
Computational Social Choice

and Complexity Theory

Ronald de Haan
University of Amsterdam

https://staff.science.uva.nl/r.dehaan/esslli2018

me@ronalddehaan.eu

ESSLLI 2018 – Day 5

https://staff.science.uva.nl/r.dehaan/esslli2018
me@ronalddehaan.eu


Recap

I Voting

I Winner Determination, Manipulation, Bribery

I Domain Restrictions, Single-Peakedness

I Judgment Aggregation



What we’ll do today

I Stable Matching

I The Gale-Shapley Algorithm

I Strategizing

I Variants of Matching Problems



Stable Matching



Bipartite Matching of Agents

•a1

•a2

• b1

• b2

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



Bipartite Matching of Agents

•a1

•a2

• b1

• b2

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



Bipartite Matching of Agents

•a1

•a2

• b1

• b2

•a1

•a2

• b1

• b2

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



Stable matching

I Two sets of agents (of same size):

I A = {a1, . . . , an}
I B = {b1, . . . , bn}

I Each agent has a preference over all agents from the other
side (candidates): a linear order �

I All preferences together: preference profile

I A matching is a bijection µ between A and B

I Blocking pair: (a, b) ∈ A× B such that:

I (a, b) 6∈ µ,

I b �a µ(a), and

I a �b µ(b).

I Matching µ is stable if there exists no blocking pair



Example

•a1

•a2

• b1

• b2

A = {a1, a2}, B = {b1, b2}

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



Example
Stable matching:

•a1

•a2

• b1

• b2

A = {a1, a2}, B = {b1, b2}

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



Example
Unstable matching:

•a1

•a2

• b1

• b2

A = {a1, a2}, B = {b1, b2}

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



Example
Unstable matching:

•a1

•a2

• b1

• b2

A = {a1, a2}, B = {b1, b2}

preference of a1: b1 �a1 b2
preference of a2: b2 �a2 b1

preference of b1: a2 �b1 a1
preference of b2: a2 �b2 a1



The Gale-Shapley Algorithm

I Does a stable matching always exist?

I Can we find a stable matching efficiently, if it exists?

I Answers: yes, and yes.

I A stable matching always exists and we can use the
Gale-Shapley algorithm to find one.

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage.
American Mathematical Monthly, 69:9–15, 1962.



The Gale-Shapley Algorithm

I We choose one side (say A) as proposing side, and we
construct the matching µ in rounds.

I In each round, a currently unmatched agent a ∈ A proposes to
their top ranked agent b ∈ B that they have not proposed to
before

I When some b ∈ B is proposed to by a ∈ A:

I if b is currently unmatched, they provisionally accept the
match with a

I if b is currently matched to a′, and a′ �b a, then b rejects a

I if b is currently matched to a′, and a �b a′, then b rejects
their previous match a′ (and a′ becomes unmatched again)

I We continue until all agents are matched, and return the
constructed matching µ



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 1)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 2)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm (Example Run 3)

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm

I Claim: the Gale-Shapley algorithm always terminates in ≤ n2

rounds

I In every round, one candidate proposes to one other candidate

I The proposing agents only go down in their preference list

I So, every proposal happens at most once

I Thus, there are at most n2 rounds



The Gale-Shapley Algorithm

I Claim: when the Gale-Shapley algorithm terminates, all
agents (on both sides) are matched

I Every agent on the proposing side is matched

I Suppose there is some proposing agent c that is not matched

I Then some non-proposing agent d is also not matched

I At some point c proposed to d

I Then d would remain matched to some agent throughout the
process

I Contradiction!

I Every agent on the non-proposing side is matched

I By counting: there are equally proposing and non-proposing
agents, and matchings are one-to-one



The Gale-Shapley Algorithm

I Claim: the matching returned by the Gale-Shapley algorithm
is stable

I Consider a pair (c , d) that is not matched, where c is on the
proposing side

I We distinguish two cases

(1) Either c proposed to d at some point

I Then d prefers their current partner to c

(since c and d are not matched anymore)

(2) Or c never proposed to d

I Then c prefers their current partner to d

I In both cases, (c , d) is not a blocking pair



Outcomes of the Gale-Shapley Algorithm

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b2 �a3 b1 �a3 b3

preference of b1: a3 �b1 a2 �b1 a1
preference of b2: a2 �b2 a3 �b2 a1
preference of b3: a2 �b3 a3 �b3 a1



The Gale-Shapley Algorithm

I What are the properties of the stable matchings returned by
the Gale-Shapley algorithm?

