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Non-uniform complexity
m Circuit complexity
m TMs that take advice

The Karp-Lipton Theorem: if NP C P/poly, then £5 = Nj



- What will we do today?

m Probabilistic algorithms

m Complexity classes BPP, RP, coRP, ZPP



- Randomized algorithms

m Randomized (or probabilistic) algorithms are a realistic extension of deterministic
algorithms

They have access to a random number generator (or random coin flips)

m The outcome of such algorithms is a random variable

m The running time of such algorithms is a random variable



- Example problem

m /nput: you're given m € N and you have access to an oracle O that can give
you a value O(i) € {a, b}, for each i € {1,...,2™}

m Promise:  for exactly half of the i's it holds that O(i) = a,
and so for the other half, O(i) = b

m Task: output some i € {1,...,2™} such that O(/) = a

m When we consider deterministic (non-randomized) algorithms, what worst-case
running time (and # of oracle queries) can we achieve for this problem?

m We need 2"/2 = 2™~ queries in the worst case, and ©(27) time



- Monte Carlo algorithm

i:=0; m Runs for k rounds,
while i < k do so takes time O(k - m)
randomly pick j € {1,...,2™};
query the oracle: o; := O(j); m Probability of a correct
if oj = a then answer: 1 — (1/2)k+1
‘ return j;
else
‘ =41 m Works for any value of k
end L
end m The running time does not vary
randomly pick j € {1,...,2M}; randomly
return j;

m Non-zero error probability



- Las Vegas algorithm

while True do

randomly pick j € {1,...,2M}; m The running time varies randomly
query the oracle: o; := O(j); (and is polynomial in expectation)
if o; = a then

‘ return j; m Zero error probability

end

end

m Probability of a correct answer (given that it halted): 1

m Expected running time O(m):

O(m) - [1 242 (1/2)2 +3- (1/2)3 —l—} = O(m) because nlmxzn:él =2



- Probabilistic Turing machines

Probabilistic Turing machines (PTM) are variants of (deterministic) TMs, where:
m There are two transition functions 41, 95.

m At each step, one of 41, d2 is chosen randomly, both with probability 1/2.
(Each such choice is made independently.)

m (As halting states, it has an accept state gacc and a reject state gye;.)

m M(x) denotes the random variable corresponding to the output of M on input x.

m M runs in time T(n) if for every input x and every sequence of nondeterministic
choices, M halts within T(|x|) steps, regardless of the random choices made.



- BPTIME and BPP

Definition (BPTIME)

Let T : N — N be a function. A problem L C {0,1}* is in BPTIME( T (n)) if there
exists a PTM M that runs in time O(T(n)), such that for each x € {0,1}*:

PIM(x) = L(x) ] = /s,
where L(x) =1if x € L, and L(x) =0 if x & L.

m BP: Bounded-error Probabilistic
m These are Monte Carlo algorithms with two-sided (bounded) error

Definition (BPP)

BPP = | J BPTIME(n®).
c>1



- Characterization of BPP

A problem L C {0,1}* if and only if there exists a polynomial-time deterministic TM M
and a polynomial p : N — N such that for each x € {0,1}*:

[ M(x,r) = L(x)]>2/.

P
reg {0,1}P0x1)

(Here € denotes (sampling from) the uniform distribution.)

m This is analogous to the verifier definition of NP

m Using a probabilistic interpretation of the certificates,
rather than existentially quantifying over them



- One-sided error: RP and coRP

Definition (RTIME)

Let T : N — N be a function. A problem L C {0,1}* is in RTIME(T (n)) if there exists
a PTM M that runs in time O(T(n)), such that for each x € {0,1}*:

if x e L, then P[M(x)=1]> 2/3,
if x L, then P[M(x)=0]=1.

m These are Monte Carlo algorithms with one-sided (bounded) error

Definition (RP)

RP = ] RTIME(n).
c>1



- One-sided error: RP and coRP (ct'd)

Definition (coRTIME)

Let T : N — N be a function. A problem L C {0,1}* is in coRTIME( T (n)) if there
exists a PTM M that runs in time O(T(n)), such that for each x € {0, 1}*:

if xe L, then P[M(x)=1]=1,
if x¢& L, then P[M(x)=0] > 2/s.

m These are also Monte Carlo algorithms with one-sided (bounded) error

Definition (coRP)

coRP = |_J coRTIME(n®), or equivalently: coRP = { L | L € RP }.
c>1



- Two-sided error: ZPP

Definition (expected running time)

Let T : N — N be a function and let M be a PTM. Then M runs in expected
time T(n), if for each x € {0,1}* it holds that E [ timey(x) ] < T(|x]|).

Definition (ZPTIME)

Let T : N — N be a function. A problem L C {0,1}* is in ZPTIME(T(n)) if there
exists a PTM M that runs in expected time O(T(n)), such that for each x € {0,1}*,
whenever M halts on x then M(x) = L(x).

m These are Las Vegas algorithms

Definition (ZPP)

PP = | J ZPTIME(n").
c>1



- Error reduction

m We used the constant 2/3 in the definitions of BPP, etc.

m In fact, each constant > 1/2 would work, and even > 1/2 + |x| €.

m We can make the error probability very small

Theorem (Error reduction for BPP)

Let L C {0,1}* be a decision problem, and suppose that there exists a polynomial-time
PTM M such that for each x € {0,1}*, P[M(x) = L(x)] > /24 1/|x|.

Then for every constant d > 0, there exists a polynomial-time PTM M’ such that for
each x € {0,1}*, P[M/(x) = L(x)] > 1 — 1/2(|X|d) —1_2Ix

m Idea: run M many times and output the majority answer



- Some relations

m RP C BPP, coRP C BPP

m RP C NP, coRP C coNP

m Homework!

m ZPP = RP N coRP

m Homework!

BPP C P/poly

m Idea: by using error reduction, you can find some r € {0,1}P(") for each n that can
be used as “certificate” to give the correct answer for each x € {0,1}".

m BPP C 58, BPP C I}



N

m Probabilistic algorithms

m Complexity classes BPP, RP, coRP, ZPP



N

m Approximation algorithms

m The PCP Theorem



