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What will we cover in this lecture?

One-way functions

Average-case complexity

Some notions of average-case and worst-case hardness



Most forms of cryptography depend on P 6= NP

Whenever there is a private key with the property that an encoded message can be
decoded efficiently with the private key, this is an NP problem

So if P = NP, breaking the cryptographic scheme can be done in polynomial time



One-way functions (OWFs)

Definition (one-way functions)

A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is a one-way function if
for every polynomial-time probabilistic TM M there is a negligible
function ε : N→ [0, 1] such that for every n ∈ N:

P
x ∈R {0,1}n
y=f (x)

[
M(y) = x ′ such that f (x ′) = y

]
< ε(n)

where a function ε : N→ [0, 1] is negligible if ε(n) = 1
nω(1) , that is, for every c and

sufficiently large n, ε(n) < 1
nc .

Conjecture: there exist one-way functions (implying P 6= NP)

OWFs can be used to create private-key cryptography



Levin’s universal OWF

Consider the function fU that is defined as follows.
If there exists any OWF f , then fU is also an OWF.

Treat the input x as a list x1, . . . , xlog n of n/ log n bit long strings.

Output Mn2

1 (x1) . . .Mn2

log n(xlog n).

Here Mt
i (y) denotes the output that the ith TM Mi gives on input y , or 0|y | if Mi

takes more than t steps on input y .

Main idea:

If there is an OWF, then there is one that runs in time n2—using padding.

The function that concatenates the output of several (polynomial-time computable)
functions f1, . . . , fk is an OWF if and only if at least one of f1, . . . , fk is an OWF.

Whenever n gets large enough, there is some Mi that is an OWF that runs in time
at most n2, and so therefore is fU .



OWFs as building blocks for cryptography

Definition
An encryption scheme is a pair (E ,D) of algorithms, each taking a key k and a
message x , such that Dk(Ek(x)) = x .
The scheme is perfectly secret, for messages of length m and keys of length n, if for
every pair x , x ′ ∈ {0, 1}m of messages, the distributions EUn(x) and EUn(x

′) are
identical.
The scheme is computationally secure if for every probabilistic polynomial-time
algorithm A, there is a negligible function ε : N→ [0, 1] such that

P
k ∈R {0,1}n
x ∈R {0,1}m

[ A(Ek(x)) = (i , b) s.t. xi = b ] < 1/2 + ε(n).

Suppose that OWFs exist. Then for every c ∈ N there exists a computationally
secure encryption scheme (E ,D) using n-length keys for nc -length messages.



Worst-case complexity

A problem L ⊆ {0, 1}∗ can be solved in worst-case running time T (n) if there
exists an algorithm A that solves L and that halts within time T (|x |) for
each x ∈ {0, 1}∗.

In other words, the worst-case running time T (n) is the maximum of the running
times for all inputs of size n.



Distributional problems

Definition (distributional problems)

A distributional problem 〈L,D〉 consists of a language L ⊆ {0, 1}∗ and a
sequence D = {Dn}n∈N of probability distributions, where each Dn is a probability
distribution over {0, 1}n.



The class distP / avgP

Definition (distP)

〈L,D〉 is in the class distP (also called: avgP) if there exists a deterministic TM M that
decides L and a constant ε > 0 such that for all n ∈ N:

E
x ∈RDn

[ timeM(x)ε ] is O(n).

The ε is there for technical reasons—to invert a polynomial to O(n).



Polynomial-time computable distributions

Definition (P-computable distributions)

A sequence D = {Dn}n∈N of distributions is P-computable if there exists a
polynomial-time TM that, given x ∈ {0, 1}n, computes:

µDn(x) =
∑

y∈{0,1}n
y≤x

P
Dn

[y ],

where y ≤ x if the number represented by the binary string y is at most the number
represented by the binary string x .



Polynomial-time samplable distributions

Definition (P-samplable distributions)

A sequence D = {Dn}n∈N of distributions is P-samplable if there exists a
polynomial-time probabilistic TM M such that for each n ∈ N, the random
variables M(1n) and Dn are equally distributed.



The class distNP and sampNP

Definition (distNP)

A problem 〈L,D〉 is in distNP if L ∈ NP and D is P-computable.

Definition (sampNP)

A problem 〈L,D〉 is in sampNP if L ∈ NP and D is P-samplable.

The questions “distNP ?
= distP” and “sampNP

?
= distP” are average-case analogues

of the question “NP ?
= P”



Worst-case and average-case hardness

Definition
For f : {0, 1}n → {0, 1} and ρ ∈ [0, 1] we define the ρ-average-case hardness of f ,
denoted Hρavg(f ), to be the largest S such that for every circuit of size S :

P
x ∈R {0,1}n

[C (x) = f (x)] < ρ.

We define the worst-case hardness of f , denoted Hwrs(f ), to equal H1
avg(f ).

We define the average-case hardness of f , denoted Havg(f ), to equal:

max
{
S : H

1/2+1/S
avg (f ) ≥ S

}
.



Zero-error average-case hardness

Definition (zero-error heuristics)

A zero-error heuristic H for f is a probabilistic polynomial-time algorithm that for
each x ∈ {0, 1}∗, when given x as input, it outputs either f (x) or “?”.

Definition (zero-error average-case hardness)

Let α : N→ [0, 1] be a function. A function f : {0, 1}n → {0, 1} is zero-error
α-hard-on-average if for all zero-error heuristics H for f and all sufficiently large n ∈ N,
it holds that:

P
x ∈R {0,1}n

[ H(x) = “?” ] ≥ α(n).



Summary

One-way functions

Average-case complexity

Some notions of average-case and worst-case hardness