I Does it find all stable matchings?

I Do the matchings that it finds satisfy certain fairness
properties?

I Can the agents manipulate the outcome by strategically
reporting insincere preferences?



A- and B-Optimality

I A stable matching is A-optimal if every agent a ∈ A is
matched to their most preferred agent among the agents b
that they are matched with in any stable matching

I A stable matching is B-optimal if every agent b ∈ B is
matched to their most preferred agent among the agents a
that they are matched with in any stable matching

Theorem (Gale, Shapley, 1962)

The A-proposing Gale-Shapley algorithm results in the (unique)
A-optimal matching. The B-proposing Gale-Shapley algorithm
results in the (unique) B-optimal matching.

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage.
American Mathematical Monthly, 69:9–15, 1962.



A- and B-Optimality

Theorem (Gale, Shapley, 1962)

The A-proposing Gale-Shapley algorithm results in the (unique)
A-optimal matching. The B-proposing Gale-Shapley algorithm
results in the (unique) B-optimal matching.

I Idea:

I Suppose some a is matched to b, but there is another stable
matching µ′ where a is matched to b′, and b′ �a b

I So a proposed to b′ before, but b′ rejected

I Assume that this was the first rejection of a “stable partner”

I Let a′ be the agent that b′ chose over a

I Then a′ prefers b′ over all “stable partners” (because b′

rejecting a was the first rejection of a “stable partner”)

I But then µ′ is not stable, as (a′, b′) is a blocking pair

I Contradiction!



Examples of Stable Matchings

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b1 �a1 b2 �a1 b3
preference of a2: b2 �a2 b3 �a2 b1
preference of a3: b3 �a3 b1 �a3 b2

preference of b1: a2 �b1 a3 �b1 a1
preference of b2: a3 �b2 a1 �b2 a2
preference of b3: a1 �b3 a2 �b3 a3

I So the Gale-Shapley algorithm does not find all stable
matchings



Strategizing

I Strategizing for a mechanism M consists of an agent c
reporting an insincere preference order �′

c so that the outcome
of M for �′

c is preferred by c over the outcome of M for �c

I Is the Gale-Shapley algorithm strategyproof?

Theorem (Roth, 1982)

The A-proposing Gale-Shapley algorithm is strategyproof for A.
The B-proposing Gale-Shapley algorithm is strategyproof for B.

A.E. Roth. The Economics of Matching: Stability and Incentives. Mathematics
of Operations Research, 7:617–628, 1982.



Strategizing

I Is there a stable matching mechanism that is strategyproof for
both A and B?

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and
strategyproof for both A and B.



Strategizing

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and
strategyproof for both A and B.

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b2 �a1 b1 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b1 �a3 b2 �a3 b3

preference of b1: a1 �b1 a3 �b1 a2
preference of b2: a3 �b2 a1 �b2 a2
preference of b3: a1 �b3 a2 �b3 a3



Strategizing

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and
strategyproof for both A and B.

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b2 �a1 b1 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b1 �a3 b2 �a3 b3

preference of b1: a1 �b1 a3 �b1 a2
preference of b2: a3 �b2 a1 �b2 a2
preference of b3: a1 �b3 a2 �b3 a3



Strategizing

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and
strategyproof for both A and B.

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b2 �a1 b1 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b1 �a3 b2 �a3 b3

preference of b1: a1 �b1 a2 �b1 a3
preference of b2: a3 �b2 a1 �b2 a2
preference of b3: a1 �b3 a2 �b3 a3



Strategizing

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and
strategyproof for both A and B.

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b2 �a1 b1 �a1 b3
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b1 �a3 b2 �a3 b3

preference of b1: a1 �b1 a3 �b1 a2
preference of b2: a3 �b2 a1 �b2 a2
preference of b3: a1 �b3 a2 �b3 a3



Strategizing

Theorem (Roth, 1982)

There exists no matching mechanism that is stable and
strategyproof for both A and B.

