Computational Social Choice and Complexity Theory

Ronald de Haan

University of Amsterdam

https://staff.science.uva.nl/r.dehaan/esslli2018 me@ronalddehaan.eu

ESSLLI 2018 - Day 5

Recap

Voting

- Winner Determination, Manipulation, Bribery
- Domain Restrictions, Single-Peakedness
- Judgment Aggregation

What we'll do today

- Stable Matching
- ► The Gale-Shapley Algorithm
- Strategizing
- Variants of Matching Problems

Stable Matching

Bipartite Matching of Agents

preference of <i>a</i> 1:	$b_1 \succ_{a_1} b_2$
preference of a2:	$b_2 \succ_{a_2} b_1$

preference of b_1 : $a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_1$

Bipartite Matching of Agents

preference of <i>a</i> 1:	$b_1 \succ_{a_1} b_2$
preference of a2:	$b_2 \succ_{a_2} b_1$

preference of b_1 : $a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_1$ Bipartite Matching of Agents

preference of a_1 : $b_1 \succ_{a_1} b_2$ preference of a_2 : $b_2 \succ_{a_2} b_1$

preference of b_1 : $a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_1$

Stable matching

- Two sets of agents (of same size):
 - $A = \{a_1, \ldots, a_n\}$
 - $\blacktriangleright B = \{b_1, \ldots, b_n\}$
- ► Each agent has a preference over all agents from the other side (candidates): a linear order ≻
 - ► All preferences together: preference profile
- A matching is a bijection μ between A and B
 - Blocking pair: $(a, b) \in A \times B$ such that:
 - ► (*a*, *b*) ∉ µ,
 - $b \succ_a \mu(a)$, and
 - $a \succ_b \mu(b)$.
 - \blacktriangleright Matching μ is stable if there exists no blocking pair

$$A = \{a_1, a_2\}, \quad B = \{b_1, b_2\}$$

preference of
$$a_1$$
: $b_1 \succ_{a_1} b_2$ preference of a_2 : $b_2 \succ_{a_2} b_1$

preference of
$$b_1$$
: $a_2 \succ_{b_1} a_1$
preference of b_2 : $a_2 \succ_{b_2} a_1$

Stable matching:

$$A = \{a_1, a_2\}, \quad B = \{b_1, b_2\}$$

- preference of a_1 : $b_1 \succ_{a_1} b_2$ preference of a_2 : $b_2 \succ_{a_2} b_1$
- preference of b_1 : $a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_1$

Unstable matching:

$$A = \{a_1, a_2\}, \quad B = \{b_1, b_2\}$$

 $\begin{array}{ll} \text{preference of } a_1 \colon & b_1 \succ_{a_1} b_2 \\ \text{preference of } a_2 \colon & b_2 \succ_{a_2} b_1 \end{array}$

preference of
$$b_1$$
: $a_2 \succ_{b_1} a_1$
preference of b_2 : $a_2 \succ_{b_2} a_1$

Unstable matching:

$$A = \{a_1, a_2\}, \quad B = \{b_1, b_2\}$$

- preference of a_1 : $b_1 \succ_{a_1} b_2$ preference of a_2 : $b_2 \succ_{a_2} b_1$
- preference of b_1 : $a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_1$

- Does a stable matching always exist?
- Can we find a stable matching efficiently, if it exists?

- Answers: yes, and yes.
- A stable matching always exists and we can use the Gale-Shapley algorithm to find one.

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. American Mathematical Monthly, 69:9–15, 1962.

