
Meta Complexity

Lecture 3

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

June 3, 2025

What will we cover in this lecture?

Natural proofs

Learning

Natural proofs

Let f : {0, 1}n → {0, 1} be a Boolean function and let c ≥ 1.

Any proof that f does not have nc -sized circuits can be viewed as exhibiting some
property that f has, and which every function with an nc -sized circuit does not
have.

That is, such a proof can be viewed as providing a predicate P on Boolean
functions such that P(f) = 1 and:

P(g) = 0 for every g ∈ SIZE(nc) (nc -usefulness)

Natural proofs (ct’d)

We say that such a predicate P is natural if in addition to nc -usefulness it satisfies
the following two conditions:

Constructiveness: There is a 2O(n)-time algorithm that on input (the truth table of)
a function g : {0, 1}n → {0, 1} outputs P(g)—i.e., a polynomial-time algorithm.

Largeness: The probability that a random function g : {0, 1}n → {0, 1}
satisfies P(g) = 1 is at least 1/n.

Natural proofs (ct’d)

Theorem (Razborov-Rudich 1997)

Suppose that subexponentially strong1 one-way functions exist.
Then there exists a constant c such that there is no nc -useful natural property P.

1A OWF is called subexponentially strong if it resists inverting even by a 2n
ε

-time adversary,
for some fixed ε > 0.

MCSP ∈ P gives natural properties

If MCSP ∈ P, then there exists a nc -useful natural property P for each c ≥ 1:

Take the property P of not having circuits of size ≤ nc .

By definition, this is nc -useful.

Because MCSP ∈ P, the property P is constructive.

It is also large, because there are 22n

functions g : {0, 1}n → {0, 1} and there are
only ≤ 2O(nc log nc) circuits of size ≤ nc .

Probably Approximately Correct (PAC) learning

PAC-learnability is a theoretical notion of what is learnable

Basic setup:

A set X of examples

A set Y of labels

A concept is a function c : X → Y

A concept class C is a set of concepts

Examples are drawn independently and identically distributed (i.i.d.) according to
some distribution D

The learning problem

The learning problem is to:

learn a concept c ∈ C ,

based on some samples xi ∈ X , together with their correct label c(xi) ∈ Y

and to learn it approximately correctly.

Ingredients:

You’re not given the concept c .

Based on a hypothesis set H. (a set of concepts)

You’re given some samples S = (x1, . . . , xm) together with their
labels (c(x1), . . . , c(xm)), drawn according to the distribution D.

Goal: select some hS ∈ H that has a small enough error R(h):

R(h) = Pr
x∼D

[h(x) 6= c(x)]

Example: learning a rectangle

X = R2

Y = {0, 1}

C = H = “all rectangles in R2”

D is any distribution over R2

Blue dots indicate examples with label 1,
red dots indicate examples with label 0

R is the concept c that is to be learned, and R ′ is a hypothesis

Definition of PAC-learnable

A concept class C is PAC-learnable using the hypothesis class H if:

there exists a probabilistic algorithm A and a polynomial p,

such that for all ε > 0 and δ > 0, for all distributions D on X , and for each
concept c ∈ C ,

for each m ≥ p(1
ε ,

1
δ , n, size(c)) it holds that:

Pr
S∼Dm

[R(hS) ≤ ε] ≥ 1− δ,

where hS ∈ H is the hypothesis computed by algorithm A when given samples S ,

where n is the size needed to represent an element x ∈ X ,
and where size(c) is the size needed to represent the concept c .

If A also runs in time p(1
ε ,

1
δ , n, size(c)), then C is efficiently PAC-learnable.

Back to the example

A PAC-learning algorithm A for this example problem is one that does the
following:

Given a large enough sample S of examples

outputs the smallest rectangle R ′ that contains all sampled examples with label 1
(all blue dots)

One can prove that for any D and any ε > 0, δ > 0, this algorithm outputs (with
probability ≥ 1− δ) a hypothesis h that has error R(h) ≤ ε (for distribution D)

Example of something not PAC-learnable, unless RP = NP

Learning problem that allows us to solve Dominating Set:

Given a graph G = (V ,E) with vertices {v1, . . . , vn}, and some k ∈ N, construct:
X = {0, 1}n, Y = {0, 1}

C corresponds to all subsets of V

For cS ∈ C and x = (x1, . . . , xn) ∈ X ,
cS(x) = 1 if and only if for some vi ∈ S it holds that xi = 1.

H corresponds to all subsets of V of size k

You can use a PAC-learning algorithm A for this problem to make a probabilistic
algorithm for Dominating Set:

Idea: set ε to the right value (1
2n), and feed A n samples that correspond to the

input graph G
(a sample for each vertex vi , where xj = 1 iff i = j or {i , j} ∈ E)

PAC learning with membership queries

In the “regular” PAC learning setting, the learning algorithm only gets access to
samples (x , c(x)) drawn from the distribution D.

That is, the algorithm A is not allowed to choose which inputs to get a correct
answer for.

In PAC learning with membership queries, the learning algorithm A has access to
an oracle that, given any x , produces c(x).

Summary

Natural proofs

Learning

