
Computational Social Choice

and Complexity Theory

Ronald de Haan
University of Amsterdam

https://staff.science.uva.nl/r.dehaan/esslli2018

me@ronalddehaan.eu

ESSLLI 2018 – Day 1

https://staff.science.uva.nl/r.dehaan/esslli2018
me@ronalddehaan.eu

Information

I Course website:

https://staff.science.uva.nl/r.dehaan/esslli2018/

(also linked on the main ESSLLI website)

I The slides will be available

I Pointers to additional reading material

I About me:

I I studied linguistics, cognitive artificial intelligence,
computational logic, (parameterized) complexity theory

I Over the last few years, I started researching computational
social choice

I This is my 10th ESSLLI :-)

https://staff.science.uva.nl/r.dehaan/esslli2018/

First Point

I If you have a question at any point, please ask!

I If I don’t want to answer it, I will tell you. ;-)

Computational Social Choice

“Computational social choice is an interdisciplinary field of study at
the interface of social choice theory and computer science,
promoting an exchange of ideas in both directions.”

http: // research. illc. uva. nl/ COMSOC/ what-is-comsoc. html

I Computational social choice topics:

I voting protocols

I resource allocation and fair division algorithms

I stable matching

I coalition formation

I judgment aggregation

I . . .

http://research.illc.uva.nl/COMSOC/what-is-comsoc.html

Course Overview

I Voting

I Judgment Aggregation

I Stable Matching

I Throughout everything, we will discuss complexity theory

Voting

Voting

Social Choice Functions and Social Welfare Functions

I a set N = {1, . . . , n} of voters

I a set A = {a1, . . . , am} of alternatives (or candidates)

I L(A) denotes all linear orders � over A

I (linear order: transitive, antisymmetric, complete relation)

I a profile P ∈ L(A)n consists of a linear order for each voter

I a social welfare function f : L(A)n → L(A) takes a profile and
outputs a social preference order

I a social choice function f : L(A)n → 2A \ ∅ takes a profile and
outputs a nonempty set of winners

Example

I N = {1, 2, 3, 4, 5, 6}
I A = {c ‘chocolate’, s ‘strawberry’, v ‘vanilla’}
I Profile P:

P 1 2 3 4 5 6

#1 c c c v v s
#2 s s s c c c
#3 v v v s s v

I I.e., P = (�1,�2,�3,�4,�5,�6), where:

�1 = �2 = �3 = {(c , s), (c , v), (s, v)}
�4 = �5 = {(v , c), (v , s), (c , s)}

�6 = {(s, c), (s, v), (c, v)}

The Plurality Rule

I The Plurality rule is the social choice function that selects all
candidates that are ranked #1 the most times

(with highest plurality score)

I Example:

P 1 2 3 4 5 6

#1 c c c v v s
#2 s s s c c c
#3 v v v s s v

Plurality(P) = {c}

Instant-Runoff Voting (IRV)

I IRV is the social choice function that selects a winner as
follows:

I Repeat:

I Count the plurality score of each alternative

I If some alternative is ranked #1 by a majority of voters, this is
the winner

I Otherwise, remove the voter with lowest plurality score from
the profile (use a tie-breaking if there are more)

I Example:

P 1 2 3 4 5 6

#1 c c c v v s
#2 s s s c c c
#3 v v v s s v

IRV(P) = {c}

Condorcet Extensions

I A Condorcet winner for a profile P is an alternative a ∈ A
such that for each alternative b ∈ A with a 6= b, a strict
majority of voters prefers a to b

I Not for every profile a Condorcet winner exists

I Example:

P 1 2 3

#1 c v s
#2 s c v
#3 v s c

I A social choice function that selects the Condorcet winner as
unique winner, if it exists, is called a Condorcet extension

The Kemeny Rule

I The Kemeny rule (or Kemeny-Young rule) is a Condorcet
extension

I The Kendall-Tau distance d(�1,�2) between two
rankings �1,�2 ∈ L(A) is the number of pairs (a, b) ∈ A× A
on which �1 and �2 disagree

I Consider all � ∈ L(A) that minimize:∑
i∈N

d(�,�i).