- We choose one side (say A) as proposing side, and we construct the matching μ in rounds.
- In each round, a currently unmatched agent a ∈ A proposes to their top ranked agent b ∈ B that they have not proposed to before
- When some $b \in B$ is proposed to by $a \in A$:
 - if b is currently unmatched, they provisionally accept the match with a
 - if b is currently matched to a', and $a' \succ_b a$, then b rejects a
 - if b is currently matched to a', and a ≻_b a', then b rejects their previous match a' (and a' becomes unmatched again)
- \blacktriangleright We continue until all agents are matched, and return the constructed matching μ

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_{3} \succ_{b_{1}} a_{2} \succ_{b_{1}} a_{1}$$
$$a_{2} \succ_{b_{2}} a_{3} \succ_{b_{2}} a_{1}$$
$$a_{2} \succ_{b_{3}} a_{3} \succ_{b_{3}} a_{1}$$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_{3} \succ_{b_{1}} a_{2} \succ_{b_{1}} a_{1}$$
$$a_{2} \succ_{b_{2}} a_{3} \succ_{b_{2}} a_{1}$$
$$a_{2} \succ_{b_{3}} a_{3} \succ_{b_{3}} a_{1}$$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_{3} \succ_{b_{1}} a_{2} \succ_{b_{1}} a_{1}$$
$$a_{2} \succ_{b_{2}} a_{3} \succ_{b_{2}} a_{1}$$
$$a_{2} \succ_{b_{3}} a_{3} \succ_{b_{3}} a_{1}$$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$$
$$a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$$
$$a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

preference of b_1 : preference of b_2 : preference of b_3 :

$$a_{3} \succ_{b_{1}} a_{2} \succ_{b_{1}} a_{1}$$
$$a_{2} \succ_{b_{2}} a_{3} \succ_{b_{2}} a_{1}$$
$$a_{2} \succ_{b_{3}} a_{3} \succ_{b_{3}} a_{1}$$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$

- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- preference of b_1 : $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$ preference of b_2 : $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$
- preference of a_1 : $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
- preference of b_3 : $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- ► Claim: the Gale-Shapley algorithm always terminates in ≤ n² rounds
 - ► In every round, one candidate proposes to one other candidate
 - ► The proposing agents only go down in their preference list
 - So, every proposal happens at most once
 - Thus, there are at most n^2 rounds

- Claim: when the Gale-Shapley algorithm terminates, all agents (on both sides) are matched
 - Every agent on the proposing side is matched
 - Suppose there is some proposing agent c that is not matched
 - Then some non-proposing agent d is also not matched
 - At some point *c* proposed to *d*
 - Then d would remain matched to some agent throughout the process
 - Contradiction!
 - Every agent on the non-proposing side is matched
 - By counting: there are equally proposing and non-proposing agents, and matchings are one-to-one

- Claim: the matching returned by the Gale-Shapley algorithm is stable
 - ► Consider a pair (c, d) that is not matched, where c is on the proposing side
 - We distinguish two cases
 - (1) Either c proposed to d at some point
 - Then d prefers their current partner to c (since c and d are not matched anymore)
 - (2) Or c never proposed to d
 - Then c prefers their current partner to d
 - In both cases, (c, d) is not a blocking pair

Outcomes of the Gale-Shapley Algorithm

preference of a_1 : preference of *a*₃:

preference of b_1 : preference of b_2 : preference of b_3 :

- $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ $b_2 \succ_{a_3} b_1 \succ_{a_3} b_3$
 - $a_3 \succ_{b_1} a_2 \succ_{b_1} a_1$ $a_2 \succ_{b_2} a_3 \succ_{b_2} a_1$ $a_2 \succ_{b_3} a_3 \succ_{b_3} a_1$

- What are the properties of the stable matchings returned by the Gale-Shapley algorithm?
 - Does it find all stable matchings?
 - Do the matchings that it finds satisfy certain fairness properties?
 - Can the agents manipulate the outcome by strategically reporting insincere preferences?

A- and B-Optimality

- ► A stable matching is A-optimal if every agent a ∈ A is matched to their most preferred agent among the agents b that they are matched with in any stable matching
- ► A stable matching is *B*-optimal if every agent b ∈ B is matched to their most preferred agent among the agents a that they are matched with in any stable matching

Theorem (Gale, Shapley, 1962)

The A-proposing Gale-Shapley algorithm results in the (unique) A-optimal matching. The B-proposing Gale-Shapley algorithm results in the (unique) B-optimal matching.

