Definition 1. A problem L C {0,1}* is P-selective if there exists a polynomial-time computable function f : {0, 1}* x
{0,1}* — {0,1}* such that for each (z,y) € {0,1}* x {0,1}* it holds that:

* f(z,y) € {z,y}; and
o if {z,y} N L #) then f(z,y) € L.
Proposition 1 ([I]). If SAT is P-selective, then P = NP.

Proof. (Write down assumptions.)

Suppose that SAT is P-selective. Then there exists a polynomial-time computable function f such that for each two
propositional formulas @1, @9 it holds that (i) f(¢1,92) = @1 or f(v1,92) = w2 and (ii) if @1 V o is satisfiable,
then f(¢1,p2) is satisfiable.

(What to prove?)
We describe a polynomial-time algorithm to solve 3SAT. Take an arbitrary 3CNF formula ¢ = ¢y A- - - Acy,, where ¢; =
(i1 VL2V E3) for each 1 <i <m. We decide whether ¢ is satisfiable by doing the following computation.

(Creative part.. which involves describing an algorithm with high-level descriptions.)
We can rewrite ¢ as the logically equivalent formula 11 V @12V 1,3, where 11 =011 Aca A+ Acp,, Where @19 =
liagNea A+ Acp, and where 13 =013 Aca A+ Acp,.

We use f (at most) twice to select one of ¢1,1, 1,2, @13, as follows. We will call the result 1. We will also compute
a literal ¢;. Compute f(@11,9p1,2 V ¢1,3). If the result is ¢1 1, then let @1 = @11 and let ¢1 = ¢1 1. Otherwise,
let 1 = f(p1,2,¢1,3) and let ¢; be the corresponding literal in {1 2,41 3}.

Let us show that ; is satisfiable if and only if ¢ is satisfiable.

e Suppose that ¢ = 1,1 V1,2V 3 is satisfiable. If ¢1 = ¢1 1, then ¢4 1 must be satisfiable, because f(¢1,1,%1,2V
©1,3) = ¢1,1. By a similar argument, if ¢1 = @1 9 or if ¢1 = @1 3, then ¢, is satisfiable.

e Conversely, if ¢ is satisfiable, because 1 = ¢, we know that ¢ is satisfiable too.

Next, we will rewrite ¢, as the logically equivalent formula @21 V @22V w23, where o1 =03 Ala1 Acs A+ Ac,
where @29 =01 Alag Ac3 A+ Acp, and where o3 =01 AlagAcag A= Acp,.

Again, we use f (at most) twice to select one of @ 1,922, p2.3, as follows. We will call the result ¢, and we compute
a corresponding literal ¢5. Compute f(p2,1, 2.2 V w23). If the result is @21, then let o = @21 and let o = lo;.
Otherwise, let w2 = f(p2.2,92,3) and let £ be the corresponding literal in {3 2,02 3}.

(No need to repeat (essentially) repeating arguments.)
By a similar argument as before, we get that (o is satisfiable if and only if ¢ is satisfiable—and thus if and only if ¢
is satisfiable.

We repeat this procedure for all subsequent clauses cs, ..., ¢y, each time defining the formula ¢; based on ¢;_1,
using f to select one of ¢; 1, ¥; 2, i 3 and letting ¢; be the corresponding literal among ¢; 1,4; 2, ¢; 3.

The result is a formula ¢, = ¢1 A --- A £, that is satisfiable if and only if ¢ is satisfiable.

(Simple claims need no extensive proof.)
We can check in polynomial time whether ¢, is satisfiable by checking if any pair of literals among ¢1,...,¥¢,, are
each other’s complement. If so, then ¢, is not satisfiable, and otherwise ¢, is satisfiable.

(Correctness.)
The algorithm returns “yes,” if ¢, is satisfiable and “no,” otherwise. Since ¢, is satisfiable if and only if ¢ is
satisfiable, this means that the algorithm correctly decides 3SAT.

R

(Argue that it runs in polynomial time.)

This procedure uses m phases, one for constructing each formula ;. Each phase takes polynomial time—e.g., we call
the function f at most twice. Moreover, after these phases, we check satisfiability of ¢, (and thus satisfiability of)
in polynomial-time. Overall, this results in a polynomial running time of the algorithm deciding 3SAT.

(Concluding argument.)
Thus 3SAT € P, and since 3SAT is NP-complete, we get that P = NP. O
References

[1] Alan L. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP.
Mathematical Systems Theory, 13:55-65, 1979.

