Computational Complexity

Lecture 8: Some Sort of Recap

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

April 25, 2024

Recap

What we saw last time..

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem: if NP $\subseteq P /$ poly, then $\Sigma_{2}^{p}=\Pi_{2}^{p}$

What will we do today?

- Reflecting on what we've seen before
- Mostly using examples
- L: deterministic algorithm, logarithmic space (and polynomial time)
- NL: nondeterministic algorithm, logarithmic space (and polynomial time)
- P: solvable in (deterministic) polynomial time
- NP: solutions (for yes-answers) can be guessed/checked in polynomial time
- coNP: solutions (for no-answers) can be guessed/checked in polynomial time
- $\Sigma_{2}^{\mathrm{p}}: \quad$ solutions (for yes-answers) have " $\exists \forall$ structure"
- Π_{2}^{p} : solutions (for yes-answers) have " $\forall \exists$ structure"
- PSPACE: (n on)deterministic algorithm, polynomial space (and exponential time) OR: unbounded " $\exists \forall \exists \forall \exists \cdots$ structure"
- EXP: solvable in (deterministic) exponential time

Some oracle questions..

- Is it the case that $P^{P}=P$? Yes
- Is it the case that $N P^{N P}=N P$? We don't know..
- Is it the case that PSPACE ${ }^{\text {PSPACE }}=$ PSPACE ? Yes
- Is it the case that EXP EXP $=$ EXP? No
- Is it the case that $\operatorname{DTIME}\left(n^{2}\right)^{\operatorname{DTIME}\left(n^{2}\right)}=\operatorname{DTIME}\left(n^{2}\right)$? No
- Polls on $\mathrm{P} \stackrel{?}{=}$ NP have been held among computational complexity researchers:
- In 2002, see: https://tiny.cc/pnp-poll1
- In 2012, see: https://tiny.cc/pnp-poll2
- In 2019, see: https://tiny.cc/pnp-poll3
- In these papers, there are some very interesting opinions on the question (and some nerdy jokes)

■ Short answer: we have no clue (really), why $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \neq \mathrm{NP}$ would be true, but most think that $P \neq N P$.

Quiz example \#1: checking if a given solution is unique

- What is the complexity of this problem?
- Input: \quad A propositional formula φ, and a satisfying truth assignment α for φ.

Question: Is α the only satisfying assignment for φ ?

- This problem is coNP-complete
- The answer is yes if and only if $\varphi \wedge$ " \neg " is unsatisfiable

Quiz example \#2: finding a minimal equivalent DNF formula

- What is the complexity of this problem?
- Input: \quad A propositional formula φ, and 1^{k} for some $k \in \mathbb{N}$.

Question: Is there a DNF formula ψ of size $\leq k$ such that $\varphi \equiv \psi$?

- This problem is \sum_{2}^{p}-complete
- " \exists part": guess a DNF formula ψ of size $\leq k$
- " \forall part": check that $\varphi \equiv \psi$

Quiz example \#3: equivalence of propositional logic formulas

- What is the complexity of this problem?
- Input: Two propositional formulas φ_{1}, φ_{2}.

Question: $\varphi_{1} \equiv \varphi_{2}$?

- This problem is coNP-complete
- φ is unsatisfiable if and only if $\varphi \equiv(x \wedge \neg x)$

Quiz example \#4: 2SAT

- What is the complexity of this problem?
- Input: A propositional 2CNF formula φ.

Question: Is φ satisfiable?

- This problem is NL-complete
- Reduce to a variant of graph reachability
- φ is unsatisfiable if and only if there is a path from some x to $\neg x$ to x in the implication graph of φ

Quiz example \#5: satisfiability of modal logic K

- What is the complexity of this problem?
- Input: A basic modal logic formula φ.

Question: Is φ satisfiable?

- This problem is PSPACE-complete
- The tableau algorithm runs in polynomial space (or in alternating polynomial time)
- TQBF can be reduced to this problem

Quiz example \#6: satisfiability of modal logic S5

- What is the complexity of this problem?
- Input: A modal logic formula φ.

Question: Is there an S5 Kripke model where φ is true?

- This problem is NP-complete
- Theorem: if there is an S5 Kripke model where φ is true, then there exists an S5 Kripke model with at most $|\varphi|$ states where φ is true.

Quiz example \#7: Tiling I

- What is the complexity of this problem?
- Input: \quad A set of 4 -sided tile types, and 1^{n} and 1^{m} for $n, m \in \mathbb{N}$.

Question: Can we use these tile types to fill an $n \times m$ grid, so that (1) the outsides of the grid all have side s_{0}, and (2) neighboring tiles have matching sides?

- This problem is NP-complete

Quiz example \#8: Tiling II

- What is the complexity of this problem?
- Input: \quad A set of 4 -sided tile types, and 1^{n} for $n \in \mathbb{N}$.

Question: Can we use these tile types to fill an $n \times m$ grid, for some $m \in \mathbb{N}$, so that
(1) the outsides of the grid all have side s_{0}, and (2) neighboring tiles have matching sides?

- This problem is PSPACE-complete

Quiz example \#9: Generalized Geography

■ What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/
Generalized_geography)
■ Input:
An instance I of generalized geography.

Question: Does Player 1 have a winning strategy?

Quiz example \#9: Generalized Geography

- What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)
- Input: An instance I of generalized geography.

Question: Does Player 1 have a winning strategy?

- This problem is PSPACE-complete

- What is the complexity of this problem?
- Input: \quad A propositional logic formula $\varphi\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$, and two binary vectors $s, t \in\{0,1\}^{n}$.
Question: Consider the directed graph $G=(V, E)$, where:
$V=\{0,1\}^{n}$, and for each $\bar{v}, \bar{w} \in V$,
$(\bar{v}, \bar{w}) \in E$ if and only if $\varphi[\bar{u}, \bar{w}]$ is true.
Is t reachable from s in G ?
- This problem is PSPACE-complete

Quiz example \#11: 3-colorability for succinctly represented graphs

- What is the complexity of this problem?
- Input: A propositional logic formula $\varphi\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$.

Question: Consider the undirected graph $G=(V, E)$, where:
$V=\{0,1\}^{n}$, and for each $\bar{v}, \bar{w} \in V$, $\{\bar{v}, \bar{w}\} \in E$ if and only if $\varphi[\bar{v}, \bar{w}]$ is true.
Is the graph $G 3$-colorable?

- This problem is NEXP-complete
- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