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. American Mathematical Monthly, 69:9–15, 1962.

A- and B-Optimality

Theorem (Gale, Shapley, 1962)

The A-proposing Gale-Shapley algorithm results in the (unique) A-optimal matching. The B-proposing Gale-Shapley algorithm results in the (unique) B-optimal matching.

► Idea:

- Suppose some a is matched to b, but there is another stable matching µ' where a is matched to b', and b' ≻_a b
- So a proposed to b' before, but b' rejected
- Assume that this was the first rejection of a "stable partner"
- ▶ Let *a*′ be the agent that *b*′ chose over *a*
- ► Then a' prefers b' over all "stable partners" (because b' rejecting a was the first rejection of a "stable partner")
- But then μ' is not stable, as (a', b') is a blocking pair
- Contradiction!

Examples of Stable Matchings

preference of a_1 :

 $b_1 \succ_{a_1} b_2 \succ_{a_1} b_3$ preference of a_2 : $b_2 \succ_{a_2} b_3 \succ_{a_2} b_1$ preference of a_3 : $b_3 \succ_{a_3} b_1 \succ_{a_3} b_2$

preference of b_1 : $a_2 \succ_{b_1} a_3 \succ_{b_1} a_1$ preference of b_2 : $a_3 \succ_{b_2} a_1 \succ_{b_2} a_2$ preference of b_3 : $a_1 \succ_{b_3} a_2 \succ_{b_3} a_3$

So the Gale-Shapley algorithm does not find all stable matchings

- Strategizing for a mechanism M consists of an agent c reporting an insincere preference order ≻'_c so that the outcome of M for ≻'_c is preferred by c over the outcome of M for ≻_c
- Is the Gale-Shapley algorithm strategyproof?

Theorem (Roth, 1982)

The A-proposing Gale-Shapley algorithm is strategyproof for A. The B-proposing Gale-Shapley algorithm is strategyproof for B.

A.E. Roth. The Economics of Matching: Stability and Incentives. Mathematics of Operations Research, 7:617–628, 1982.

Is there a stable matching mechanism that is strategyproof for both A and B?

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and strategyproof for both A and B.

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and strategyproof for both A and B.

preference of b_1 : a preference of b_2 : a preference of b_3 : a

$$a_1 \succ_{b_1} a_3 \succ_{b_1} a_2$$
$$a_3 \succ_{b_2} a_1 \succ_{b_2} a_2$$
$$a_1 \succ_{b_2} a_2 \succ_{b_2} a_3$$

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and strategyproof for both A and B.

preference of a_3 : $b_1 \succ_{a_3} b_2 \succ_{a_3} b_3$ preference of b_1 : preference of b_2 : preference of b_3 :

$$a_1 \succ_{b_1} a_3 \succ_{b_1} a_2$$
$$a_3 \succ_{b_2} a_1 \succ_{b_2} a_2$$
$$a_1 \succ_{b_3} a_2 \succ_{b_3} a_3$$

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and strategyproof for both A and B.

preference of a₁: preference of a_2 : $b_1 \succ_{a_2} b_2 \succ_{a_2} b_3$ preference of a_3 : $b_1 \succ_{a_3} b_2 \succ_{a_3} b_3$ preference of b_1 : $a_1 \succ_{b_1} a_2 \succ_{b_1} a_3$

- preference of b_2 : $a_3 \succ_{b_2} a_1 \succ_{b_2} a_2$
- preference of b_3 : $a_1 \succ_{b_3} a_2 \succ_{b_3} a_3$

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and strategyproof for both A and B.

preference of b_1 : $a_1 \succ_{b_1} a_3 \succ_{b_1} a_2$ preference of b_2 : $a_3 \succ_{b_2} a_1 \succ_{b_2} a_2$ preference of b_3 : $a_1 \succ_{b_3} a_2 \succ_{b_3} a_3$

