What will we cover in this lecture?

- One-way functions
- Average-case complexity
Most forms of cryptography depend on $P \neq NP$

- Whenever there is a private key with the property that an encoded message can be decoded efficiently with the private key, this is an NP problem.

- So if $P = NP$, breaking the cryptographic scheme can be done in polynomial time.
One-way functions (OWFs)

Definition (one-way functions)

A polynomial-time computable function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) is a one-way function if for every polynomial-time probabilistic TM \(M \) there is a negligible function \(\epsilon : \mathbb{N} \rightarrow [0, 1] \) such that for every \(n \in \mathbb{N} \):

\[
P_{x \in \{0,1\}^n} \left[M(y) = x' \text{ such that } f(x') = y \right] < \epsilon(n)
\]

where a function \(\epsilon : \mathbb{N} \rightarrow [0, 1] \) is negligible if \(\epsilon(n) = \frac{1}{n^{\omega(1)}} \), that is, for every \(c \) and sufficiently large \(n \), \(\epsilon(n) < \frac{1}{n^c} \).

- Conjecture: there exist one-way functions (implying \(P \neq NP \))
- OWFs can be used to create private-key cryptography
Consider the function f_U that is defined as follows. If there exists any OWF f, then f_U is also an OWF.

- Treat the input x as a list $x_1, \ldots, x_{\log n}$ of $n / \log n$ bit long strings.
- Output $M_{1}^{n^2}(x_1) \ldots M_{\log n}^{n^2}(x_{\log n})$.
- Here $M_{i}^{t}(y)$ denotes the output that the ith TM M_i gives on input y, or $0^{|y|}$ if M_i takes more than t steps on input y.

Main idea:

- If there is an OWF, then there is one that runs in time n^2—using padding.
- The function that concatenates the output of several (polynomial-time computable) functions f_1, \ldots, f_k is an OWF if and only if at least one of f_1, \ldots, f_k is an OWF.
- Whenever n gets large enough, there is some M_i that is an OWF that runs in time at most n^2, and so therefore is f_U.
Definition

An encryption scheme is a pair \((E, D)\) of algorithms, each taking a key \(k\) and a message \(x\), such that \(D_k(E_k(x)) = x\).

The scheme is perfectly secret, for messages of length \(m\) and keys of length \(n\), if for every pair \(x, x' \in \{0, 1\}^m\) of messages, the distributions \(E_{U_n}(x)\) and \(E_{U_n}(x')\) are identical.

The scheme is computationally secure if for every probabilistic polynomial-time algorithm \(A\), there is a negligible function \(\epsilon : \mathbb{N} \to [0, 1]\) such that

\[
P \left(k \in_R \{0, 1\}^n \right. x \in_R \{0, 1\}^m \left[A(E_k(x)) = (i, b) \text{ s.t. } x_i = b \right] < \frac{1}{2} + \epsilon(n).
\]

- Suppose that OWFs exist. Then for every \(c \in \mathbb{N}\) there exists a computationally secure encryption scheme \((E, D)\) using \(n\)-length keys for \(n^c\)-length messages.
A problem $L \subseteq \{0, 1\}^*$ can be solved in worst-case running time $T(n)$ if there exists an algorithm A that solves L and that halts within time $T(|x|)$ for each $x \in \{0, 1\}^*$.

In other words, the worst-case running time $T(n)$ is the maximum of the running times for all inputs of size n.
A *distributional problem* $\langle L, D \rangle$ consists of a language $L \subseteq \{0, 1\}^*$ and a sequence $D = \{D_n\}_{n \in \mathbb{N}}$ of probability distributions, where each D_n is a probability distribution over $\{0, 1\}^n$.
The class \(\text{distP} / \text{avgP} \)

Definition (distP)

\(\langle L, \mathcal{D} \rangle \) is in the class \(\text{distP} \) (also called: \(\text{avgP} \)) if there exists a deterministic TM \(M \) that decides \(L \) and a constant \(\epsilon > 0 \) such that for all \(n \in \mathbb{N} \):

\[
\mathbb{E}_{x \in R \mathcal{D}_n} \left[\text{time}_M(x)^\epsilon \right] \text{ is } O(n).
\]

- The \(\epsilon \) is there for technical reasons—to invert a polynomial to \(O(n) \).
Definition (P-computable distributions)

A sequence $\mathcal{D} = \{D_n\}_{n \in \mathbb{N}}$ of distributions is \textit{P-computable} if there exists a polynomial-time TM that, given $x \in \{0, 1\}^n$, computes:

$$
\mu_{D_n}(x) = \sum_{y \in \{0, 1\}^n, y \leq x} \mathbb{P}[y],
$$

where $y \leq x$ if the number represented by the binary string y is at most the number represented by the binary string x.

Definition (P-samplable distributions)

A sequence $\mathcal{D} = \{D_n\}_{n \in \mathbb{N}}$ of distributions is P-samplable if there exists a polynomial-time probabilistic TM M such that for each $n \in \mathbb{N}$, the random variables $M(1^n)$ and D_n are equally distributed.
The class distNP and sampNP

<table>
<thead>
<tr>
<th>Definition (distNP)</th>
<th>A problem $\langle L, D \rangle$ is in distNP if $L \in \text{NP}$ and D is P-computable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition (sampNP)</td>
<td>A problem $\langle L, D \rangle$ is in sampNP if $L \in \text{NP}$ and D is P-samplable.</td>
</tr>
</tbody>
</table>

- The questions “$\text{distNP} \neq \text{distP}$” and “$\text{sampNP} \neq \text{distP}$” are average-case analogues of the question “$\text{NP} \neq \text{P}$”
Definition (zero-error heuristics)

A zero-error heuristic H for f is a probabilistic polynomial-time algorithm that for each $x \in \{0, 1\}^*$, when given x as input, it outputs either $f(x)$ or “?”.

Definition (zero-error average-case hardness)

Let $\alpha : \mathbb{N} \rightarrow [0, 1]$ be a function. A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is zero-error α-hard-on-average if for all zero-error heuristics H for f and all sufficiently large $n \in \mathbb{N}$, it holds that:

$$\mathbb{P}_{x \in \{0, 1\}^n} [H(x) = "?"] \geq \alpha(n).$$
One-way functions

Average-case complexity