
Computational Complexity

Lecture 9: Probabilistic Algorithms

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

May 6, 2024

Recap

Non-uniform complexity

Circuit complexity

TMs that take advice

The Karp-Lipton Theorem: if NP ⊆ P/poly, then Σp
2 = Πp

2

What will we do today?

Probabilistic algorithms

Complexity classes BPP, RP, coRP, ZPP

Randomized algorithms

Randomized (or probabilistic) algorithms are a realistic extension of deterministic
algorithms

They have access to a random number generator (or random coin flips)

The outcome of such algorithms is a random variable

The running time of such algorithms is a random variable

Example problem

Input: you’re given m ∈ N and you have access to an oracle O that can give
you a value O(i) ∈ {a, b}, for each i ∈ {1, . . . , 2m}

Promise: for exactly half of the i ’s it holds that O(i) = a,
and so for the other half, O(i) = b

Task: output some i ∈ {1, . . . , 2m} such that O(i) = a

When we consider deterministic (non-randomized) algorithms, what worst-case
running time (and # of oracle queries) can we achieve for this problem?

We need 2m
/2 = 2m−1 queries in the worst case, and Θ(2m) time

Monte Carlo algorithm

i := 0;
while i < k do

randomly pick j ∈ {1, . . . , 2m};
query the oracle: oj := O(j);
if oj = a then

return j ;
else

i := i + 1;
end

end
randomly pick j ∈ {1, . . . , 2m};
return j ;

Runs for k rounds,
so takes time O(k ·m)

Probability of a correct
answer: 1− (1/2)k+1

Works for any value of k

The running time does not vary
randomly

Non-zero error probability

Las Vegas algorithm

while True do
randomly pick j ∈ {1, . . . , 2m};
query the oracle: oj := O(j);
if oj = a then

return j ;
end

end

The running time varies randomly
(and is polynomial in expectation)

Zero error probability

Probability of a correct answer (given that it halted): 1

Expected running time O(m):

O(m) ·
[
1 · 1/2 + 2 · (1/2)2 + 3 · (1/2)3 + · · ·

]
= O(m) because lim

n→∞

n∑
i=1

i

2i
= 2

Probabilistic Turing machines

Definition
Probabilistic Turing machines (PTM) are variants of (deterministic) TMs, where:

There are two transition functions δ1, δ2.

At each step, one of δ1, δ2 is chosen randomly, both with probability 1/2.
(Each such choice is made independently.)

(As halting states, it has an accept state qacc and a reject state qrej.)

M(x) denotes the random variable corresponding to the output of M on input x .

M runs in time T (n) if for every input x and every sequence of nondeterministic
choices, M halts within T (|x |) steps, regardless of the random choices made.

BPTIME and BPP

Definition (BPTIME)

Let T : N→ N be a function. A problem L ⊆ {0, 1}∗ is in BPTIME(T (n)) if there
exists a PTM M that runs in time O(T (n)), such that for each x ∈ {0, 1}∗:

P [M(x) = L(x)] ≥ 2/3,

where L(x) = 1 if x ∈ L, and L(x) = 0 if x 6∈ L.

BP: Bounded-error Probabilistic
These are Monte Carlo algorithms with two-sided (bounded) error

Definition (BPP)

BPP =
⋃
c≥1

BPTIME(nc).

Characterization of BPP

Theorem
A problem L ⊆ {0, 1}∗ if and only if there exists a polynomial-time deterministic TM M
and a polynomial p : N→ N such that for each x ∈ {0, 1}∗:

P
r ∈R {0,1}p(|x|)

[M(x , r) = L(x)] ≥ 2/3.

(Here ∈R denotes (sampling from) the uniform distribution.)

This is analogous to the verifier definition of NP

Using a probabilistic interpretation of the certificates,
rather than existentially quantifying over them

One-sided error: RP and coRP

Definition (RTIME)

Let T : N→ N be a function. A problem L ⊆ {0, 1}∗ is in RTIME(T (n)) if there exists
a PTM M that runs in time O(T (n)), such that for each x ∈ {0, 1}∗:

if x ∈ L, then P [M(x) = 1] ≥ 2/3,

if x 6∈ L, then P [M(x) = 0] = 1.

These are Monte Carlo algorithms with one-sided (bounded) error

Definition (RP)

RP =
⋃
c≥1

RTIME(nc).

One-sided error: RP and coRP (ct’d)

Definition (coRTIME)

Let T : N→ N be a function. A problem L ⊆ {0, 1}∗ is in coRTIME(T (n)) if there
exists a PTM M that runs in time O(T (n)), such that for each x ∈ {0, 1}∗:

if x ∈ L, then P [M(x) = 1] = 1,

if x 6∈ L, then P [M(x) = 0] ≥ 2/3.

These are also Monte Carlo algorithms with one-sided (bounded) error

Definition (coRP)

coRP =
⋃
c≥1

coRTIME(nc), or equivalently: coRP = { L | L ∈ RP }.

Two-sided error: ZPP

Definition (expected running time)

Let T : N→ N be a function and let M be a PTM. Then M runs in expected
time T (n), if for each x ∈ {0, 1}∗ it holds that E [timeM(x)] ≤ T (|x |).

Definition (ZPTIME)

Let T : N→ N be a function. A problem L ⊆ {0, 1}∗ is in ZPTIME(T (n)) if there
exists a PTM M that runs in expected time O(T (n)), such that for each x ∈ {0, 1}∗,
whenever M halts on x then M(x) = L(x).

These are Las Vegas algorithms

Definition (ZPP)

ZPP =
⋃
c≥1

ZPTIME(nc).

Error reduction

We used the constant 2/3 in the definitions of BPP, etc.

In fact, each constant > 1/2 would work, and even > 1/2 + |x |−c .

We can make the error probability very small

Theorem (Error reduction for BPP)

Let L ⊆ {0, 1}∗ be a decision problem, and suppose that there exists a polynomial-time
PTM M such that for each x ∈ {0, 1}∗, P [M(x) = L(x)] ≥ 1/2 + 1/|x |c .

Then for every constant d > 0, there exists a polynomial-time PTM M′ such that for
each x ∈ {0, 1}∗, P [M′(x) = L(x)] ≥ 1− 1/2(|x |

d) = 1− 2−|x |
d
.

Idea: run M many times and output the majority answer

Some relations

RP ⊆ BPP, coRP ⊆ BPP

RP ⊆ NP, coRP ⊆ coNP

Homework!

ZPP = RP ∩ coRP

Homework!

BPP ⊆ P/poly

Idea: by using error reduction, you can find some r ∈ {0, 1}p(n) for each n that can
be used as “certificate” to give the correct answer for each x ∈ {0, 1}n.

BPP ⊆ Σp
2, BPP ⊆ Πp

2

Recap

Probabilistic algorithms

Complexity classes BPP, RP, coRP, ZPP

Next time

Approximation algorithms

The PCP Theorem