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and strategyproof for both A and B.

preference of b_1 : $a_1 \succ_{b_1} a_3 \succ_{b_1} a_2$ preference of b_2 : $a_3 \succ_{b_2} a_1 \succ_{b_2} a_2$ preference of b_3 : $a_1 \succ_{b_3} a_2 \succ_{b_3} a_3$

Stable Matching with Incomplete Lists

- Instead of specifying a full linear order over all agents on the other side, agents can specify a set of agents that they find acceptable, and give a linear preference order over them
- An agent prefers remaining unmatched over being matched with an agent they find unacceptable
- A matching is stable in this setting if there is no:
 - blocking pair, and
 - no agent that prefers being unmatched over their current match
- The Gale-Shapley algorithm can be extended to the case with incomplete lists

Stable Matching with Incomplete Lists and Ties

- We can also, in addition, allow agents to specify weak preference orders
 - ► I.e., allowing ties in their preferences
- ► In this case, stable matchings can have different size:

preference of a_1 : b_1 preference of a_2 : $b_1 \succ_{a_2} b_2$

preference of b_1 : $a_1 \sim_{b_1} a_2$ preference of b_2 : a_2 Max-SMTI

Input: two sets A and B of agents, for each agent $c \in A \cup B$ their preferences (with unacceptable agents and ties) over the agents in the other set, and a partial matching μ .

Output: Is there a maximum size stable matching that includes μ ?

Theorem (Manlove et al., 2002)

Max-SMTI is NP-complete.

D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard Variants of Stable Marriage. Theoretical Computer Science, 276(12):261–279, 2002.

Stable Roommates

- Instead of a bipartite matching scenario with two sets A and B, we have one single set A of agents
- ► Each agent a specifies a preference over the other agents A \ {a}
- In this setting, a stable matching does not always exist

Theorem (Irving, 1985)

There exists a polynomial-time algorithm to find a stable matching for the stable roommates problem, if it exists.

R.W. Irving. An efficient algorithm for the "stable roommates" problem. Journal of Algorithms, 6(4):577–595, 1985.

Hospital-Residents Matching

- In this variant, A is a set of residents and B is a set of hospitals
 - ▶ Each hospital $b \in B$ has a capacity $c_b \in \mathbb{N}$ in addition to a preference over A
 - Both residents and hospitals can specify acceptable matches
- ► A matching then matches each resident a to ≤ 1 hospital, and each hospital b to ≤ c_b residents
- An unmatched pair (a, b) is blocking if a prefers b to their current match (or their currently being unmatched), and if b prefers to be matched with a (i.e., either if b has a free spot, or if b prefers a over one of their current matches)
- The Gale-Shapley algorithm can be extended for HR matching

Further Topics in Matching

- Optimizing for the overall satisfaction of the agents over all stable matchings
 - Average satisfaction
 - Minimizing (maximum) regret
- Different notions of quality for matchings
 - Pareto optimal matchings
 - Popular matchings
 - ► etc.

Related Story: School Matching in Amsterdam

- (Stable) matching can also be applied to assign students to schools with a limited number of spots
 - In this setting, the "preference" of schools is often based on a priority ranking or a tie-breaking lottery
- The Amsterdam school board decided to change their mechanism in 2015, resulting in a lot of controversy and even a court case!

This story features:

- ► The Gale-Shapley (or Deferred Acceptance) algorithm
- Strategizing
- Fairness
- Read about it at https://goo.gl/26915E

Recap

- Stable Matching
- The Gale-Shapley Algorithm
- Strategizing
- Variants of Matching Problems

Homework exercise

• Let
$$A = \{a_1, a_2, a_3\}$$
 and let $B = \{b_1, b_2, b_3\}$.

- ▶ Find preferences for a₁, a₂, a₃ (linear orders over B) and preferences for b₁, b₂, b₃ (linear orders over A) such that there is only one stable matching.
- Perform the Gale-Shapley algorithm, both with A proposing and with B proposing.