I The Kemeny rule selects the top candidate from each �
minimizing the total Kendall-Tau distance to P as a winner

The Kemeny Rule

I Example:

P1 1 2 3

#1 c v s
#2 s c v
#3 v s c

Kemeny(P1) = {c , s, v}

I Example:

P2 1 2 3 4 5 6

#1 c c c v v s
#2 s s s c c c
#3 v v v s s v

Kemeny(P2) = {c}

The Borda Rule

I The Borda rule is a social choice function that is based on the
Borda score:

I Net preference of a over b:

NetP(a � b) = |{ j ∈ N : a �j b }| − |{ j ∈ N : b �j a }|.

I Borda score of a:

BordaP(a) =
∑
b∈A
a 6=b

NetP(a � b).

I The Borda rule selects the candidates with highest Borda
score as winners

The Borda Rule

I Example:

P1 1 2 3

#1 c v s
#2 s c v
#3 v s c

Borda(P1) = {c , s, v}
I Example:

P2 1 2 3 4 5 6

#1 c c c v v s
#2 s s s c c c
#3 v v v s s v

BordaP(c) = 9, BordaP(s) = 5, BordaP(v) = 4

Borda(P2) = {c}

The Axiomatic Approach

I Are some voting rules better than others?

I This question has been investigated with the axiomatic
approach: mathematically specify normatively appealing
axioms, and find out which voting rules satisfy these

I Examples of axioms (for SWFs):

I Anonymity: “changing the order of voters in the profile doesn’t
change the outcome”

I Weak Pareto efficienty: “if all voters in the profile prefer a
to b, then a is preferred to b in the social preference order”

I Independence of Irrelevant Alternatives (IIA): “the relative
ranking of a and b in the social preference order depends only
on the relative ranking of a and b in all individual preferences
in the profile”

I etc.

Arrow’s Theorem

I Seminal result in social choice theory: Arrow’s Theorem

Theorem (Arrow, 1951)

When there are three or more alternatives, then every social
welfare function that satisfies weak Pareto efficiency and IIA must
be a dictatorship.

I A SWF is a dictatorship if there is one voter whose preference
order it always outputs as social preference order

I Takeaway message: there is no best voting rule, that satisfies
all desirable properties simultaneously

Problems Studied in Voting

I Besides normative axioms, computational properties of voting
rules are relevant factors for choosing between them

I Several computational tasks are relevant:

I Winner determination: given a profile P, determine the
winner(s)

I Strategic manipulation: given a profile P, can voter i report a
false preference order to get a more preferred outcome?

I Bribery: given a profile P, can one change the preference order
of at most m individuals to make a certain candidate a the
winner?

I etc.

Complexity Theory

What is Computational Complexity?

I The study of what you can compute with limited resources

I Resources, e.g.: time, memory space, random bits

I Includes determining the practical limits on what you can do
with computers

I Distinguish different degrees of computational difficulty

I Central question: the P versus NP problem
(one of the $1 Million Millennium Prize Problems)

How to Measure Complexity

I Computational problems are modelled as input-output
mappings

I Inputs are strings (over a finite alphabet)

I Such a string can encode all kinds of objects, e.g., a graph:

node(1). node(2). node(3).

edge(1,2). edge(2,3).

I We often switch perspectives between strings and objects

I Measure the complexity (e.g., running time) of an algorithm
by the number of computation steps taken as a function of
the input size n

I E.g., on inputs of size n, the algorithm takes f (n) = 2 · n2 steps

How to Measure Complexity

I We typically use a worst-case perspective (for algorithms):

I The function f (n) measuring the (time) complexity of an
algorithm expresses the maximum complexity over all inputs of
size n

I We say that a function f (n) expresses the complexity of a
problem, if there exists some algorithm that solves the
problem and that is of complexity f (n)

I Example:

I A problem Q is solvable in time n2

if there exists an algorithm solving the problem
such that for all inputs x it takes (at most) |x |2 time steps

