilon$ (for distribution D)

Example of something not PAC-learnable, unless RP = NP

- Learning problem that allows us to solve Dominating Set:
- Given a graph G = (V, E) with vertices $\{v_1, \ldots, v_n\}$, and some $k \in \mathbb{N}$, construct:

•
$$\mathcal{X} = \{0,1\}^n$$
, $\mathcal{Y} = \{0,1\}$

- C corresponds to all subsets of V
 - For $c_S \in C$ and $x = (x_1, \ldots, x_n) \in \mathcal{X}$, $c_S(x) = 1$ if and only if for some $v_i \in S$ it holds that $x_i = 1$.
- H corresponds to all subsets of V of size k
- You can use a PAC-learning algorithm *A* for this problem to make a probabilistic algorithm for Dominating Set:
 - Idea: set
 ϵ to the right value (¹/_{2n}), and feed *A* n samples that correspond to the input graph *G* (a sample for each vertex v_i, where x_j = 1 iff i = j or {i, j} ∈ E)

In the "regular" PAC learning setting, the learning algorithm only gets access to samples (x, c(x)) drawn from the distribution \mathcal{D} .

That is, the algorithm ${\mathcal A}$ is not allowed to choose which inputs to get a correct answer for.

In PAC learning with membership queries, the learning algorithm A has access to an oracle that, given any x, produces c(x).

- Natural proofs
- Learning