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Definition 1 (NP/poly). A decision problem L ⊆ Σ∗ is in the complexity class NP/poly if there exists:

• polynomials p, q : N→ N;

• a polynomial-time Turing machine M (the verifier); and

• a sequence {αn}n∈N with αn ∈ {0, 1}q(n) for each n ∈ N (a family of advice strings)

such that for every x ∈ Σ∗:

x ∈ L if and only if there exists some u ∈ {0, 1}p(|x|) such that M(x, u, α|x|) = 1.

One can equivalently define NP/poly as the class of all decision problems decidable by a polynomial-time nondetermin-
istic Turing machine that has access to a polynomial-length family of advice strings. (You may use either definition
(or both) in your solutions.)

Definition 2 (coNP/poly).
coNP/poly = { L ⊆ Σ∗ | L = (Σ∗ \ L) ∈ NP/poly }.

Definition 3 (Σp
i /poly and Πp

i /poly). The complexity classes Σp
i /poly and Πp

i /poly, for i ≥ 2, are defined analogously—
by taking the definitions of Σp

i and Πp
i and adding a polynomial-size family of advice strings that the verifier machine

is given access to.

Question 1 (3pts; a: 2pts, b: 1pt ). In this question, you will prove that if NP ⊆ coNP/poly, then the Polynomial
Hierarchy collapses. The general proof line will be as follows.

You will show that if NP ⊆ coNP/poly, then Σp
3 ⊆ NP/poly. The following (true) statement, which you do

not have to prove, can then be used to show that the Polynomial Hierarchy collapses.

If Σp
3 ⊆ NP/poly, then Σp

3 = Πp
3 .

Complete the proof by doing the following.

(a) Prove that if NP ⊆ coNP/poly, then Σp
2/poly ⊆ NP/poly.

(b) Prove that if NP ⊆ coNP/poly, then Σp
3 ⊆ NP/poly.

– Hint: use the statement that you proved for (a).

Definition 4. Consider the following problem clause entailment:

Input: A propositional formula ϕ, and a propositional clause c (i.e., a disjunction of literals).

Question: ϕ |= c? I.e., is it the case that all truth assignments α that make ϕ true also make c true?

Definition 5. We say that there is a hint system for clause entailment if there exists a computable function f :
Σ∗ → Σ∗ (called the hint function) and a polynomial-time decidable problem Q such that for each input (ϕ, c) of
clause entailment it holds that ϕ |= c if and only if (ϕ, f(ϕ), c) ∈ Q.

Definition 6. Let f : Σ∗ → Σ∗ be a function. We say that f is polynomial-size if there exists a polynomial p such
that for all x ∈ Σ∗ it holds that |f(x)| ≤ p(|x|).
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Question 2 (4pts; a: 1pt, b: 1pt; c: 2pts ).

(a) Prove that the function f0 that for any propositional formula ϕ outputs its truth table (over the variables
appearing in ϕ) leads to a hint system for clause entailment. That is, if f0(ϕ) consists of a list mentioning
for each truth assignment α : Var(ϕ)→ {0, 1} whether or not α makes ϕ true.

In particular, identify a polynomial-time decidable problem Q such that for each formula ϕ and each clause c it
holds that ϕ |= c if and only if (ϕ, f0(ϕ), c) ∈ Q. Make sure to prove that Q is polynomial-time decidable. You
do not have to prove that f0 is computable.

– Note: f0 is not a polynomial-size function.

(b) Prove that if there is a hint system for clause entailment with a polynomial-time computable hint function f ,
then P = NP.

(c) Prove that if there is a hint system for clause entailment with a polynomial-size hint function f , then the
Polynomial Hierarchy collapses.

– Hint: for different values of ` ∈ N, consider the formula:

ϕ` =
∧

1≤i≤(2`)3
(yi → ci),

where c1, . . . , c(2`)3 is an enumeration of all possible clauses of size 3 over the variables x1, . . . , x`.

Definition 7. Consider the following problem set packing:

Input: A finite set U , a set S ⊆ P(U) of subsets of U , and a positive integer k ∈ N (given in unary).

Question: Are there k sets S1, . . . , Sk in S that are pairwise-disjoint—that is, such that Si ∩ Si′ = ∅ for
all 1 ≤ i < i′ ≤ k?

Question 3 (3pts; a: 1/2pt, b: 11/2pts, c: 1pt ).

(a) Prove that there exists an algorithm that solves set packing in time nO(k), where n denotes the size of the
input.

(b) Prove that there does not exist an algorithm that solves set packing in time 2k · no(k), assuming the ETH.

– Hint: Consider the following reduction from 3col to set packing. Let G = (V,E) be an instance of 3col
with |V | = n. The reduction partitions the nodes (arbitrarily) into log n groups V1, . . . , Vlogn consisting
each of at most n/ log n nodes.

It then constructs an instance (U,S, k) of set packing as follows. We set k = log n. The set C consists
of all 3-colorings µ that are defined on exactly one of V1, . . . , Vlogn and that do not assign any two nodes
connected by an edge in E to the same color. That is, C =

⋃
1≤i≤logn Ci where Ci is the set of all

colorings µ : Vi → {1, 2, 3} such that for no edge {u, v} ∈ E it holds that u ∈ Vi, v ∈ Vi and µ(u) = µ(v).
The set U consists of all size-2 sets {µ1, µ2} ⊆ C of colorings in C.

Finally, the set S is constructed as follows. For each µ ∈ C, we construct a set Sµ ⊆ U as follows. Remember
that each element of C corresponds to some 3-coloring of a subset of V . Take an arbitrary µ ∈ C. Then Sµ
contains {µ, µ′} for all colorings µ′ 6= µ such that either (1) µ and µ′ are defined on the same set of nodes,
or (2) µ and µ′ are defined on different sets of nodes and there is some edge {u, v} ∈ E such that µ and µ′

combined assign the same color to both u and v.

– Note: you still have to prove that this reduction is correct.

(c) Prove that there does not exist an algorithm that solves set packing in time 22
k · no(k), assuming the ETH.

– Note: for (c), it suffices to indicate where (and how exactly) your solution for (b) needs to be adapted.
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