Polynomial-time vs. Exponential-time

I There is an important difference between algorithms that run
in time, say, n2 vs. algorithms that run in time, say, 2n

I Illustration (time needed for 1010 steps per second):

n n2 steps 2n steps

2 0.00000002 msec 0.00000002 msec
5 0.00000015 msec 0.00000019 msec

10 0.00001 msec 0.0001 msec
20 0.00004 msec 0.10 msec
50 0.00025 msec 31.3 hours

100 0.001 msec 9.4 × 1011 years
1000 0.100 msec 7.9 × 10282 years

Big O Notation

I In order to abstract away from constants

(that are often immaterial in the difference between
polynomial time vs. exponential time)

often Big O notation is used:

I Let f , g : N→ N be functions

I We say that f (n) is O(g(n)) if there exists some n0 ∈ N and
some constant c such that for all n ≥ n0 it holds
that f (n) ≤ c · g(n)

I Example: 2n2 + 3n is O(n2)

Decision Problems

I To make the analysis easier, we often restrict attention to
decision problems:

I Decision problems are input-output problems where the output
is always 0 or 1 (“no” or “yes”)

I Alternatively, one can see decision problems as formal
languages

I Let Σ be the (finite) alphabet

I Then Σ∗ is the set of all finite strings over Σ all possible
inputs

I A decision problem Q ⊆ Σ∗ is a formal language consisting of
all inputs for which the answer is 1 (or “yes”)

Complexity Classes

I A complexity class is a set of decision problems (that are of
related complexity)

I The class P is the set consisting of all decision
problems Q ⊆ Σ∗ that are solvable in polynomial time,
i.e., in time O(nc), for some constant c ∈ N

I The class NP is the set of all decision problems Q ⊆ Σ∗ for
which there exists a polynomial function q : N→ N and a
polynomial-time algorithm V , such that for all inputs x ∈ Σ∗:

I if x ∈ Q, then there is some string y ∈ Σq(|x|) such that V
outputs 1 on input (x , y), and

I if x 6∈ Q, then for all strings y ∈ Σq(|x|) it holds that V
outputs 0 on input (x , y).

Different levels of hardness

P

NP co-NP

Θ
p
2

∆
p
2

Σ
p
2 Π

p
2

EXP
...

Example: Graph c-Coloring

I The input is an undirect graph

I A finite set N of nodes

I A finite set E of edges {n1, n2} with n1, n2 ∈ N

I The task is to decide if you can color each node with a color
in {1, 2, . . . , c} so that no two connected nodes have the
same color

Color this graph with 2 colors!

Color this graph with 2 colors!

Now, color this graph with 3 colors!

NP-hardness and -completeness

I To give evidence that a problem is not polynomial-time
solvable, we use the notion of hardness

I A (polynomial-time) reduction from one problem Q1 ⊆ Σ∗ to
another problem Q2 ⊆ Σ∗ is a function f : Σ∗ → Σ∗ such
that:

I for each x ∈ Σ∗, it holds that x ∈ Q1 if and only if f (x) ∈ Q2,
and

I f (x) is computable in time O(|x |c), for some constant c

I A problem Q ⊆ Σ∗ is NP-hard if for all problems Q ′ ∈ NP
there is a reduction from Q ′ to Q

I If you can solve Q in polynomial time, then you can solve all
problems in NP in polynomial time!

I A problem is NP-complete if it is both NP-hard and in NP

Reductions

x f (x)reduction

f (x) ∈ Q2?

solve Q2

x ∈ Q1?

The Cook-Levin Theorem

Theorem (Cook, 1971; Levin, 1973)

There are NP-complete problems.
In particular, SAT is NP-complete.

SAT:

I Input: a propositional logic formula ϕ.

I Output: is ϕ satisfiable?

I It is widely believed (but not proven) that P 6= NP

I Under the assumption that P 6= NP:
if a problem is NP-hard, it is not in P

Example of a Reduction

I Reduction from 3-Coloring to SAT:

I Let G = (V ,E) be a graph, with V = {v1, . . . , vn}.

