
Meta Complexity

Lecture 1

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

January 8, 2023

The project organization in a nutshell

Introductory lectures and Q&A sessions

Recorded video lectures from the Simons Institute

You study a paper (possibly in pairs), and present it to the group

You write a final report

What will we cover in this lecture?

What is meta complexity?

Basic observations and results about MCSP

A brief primer on Kolmogorov complexity

What is meta complexity?

Meta complexity is an informal term referring to the computational complexity
study of problems that have a ‘complexity flavor’

So in a sense, meta complexity studies the complexity of complexity problems
(hence the phrase ‘meta’)

This turns out to be fruitful for studying various notions related to computational
complexity, learning, cryptography, etc.

The Minimum Circuit Size Problem (MCSP)

MCSP:

Input: a Boolean function F over n variables given by its truth table
(containing 2n entries), and a positive integer s ∈ N (given in binary).

Question: does there exist a Boolean circuit C of size s that expresses the
function F?

MCSP[s], for a function s : N→ N:
Input: a Boolean function F over n variables given by its truth table
(containing 2n entries).

Question: does there exist a Boolean circuit C of size s(2n)
that expresses the function F?

Black-box problem

Intuitively, MCSP is a black-box problem:

We are given the input-output behavior of a function F

The task is to see if this function F has small circuits

Compare this to white-box problems such as SAT, where we are given an explicit
way to compute the Boolean function F about which we are answering a
question—namely, by means of a formula or circuit

MCSP is in NP

MCSP is in NP

Might seem odd at first:

Circuits to consider are exponentially large in the size of (the binary encoding of) s

Main idea:

There is always a circuit for F of size O(2n)

We are given the truth table of F as input, which is of size 2n

So we can guess a circuit C of size at most O(2n) in polynomial time

And check if C expresses F by iterating over all rows α in the truth table,
and checking if C (α) = F (α)

Open question: is MCSP in P? Is it NP-complete?

One main open research question:

Is MCSP NP-complete?

MCSP is not in P assuming one-way functions exist.

More on this later..

A connection between MCSP and circuit lower bounds

The following two are equivalent:

Showing that DTIME(2O(n)) does not have Boolean circuits of size s(n)

Efficiently (in polynomial time) constructing no-instances
of MCSP[s ′]—where s ′ = s ◦ log—of size 2n,given 2n in unary.

Main idea:

Suppose there is a problem L in DTIME(2O(n)) that has no circuits of size s(n).
Using this, we can compute in time 2O(n) = poly(2n) the truth table of problem L on
inputs of size n.
This is a no-instance of MCSP[s ′] of size 2n.

Suppose you can efficiently construct no-instances of MCSP[s ′] of size 2n.
Using this, for each input size, we can construct (in exponential time) a truth table
of a Boolean function that has no circuits of size s(n).
This yields a problem in DTIME(2O(n)) that has no circuits of size s(n).

Kolmogorov complexity: origins in randomness

One of the main roots of Kolmogorov complexity is the study of randomness

Consider the strings 000000000000 and 011011110010, both of length 12.

Is one more ‘random’ than the other?

How do we measure this? Perhaps considering a probability distribution over all
strings of length 12 and considering the probability of the strings. The uniform
distribution doesn’t help to define randomness.

Idea of Kolmogorov complexity: measure the amount to which strings can be
compressed.

Kolmogorov complexity

Pick some universal Turing machine U.

The Kolmogorov complexity C (x) of a string x is defined as:

C (x) = min{ |p| : U(p) = x }.

In other words, the Kolmogorov complexity C (x) of x is the size of the smallest
program p that, when executed by U, yields x as output.

Invariance Theorem

The definition of the Kolmogorov complexity C depends on the choice of the
UTM U. But:

The Invariance Theorem states that for any two UTMs U1,U2
there is some constant c ∈ N (depending only on U1,U2)
such that for all strings x it holds that CU2(x) ≤ CU1(x) + c .

Main idea: give U2 a description of U1 and a program p for U1, together with
instructions to simulate U1 on p.

In other words, up to some additive constant, the choice of which UTM to use
does not matter.

A basic upper bound on the Kolmogorov complexity of strings

For each string x ∈ {0, 1}n it holds that C (x) is O(n).

Main idea: construct a program p that contains x explicitly and the instruction to
print x .

The size of this program is n (to write down x) plus some additional constant (for
the instructions to print out x).

Strings with high Kolmogorov complexity exist

For each n ∈ N, there exists a string x ∈ {0, 1}n such that C (x) ≥ n.

Main idea: counting.

There are 2n strings x ∈ {0, 1}n.

The number of programs p of length < n is
∑n−1

i=0 2i = 2n − 1.

By the pigeonhole principle, there must be at least one string x ∈ {0, 1}n
with C (x) ≥ n.

Kolmogorov complexity is uncomputable

The problem of computing the Kolmogorov complexity C (x) of a string x is
uncomputable.

Main idea: an incompressibility argument.

Suppose, to derive a contradiction, that C is computable.

Consider the following algorithm AM , whose description will be of length P + logM:

Iterate over all strings x ∈ {0, 1}∗, from shortest to longer.

For each string x , compute C(x). If C(x) ≥ M, return x .

(In other words, AM returns the first string x with C(x) ≥ M.)

Now select M such that M > P + logM.

Let x be the string that AM returns. So C (x) ≤ P + logM < M.
This contradicts that C (x) ≥ M.

Time-bounded Kolmogorov complexity

Resource-bounded variants of Kolmogorov complexity have been considered.

Let t : N→ N.

Then:
C t(x) = min{ |p| : U(p) = x in time t(|x |) }.

Observation: for each x and each t, it holds that C (x) ≤ C t(x).

Levin’s Kt complexity

Levin’s Kt complexity is another variant that is based on time bounds.

It is defined as follows:

Kt(x) = min{ |p|+ log t : U(p) = x in time t }.

Observation: for each x , it holds that C (x) ≤ Kt(x).

Computational problems: MINKT, MKtP, and MKtP

MINKT: given a string x and s, t ∈ N in unary, decide whether there is a
program p of size ≤ s such that U(p) = x in time t.

in NP

MKtP: given a string x and s ∈ N in unary, decide whether there is a program p of
size ≤ s such that U(p) = x in time t(|x |).

in NP

MKtP: given a string x and s ∈ N in unary, decide whether Kt(x) ≤ s.

in EXP

A note on notation

There is also a variant of Kolmogorov complexity called prefix complexity, that is
based on prefix-free codes

(This has some theoretical advantages over the classical definition, in some settings)

Typically, the letter K is used to denote (variants of) prefix complexity, and the
letter C is used for the classical versions—but this differs from text to text.

More generally, notations may differ slightly from one text to the other,
so be aware. :-)

Summary

What is meta complexity?

Basic observations and results about MCSP

A brief primer on Kolmogorov complexity

