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- The project organization in a nutshell

m Introductory lectures and Q&A sessions
m Recorded video lectures from the Simons Institute
m You study a paper (possibly in pairs), and present it to the group

m You write a final report



- What will we cover in this lecture?

m What is meta complexity?
m Basic observations and results about MCSP

m A brief primer on Kolmogorov complexity



- What is meta complexity?

m Meta complexity is an informal term referring to the computational complexity
study of problems that have a ‘complexity flavor’

m So in a sense, meta complexity studies the complexity of complexity problems
(hence the phrase ‘meta’)

m This turns out to be fruitful for studying various notions related to computational
complexity, learning, cryptography, etc.



- The Minimum Circuit Size Problem (MCSP)

m MCSP:

m /nput: a Boolean function F over n variables given by its truth table
(containing 2" entries), and a positive integer s € N (given in binary).

m Question: does there exist a Boolean circuit C of size s that expresses the
function F?

m MCSP(s], for a function s : N — N:

m /nput: a Boolean function F over n variables given by its truth table
(containing 2" entries).

m Question: does there exist a Boolean circuit C of size s(2")
that expresses the function F?



- Black-box problem

m Intuitively, MCSP is a black-box problem:
m We are given the input-output behavior of a function F

m The task is to see if this function F has small circuits

m Compare this to white-box problems such as SAT, where we are given an explicit
way to compute the Boolean function F about which we are answering a
question—namely, by means of a formula or circuit



- MCSP is in NP

m MCSP is in NP

m Might seem odd at first:

m Circuits to consider are exponentially large in the size of (the binary encoding of) s

m Main idea:
m There is always a circuit for F of size O(2")
m We are given the truth table of F as input, which is of size 2"
m So we can guess a circuit C of size at most O(2") in polynomial time

m And check if C expresses F by iterating over all rows « in the truth table,
and checking if C(«a) = F(a)



- Open question: is MCSP in P? Is it NP-complete?

m One main open research question:

Is MCSP NP-complete?

m MCSP is not in P assuming one-way functions exist.

m More on this later..



- A connection between MCSP and circuit lower bounds

m The following two are equivalent:
m Showing that DTIME(2°(") does not have Boolean circuits of size s(n)

m Efficiently (in polynomial time) constructing no-instances
of MCSP[s']—where s’ = s o log—of size 2",given 2" in unary.

m Main idea:

m Suppose there is a problem L in DTIME(2°(") that has no circuits of size s(n).
Using this, we can compute in time 29(") = poly(2") the truth table of problem L on
inputs of size n.

This is a no-instance of MCSP[s'] of size 2".

m Suppose you can efficiently construct no-instances of MCSP[s’] of size 2".
Using this, for each input size, we can construct (in exponential time) a truth table
of a Boolean function that has no circuits of size s(n).
This yields a problem in DTIME(2°(") that has no circuits of size s(n).



- Kolmogorov complexity: origins in randomness

m One of the main roots of Kolmogorov complexity is the study of randomness
m Consider the strings 000000000000 and 011011110010, both of length 12.
m Is one more ‘random’ than the other?

m How do we measure this? Perhaps considering a probability distribution over all
strings of length 12 and considering the probability of the strings. The uniform
distribution doesn’t help to define randomness.

m |dea of Kolmogorov complexity: measure the amount to which strings can be
compressed.



- Kolmogorov complexity

m Pick some universal Turing machine U.

m The Kolmogorov complexity C(x) of a string x is defined as:

C(x) = min{ |p| : U(p) = x }.

m In other words, the Kolmogorov complexity C(x) of x is the size of the smallest
program p that, when executed by U, yields x as output.



- Invariance Theorem

m The definition of the Kolmogorov complexity C depends on the choice of the
UTM U. But:

m The Invariance Theorem states that for any two UTMs Uy, U,

there is some constant ¢ € N (depending only on Uy, U»)
such that for all strings x it holds that Cy,(x) < Cy,(x) + c.

m Main idea: give U, a description of U; and a program p for Uy, together with
instructions to simulate U; on p.

m In other words, up to some additive constant, the choice of which UTM to use
does not matter.



- A basic upper bound on the Kolmogorov complexity of strings

m For each string x € {0,1}" it holds that C(x) is O(n).

m Main idea: construct a program p that contains x explicitly and the instruction to
print x.

m The size of this program is n (to write down x) plus some additional constant (for
the instructions to print out x).



- Strings with high Kolmogorov complexity exist

m For each n € N, there exists a string x € {0,1}" such that C(x) > n.
m Main idea: counting.
m There are 2" strings x € {0,1}".
m The number of programs p of length < n is 27;01 2l =2m 1.

m By the pigeonhole principle, there must be at least one string x € {0,1}"
with C(x) > n.



- Kolmogorov complexity is uncomputable

m The problem of computing the Kolmogorov complexity C(x) of a string x is
uncomputable.

m Main idea: an incompressibility argument.

m Suppose, to derive a contradiction, that C is computable.

Consider the following algorithm A, whose description will be of length P + log M:
B lterate over all strings x € {0,1}", from shortest to longer.
m For each string x, compute C(x). If C(x) > M, return x.
m (In other words, Ay returns the first string x with C(x) > M.)

m Now select M such that M > P + log M.

m Let x be the string that Ay returns. So C(x) < P+ log M < M.
This contradicts that C(x) > M.



- Time-bounded Kolmogorov complexity

m Resource-bounded variants of Kolmogorov complexity have been considered.
mlett:N—N.

m Then:
Ct(x) = min{ |p| : U(p) = x in time t(|x]) }.

m Observation: for each x and each t, it holds that C(x) < C(x).



- Levin's Kt complexity

m Levin's Kt complexity is another variant that is based on time bounds.

m It is defined as follows:

Kt(x) = min{ |p| + logt : U(p) = x in time t }.

m Observation: for each x, it holds that C(x) < Kt(x).



- Computational problems: MINKT, MK®P, and MKtP

m MINKT: given a string x and s, t € N in unary, decide whether there is a
program p of size < s such that U(p) = x in time t.

m in NP

m MK!P: given a string x and s € N in unary, decide whether there is a program p of
size < s such that U(p) = x in time t(|x|).

m in NP

m MKtP: given a string x and s € N in unary, decide whether Kt(x) < s.
m in EXP



- A note on notation

m There is also a variant of Kolmogorov complexity called prefix complexity, that is
based on prefix-free codes

m (This has some theoretical advantages over the classical definition, in some settings)

m Typically, the letter K is used to denote (variants of) prefix complexity, and the
letter C is used for the classical versions—but this differs from text to text.

m More generally, notations may differ slightly from one text to the other,
so be aware. :-)
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