I Construct f (G) = ϕ to be the conjunction of the following
formulas.

I Var(ϕ) = { xi,c : 1 ≤ i ≤ n, c ∈ {r, g, b} }

I For each vi ∈ V , add:

(xi,r ∨ xi,g ∨ xi,b), (¬xi,r ∨ ¬xi,g), (¬xi,r ∨ ¬xi,b), (¬xi,g ∨ ¬xi,b)

I For each {vi , vj} ∈ E , add:

(¬xi,r ∨ ¬xj,r), (¬xi,g ∨ ¬xj,g), (¬xi,b ∨ ¬xj,b)

Voting & Complexity Theory

Complexity of Winner Determination

I What is the complexity of the winner determination problem
for the different voting rules that we saw before?

I Let F be a voting rule:

WinDet(F)

Input: a set N of voters, a set A of alternatives, a preference
profile P (for N and A), and a candidate a∗ ∈ A

Output: Is a∗ ∈ F (P)?

Example: Encoding of a Profile as a String

P 1 2 3 4 5 6

#1 c c c v v s
#2 s s s c c c
#3 v v v s s v

voters(1,2,3,4,5,6).

candidate(c,s,v).

pref(1,c,s,v).

pref(2,c,s,v).

pref(3,c,s,v).

pref(4,v,c,s).

pref(5,v,c,s).

pref(6,s,c,v).

Complexity of Winner Determination (Plurality)

P 3x 3x 4x 4x 1x 1x

#1 b d b a a e
#2 d a c e b c
#3 a c e c c d
#4 e e d d e a
#5 c b a b d b

I Which candidates are the winners for this profile P for the
Plurality rule?

b

Complexity of Winner Determination (Plurality)

Proposition

Winner Determination for the Plurality voting rule is
polynomial-time solvable.

Complexity of Winner Determination (IRV)

P 3x 3x 4x 4x 1x 1x

#1 b d b a a e
#2 d a c e b c
#3 a c e c c d
#4 e e d d e a
#5 c b a b d b

I Which candidates are the winners for this profile P for IRV?

a

Complexity of Winner Determination (IRV)

Proposition

Winner Determination for the IRV voting rule is polynomial-time
solvable.

Complexity of Winner Determination (Borda)

P 3x 3x 4x 4x 1x 1x

#1 b d b a a e
#2 d a c e b c
#3 a c e c c d
#4 e e d d e a
#5 c b a b d b

I Which candidates are the winners for this profile P for the
Borda rule?

a

Complexity of Winner Determination (Borda)

Proposition

Winner Determination for the Borda voting rule is polynomial-time
solvable.

Complexity of Winner Determination (Kemeny)

P 3x 3x 4x 4x 1x 1x

#1 b d b a a e
#2 d a c e b c
#3 a c e c c d
#4 e e d d e a
#5 c b a b d b

I Which candidates are the winners for this profile P for the
Kemeny rule?

a

Complexity of Winner Determination (Kemeny)

Theorem (Hemaspaandra, Spakowski, Vogel, 2005)

Winner Determination for the Kemeny voting rule is Θp
2-complete.

E. Hemaspaandra, H. Spakowski, and J. Vogel. The Complexity of Kemeny
Elections. Theoretical Computer Science, 349(3), 382–391, 2005.

Complexity as a Criterion

I Computational complexity considerations also play a role in
choosing which voting rule to use for your application

I Winner determination problem

I Other problems (more on this tomorrow)

I More complexity tools (more on this tomorrow)

Recap

I Voting theory, SCFs, SWFs

I Plurality, Borda, IRV, Kemeny

I Computational complexity theory

I Complexity of the Winner Determination problem for different
voting rules

Homework exercise

I Find a polynomial-time reduction from 3SAT to 3-Coloring.

I (Hint: look at Section 4.3 of the following book.)

O. Goldreich. P, NP, and NP-Completeness: the Basics of Computational
Complexity. Cambridge University Press, 2010.

