Meta Complexity

Lecture 2

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

January 8, 2023

What will we cover in this lecture?

- One-way functions
- Average-case complexity

Most forms of cryptography depend on $P \neq NP$

- Whenever there is a private key with the property that an encoded message can be decoded efficiently with the private key, this is an NP problem
- So if P = NP, breaking the cryptographic scheme can be done in polynomial time

Definition (one-way functions)

A polynomial-time computable function $f : \{0,1\}^* \to \{0,1\}^*$ is a *one-way function* if for every polynomial-time probabilistic TM \mathbb{M} there is a negligible function $\epsilon : \mathbb{N} \to [0,1]$ such that for every $n \in \mathbb{N}$:

$$\mathbb{P}_{\substack{x \in_{\mathsf{R}} \{0,1\}^n \\ y = f(x)}} \left[\ \mathbb{M}(y) = x' \text{ such that } f(x') = y \ \right] < \epsilon(n)$$

where a function $\epsilon : \mathbb{N} \to [0, 1]$ is *negligible* if $\epsilon(n) = \frac{1}{n^{\omega(1)}}$, that is, for every c and sufficiently large n, $\epsilon(n) < \frac{1}{n^c}$.

- Conjecture: there exist one-way functions (implying $P \neq NP$)
- OWFs can be used to create private-key cryptography

Levin's universal OWF

- Consider the function f_U that is defined as follows. If there exists any OWF f, then f_U is also an OWF.
 - Treat the input x as a list $x_1, \ldots, x_{\log n}$ of $n / \log n$ bit long strings.
 - Output $\mathbb{M}_1^{n^2}(x_1) \dots \mathbb{M}_{\log n}^{n^2}(x_{\log n})$.
 - Here M^t_i(y) denotes the output that the *i*th TM M_i gives on input y, or 0^{|y|} if M_i takes more than t steps on input y.
- Main idea:
 - If there is an OWF, then there is one that runs in time n^2 —using padding.
 - The function that concatenates the output of several (polynomial-time computable) functions f_1, \ldots, f_k is an OWF if and only if at least one of f_1, \ldots, f_k is an OWF.
 - Whenever *n* gets large enough, there is some \mathbb{M}_i that is an OWF that runs in time at most n^2 , and so therefore is f_U .

Definition

An *encryption scheme* is a pair (E, D) of algorithms, each taking a key k and a message x, such that $D_k(E_k(x)) = x$.

The scheme is *perfectly secret*, for messages of length *m* and keys of length *n*, if for every pair $x, x' \in \{0, 1\}^m$ of messages, the distributions $E_{U_n}(x)$ and $E_{U_n}(x')$ are identical.

The scheme is *computationally secure* if for every probabilistic polynomial-time algorithm A, there is a negligible function $\epsilon : \mathbb{N} \to [0, 1]$ such that

$$\mathbb{P}_{\substack{k \in_{\mathsf{R}} \{0,1\}^{n} \\ x \in_{\mathsf{R}} \{0,1\}^{m}}} \left[A(E_{k}(x)) = (i,b) \text{ s.t. } x_{i} = b \right] < 1/2 + \epsilon(n).$$

Suppose that OWFs exist. Then for every $c \in \mathbb{N}$ there exists a computationally secure encryption scheme (E, D) using *n*-length keys for *n^c*-length messages.

- A problem L ⊆ {0,1}* can be solved in worst-case running time T(n) if there exists an algorithm A that solves L and that halts within time T(|x|) for each x ∈ {0,1}*.
- In other words, the worst-case running time T(n) is the maximum of the running times for all inputs of size n.

Definition (distributional problems)

A distributional problem $\langle L, \mathcal{D} \rangle$ consists of a language $L \subseteq \{0, 1\}^*$ and a sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of probability distributions, where each \mathcal{D}_n is a probability distribution over $\{0, 1\}^n$.

Definition (distP)

 $\langle L, D \rangle$ is in the class distP (also called: avgP) if there exists a deterministic TM M that decides L and a constant $\epsilon > 0$ such that for all $n \in \mathbb{N}$:

 $\mathbb{E}_{x \in_{\mathsf{R}} \mathcal{D}_n} [\operatorname{time}_{\mathbb{M}}(x)^{\epsilon}] \text{ is } O(n).$

• The ϵ is there for technical reasons—to invert a polynomial to O(n).

Definition (P-computable distributions)

A sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions is P-*computable* if there exists a polynomial-time TM that, given $x \in \{0, 1\}^n$, computes:

$$\mu_{\mathcal{D}_n}(x) = \sum_{\substack{y \in \{0,1\}^n \\ y \leq x}} \mathbb{P}_n[y],$$

where $y \le x$ if the number represented by the binary string y is at most the number represented by the binary string x.

Definition (P-samplable distributions)

A sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions is P-samplable if there exists a polynomial-time probabilistic TM \mathbb{M} such that for each $n \in \mathbb{N}$, the random variables $\mathbb{M}(1^n)$ and \mathcal{D}_n are equally distributed.

Definition (distNP)

A problem $\langle L, D \rangle$ is in distNP if $L \in NP$ and D is P-computable.

Definition (sampNP)

A problem $\langle L, \mathcal{D} \rangle$ is in sampNP if $L \in NP$ and \mathcal{D} is P-samplable.

The questions "distNP [?] distP" and "sampNP [?] distP" are average-case analogues of the question "NP [?] P"

Definition (zero-error heuristics)

A zero-error heuristic H for f is a probabilistic polynomial-time algorithm that for each $x \in \{0, 1\}^*$, when given x as input, it outputs either f(x) or "?".

Definition (zero-error average-case hardness)

Let $\alpha : \mathbb{N} \to [0,1]$ be a function. A function $f : \{0,1\}^n \to \{0,1\}$ is zero-error α -hard-on-average if for all zero-error heuristics H for f and all sufficiently large $n \in \mathbb{N}$, it holds that:

$$\mathbb{P}_{x \in_{\mathsf{R}} \{0,1\}^n} [H(x) = "?"] \geq \alpha(n).$$

Summary

- One-way functions
- Average-case complexity