
Definition 1. A problem L ⊆ {0, 1}∗ is P-selective if there exists a polynomial-time computable function f : {0, 1}∗×
{0, 1}∗ → {0, 1}∗ such that for each (x, y) ∈ {0, 1}∗ × {0, 1}∗ it holds that:

• f(x, y) ∈ {x, y}; and

• if {x, y} ∩ L 6= ∅ then f(x, y) ∈ L.

Proposition 1 ([1]). If SAT is P-selective, then P = NP.

Proof. (Write down assumptions.)
Suppose that SAT is P-selective. Then there exists a polynomial-time computable function f such that for each two
propositional formulas ϕ1, ϕ2 it holds that (i) f(ϕ1, ϕ2) = ϕ1 or f(ϕ1, ϕ2) = ϕ2 and (ii) if ϕ1 ∨ ϕ2 is satisfiable,
then f(ϕ1, ϕ2) is satisfiable.

(What to prove?)
We describe a polynomial-time algorithm to solve 3SAT. Take an arbitrary 3CNF formula ϕ = c1∧· · ·∧cm, where ci =
(`i,1 ∨ `i,2 ∨ `i,3) for each 1 ≤ i ≤ m. We decide whether ϕ is satisfiable by doing the following computation.

(Creative part.. which involves describing an algorithm with high-level descriptions.)
We can rewrite ϕ as the logically equivalent formula ϕ1,1 ∨ ϕ1,2 ∨ ϕ1,3, where ϕ1,1 = `1,1 ∧ c2 ∧ · · · ∧ cm, where ϕ1,2 =
`1,2 ∧ c2 ∧ · · · ∧ cm, and where ϕ1,3 = `1,3 ∧ c2 ∧ · · · ∧ cm.

We use f (at most) twice to select one of ϕ1,1, ϕ1,2, ϕ1,3, as follows. We will call the result ϕ1. We will also compute
a literal `1. Compute f(ϕ1,1, ϕ1,2 ∨ ϕ1,3). If the result is ϕ1,1, then let ϕ1 = ϕ1,1 and let `1 = `1,1. Otherwise,
let ϕ1 = f(ϕ1,2, ϕ1,3) and let `1 be the corresponding literal in {`1,2, `1,3}.

Let us show that ϕ1 is satisfiable if and only if ϕ is satisfiable.

• Suppose that ϕ ≡ ϕ1,1∨ϕ1,2∨ϕ1,3 is satisfiable. If ϕ1 = ϕ1,1, then ϕ1,1 must be satisfiable, because f(ϕ1,1, ϕ1,2∨
ϕ1,3) = ϕ1,1. By a similar argument, if ϕ1 = ϕ1,2 or if ϕ1 = ϕ1,3, then ϕ1 is satisfiable.

• Conversely, if ϕ1 is satisfiable, because ϕ1 |= ϕ, we know that ϕ is satisfiable too.

Next, we will rewrite ϕ1 as the logically equivalent formula ϕ2,1 ∨ ϕ2,2 ∨ ϕ2,3, where ϕ2,1 = `1 ∧ `2,1 ∧ c3 ∧ · · · ∧ cm,
where ϕ2,2 = `1 ∧ `2,2 ∧ c3 ∧ · · · ∧ cm, and where ϕ2,3 = `1 ∧ `2,3 ∧ c3 ∧ · · · ∧ cm.

Again, we use f (at most) twice to select one of ϕ2,1, ϕ2,2, ϕ2,3, as follows. We will call the result ϕ2, and we compute
a corresponding literal `2. Compute f(ϕ2,1, ϕ2,2 ∨ ϕ2,3). If the result is ϕ2,1, then let ϕ2 = ϕ2,1 and let `2 = `2,1.
Otherwise, let ϕ2 = f(ϕ2,2, ϕ2,3) and let `2 be the corresponding literal in {`2,2, `2,3}.

(No need to repeat (essentially) repeating arguments.)
By a similar argument as before, we get that ϕ2 is satisfiable if and only if ϕ1 is satisfiable—and thus if and only if ϕ
is satisfiable.

We repeat this procedure for all subsequent clauses c3, . . . , cm, each time defining the formula ϕi based on ϕi−1,
using f to select one of ϕi,1, ϕi,2, ϕi,3 and letting `i be the corresponding literal among `i,1, `i,2, `i,3.

The result is a formula ϕm = `1 ∧ · · · ∧ `m that is satisfiable if and only if ϕ is satisfiable.

(Simple claims need no extensive proof.)
We can check in polynomial time whether ϕm is satisfiable by checking if any pair of literals among `1, . . . , `m are
each other’s complement. If so, then ϕm is not satisfiable, and otherwise ϕm is satisfiable.

(Correctness.)
The algorithm returns “yes,” if ϕm is satisfiable and “no,” otherwise. Since ϕm is satisfiable if and only if ϕ is
satisfiable, this means that the algorithm correctly decides 3SAT.

(Argue that it runs in polynomial time.)
This procedure uses m phases, one for constructing each formula ϕi. Each phase takes polynomial time—e.g., we call
the function f at most twice. Moreover, after these phases, we check satisfiability of ϕm (and thus satisfiability of ϕ)
in polynomial-time. Overall, this results in a polynomial running time of the algorithm deciding 3SAT.

(Concluding argument.)
Thus 3SAT ∈ P, and since 3SAT is NP-complete, we get that P = NP.

References

[1] Alan L. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP.
Mathematical Systems Theory, 13:55–65, 1979.

1