•a1

•a2

•a3

• b1

• b2

• b3

•a1

•a2

•a3

• b1

• b2

• b3

preference of a1: b2 �a1 b3 �a1 b1
preference of a2: b1 �a2 b2 �a2 b3
preference of a3: b1 �a3 b2 �a3 b3

preference of b1: a1 �b1 a3 �b1 a2
preference of b2: a3 �b2 a1 �b2 a2
preference of b3: a1 �b3 a2 �b3 a3



Stable Matching with Incomplete Lists

I Instead of specifying a full linear order over all agents on the
other side, agents can specify a set of agents that they find
acceptable, and give a linear preference order over them

I An agent prefers remaining unmatched over being matched
with an agent they find unacceptable

I A matching is stable in this setting if there is no:

I blocking pair, and

I no agent that prefers being unmatched over their current
match

I The Gale-Shapley algorithm can be extended to the case with
incomplete lists



Stable Matching with Incomplete Lists and Ties

I We can also, in addition, allow agents to specify weak
preference orders

I I.e., allowing ties in their preferences

I In this case, stable matchings can have different size:

•a1

•a2

• b1

• b2

•a1

•a2

• b1

• b2

preference of a1: b1
preference of a2: b1 �a2 b2

preference of b1: a1 ∼b1 a2
preference of b2: a2



Stable Matching with Incomplete Lists and Ties

Max-SMTI

Input: two sets A and B of agents, for each agent c ∈ A∪B their
preferences (with unacceptable agents and ties) over the agents in
the other set, and a partial matching µ.

Output: Is there a maximum size stable matching that includes µ?

Theorem (Manlove et al., 2002)

Max-SMTI is NP-complete.

D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard
Variants of Stable Marriage. Theoretical Computer Science, 276(12):261–279,
2002.



Stable Roommates

I Instead of a bipartite matching scenario with two sets A
and B, we have one single set A of agents

I Each agent a specifies a preference over the other
agents A \ {a}

I In this setting, a stable matching does not always exist

Theorem (Irving, 1985)

There exists a polynomial-time algorithm to find a stable matching
for the stable roommates problem, if it exists.

R.W. Irving. An efficient algorithm for the “stable roommates” problem.
Journal of Algorithms, 6(4):577–595, 1985.



Hospital-Residents Matching

I In this variant, A is a set of residents and B is a set of
hospitals

I Each hospital b ∈ B has a capacity cb ∈ N in addition to a
preference over A

I Both residents and hospitals can specify acceptable matches

I A matching then matches each resident a to ≤ 1 hospital, and
each hospital b to ≤ cb residents

I An unmatched pair (a, b) is blocking if a prefers b to their
current match (or their currently being unmatched), and if b
prefers to be matched with a (i.e., either if b has a free spot,
or if b prefers a over one of their current matches)

I The Gale-Shapley algorithm can be extended for HR matching



Further Topics in Matching

I Optimizing for the overall satisfaction of the agents over all
stable matchings

I Average satisfaction

I Minimizing (maximum) regret

I Different notions of quality for matchings

I Pareto optimal matchings

I Popular matchings

I etc.



Related Story: School Matching in Amsterdam

I (Stable) matching can also be applied to assign students to
schools with a limited number of spots

I In this setting, the “preference” of schools is often based on a
priority ranking or a tie-breaking lottery

I The Amsterdam school board decided to change their
mechanism in 2015, resulting in a lot of controversy and even
a court case!

This story features:

I The Gale-Shapley (or Deferred Acceptance) algorithm

I Strategizing

I Fairness

I Read about it at https://goo.gl/26915E

https://goo.gl/26915E


Recap

I Stable Matching

I The Gale-Shapley Algorithm

I Strategizing

I Variants of Matching Problems



Homework exercise

•a1

•a2

•a3

• b1

• b2

• b3

I Let A = {a1, a2, a3} and let B = {b1, b2, b3}.

I Find preferences for a1, a2, a3 (linear orders over B) and
preferences for b1, b2, b3 (linear orders over A) such that there
is only one stable matching.

I Perform the Gale-Shapley algorithm, both with A proposing
and with B proposing.


