Computational Complexity

Lecture 8: Some Sort of Recap

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

April 25, 2024

Recap What we saw last time..

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem: if NP \subseteq P/poly, then $\Sigma_2^p = \Pi_2^p$

What will we do today?

- Reflecting on what we've seen before
- Mostly using examples

One-/two-liner overview of complexity classes

- L: deterministic algorithm, logarithmic space (and polynomial time)
- NL: nondeterministic algorithm, logarithmic space (and polynomial time)
- P: solvable in (deterministic) polynomial time
- NP: solutions (for yes-answers) can be guessed/checked in polynomial time
- coNP: solutions (for no-answers) can be guessed/checked in polynomial time
- Σ_2^p : solutions (for yes-answers) have " $\exists \forall$ structure"
- Π_2^p : solutions (for yes-answers) have " $\forall \exists$ structure"
- PSPACE: (non)deterministic algorithm, polynomial space (and exponential time) *OR:* unbounded "∃∀∃∀∃··· structure"
- EXP: solvable in (deterministic) exponential time

Some oracle questions..

- Is it the case that $P^P = P$? Yes
- Is it the case that NP^{NP} = NP? We don't know..
- Is it the case that PSPACE^{PSPACE} = PSPACE? Yes
- Is it the case that EXP^{EXP} = EXP? No
- Is it the case that $DTIME(n^2)^{DTIME(n^2)} = DTIME(n^2)$? No

P vs. NP

• Polls on $P \stackrel{?}{=} NP$ have been held among computational complexity researchers:

- In 2002, see: https://tiny.cc/pnp-poll1
- In 2012, see: https://tiny.cc/pnp-poll2
- In 2019, see: https://tiny.cc/pnp-poll3
- In these papers, there are some very interesting opinions on the question (and some nerdy jokes)

Short answer: we have no clue (really), why P = NP or $P \neq NP$ would be true, but most think that $P \neq NP$.

Quiz example #1: checking if a given solution is unique

- What is the complexity of this problem?
- Input: A propositional formula φ, and a satisfying truth assignment α for φ.
 Question: Is α the only satisfying assignment for φ?

- This problem is coNP-complete
 - \blacksquare The answer is yes if and only if $\varphi \wedge ``\neg \alpha "$ is unsatisfiable

Quiz example #2: finding a minimal equivalent DNF formula

- What is the complexity of this problem?
- *Input:* A propositional formula φ , and 1^k for some $k \in \mathbb{N}$. *Question:* Is there a DNF formula ψ of size $\leq k$ such that $\varphi \equiv \psi$?

- This problem is $\Sigma_2^{\rm p}$ -complete
 - " \exists part": guess a DNF formula ψ of size $\leq k$
 - \blacksquare " \forall part": check that $\varphi\equiv\psi$

Quiz example #3: equivalence of propositional logic formulas

- What is the complexity of this problem?
- Input: Two propositional formulas φ_1, φ_2 .

Question: $\varphi_1 \equiv \varphi_2$?

- This problem is coNP-complete
 - φ is unsatisfiable if and only if $\varphi \equiv (x \land \neg x)$

Quiz example #4: 2SAT

- What is the complexity of this problem?
- Input: A propositional 2CNF formula φ .

Question: Is φ satisfiable?

- This problem is NL-complete
 - Reduce to a variant of graph reachability
 - φ is unsatisfiable if and only if there is a path from some x to $\neg x$ to x in the implication graph of φ

Quiz example #5: satisfiability of modal logic K

- What is the complexity of this problem?
- Input: A basic modal logic formula φ .

Question: Is φ satisfiable?

- This problem is **PSPACE-complete**
 - The tableau algorithm runs in polynomial space (or in alternating polynomial time)
 - TQBF can be reduced to this problem

Quiz example #6: satisfiability of modal logic S5

- What is the complexity of this problem?
- Input: A modal logic formula φ .

Question: Is there an S5 Kripke model where φ is true?

- This problem is NP-complete
 - Theorem: if there is an S5 Kripke model where φ is true, then there exists an S5 Kripke model with at most |φ| states where φ is true.

Quiz example #7: Tiling I

- What is the complexity of this problem?
- Input: A set of 4-sided tile types, and 1^n and 1^m for $n, m \in \mathbb{N}$.
 - Question: Can we use these tile types to fill an $n \times m$ grid, so that (1) the outsides of the grid all have side s_0 , and (2) neighboring tiles have matching sides?

This problem is NP-complete

Quiz example #8: Tiling II

- What is the complexity of this problem?
- *Input:* A set of 4-sided tile types, and 1^n for $n \in \mathbb{N}$.
 - *Question:* Can we use these tile types to fill an $n \times m$ grid, for some $m \in \mathbb{N}$, so that
 - (1) the outsides of the grid all have side s_0 , and
 - (2) neighboring tiles have matching sides?

This problem is **PSPACE-complete**

Quiz example #9: Generalized Geography

- What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)
- Input: An instance I of generalized geography.
 - *Question:* Does Player 1 have a winning strategy?

Quiz example #9: Generalized Geography

- What is the complexity of this problem? (See: https://en.wikipedia.org/wiki/ Generalized_geography)
- Input: An instance I of generalized geography.
 - *Question:* Does Player 1 have a winning strategy?

This problem is PSPACE-complete

Quiz example #10: reachability in succinctly represented graphs

- What is the complexity of this problem?
- *Input:* A propositional logic formula $\varphi(x_1, ..., x_n, x'_1, ..., x'_n)$, and two binary vectors $s, t \in \{0, 1\}^n$.
 - *Question:* Consider the directed graph G = (V, E), where: $V = \{0, 1\}^n$, and for each $\overline{v}, \overline{w} \in V$, $(\overline{v}, \overline{w}) \in E$ if and only if $\varphi[\overline{u}, \overline{w}]$ is true.

Is t reachable from s in G?

This problem is **PSPACE-complete**

Quiz example #11: 3-colorability for succinctly represented graphs

- What is the complexity of this problem?
- Input: A propositional logic formula $\varphi(x_1, \ldots, x_n, x'_1, \ldots, x'_n)$.

Question: Consider the undirected graph G = (V, E), where: $V = \{0, 1\}^n$, and for each $\overline{v}, \overline{w} \in V$, $\{\overline{v}, \overline{w}\} \in E$ if and only if $\varphi[\overline{v}, \overline{w}]$ is true. Is the graph *G* 3-colorable?

This problem is NEXP-complete

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP