Computational Complexity

Lecture 7: Non-Uniform Complexity

Ronald de Haan me@ronalddehaan.eu

University of Amsterdan

Recap What we saw last time...

- The classes Σ_i^p and Π_i^p
- The Polynomial Hierarchy
- $\Sigma_i^{\rm p}$ -complete and $\Pi_i^{\rm p}$ -complete QBF problems
- Characterizations using oracles and ATMs

What will we do today?

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem

Non-uniformity

"Uniform": the algorithm is the same, regardless of the input size vs.

• "Non-uniform": there can be different algorithms for different input sizes

Boolean circuits

- Boolean circuits are very similar to propositional formulas
- Directed acyclic graphs (instead of trees)
- We view binary strings as truth assignments
- Example: $(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3)$, x = 010, and $\alpha_x = \{x_1 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 0\}$

Boolean circuits

Definition (Circuits)

An *n-input single-output Boolean circuit C* is a directed acyclic graph with:

- \blacksquare n sources (nodes with no incoming edges), labelled 1 to n, and
- one sink (a node with no outgoing edges).

All non-source vertices are called *gates*, and are labelled with \land , \lor , or \neg :

- ∧-gates and ∨-gates have in-degree 2 (exactly two incoming edges),
- ¬-gates have in-degree 1 (exactly one incoming edge).

If C is an n-input single-output Boolean circuit and $x \in \{0,1\}^n$ is a string, then the output C(x) of C on x is defined by plugging in x in the source nodes and applying the operators of the gates, and taking for C(x) the resulting value in $\{0,1\}$ of the sink gate.

SIZE

Definition (Circuit families)

Let $t: \mathbb{N} \to \mathbb{N}$ be a function. A t(n)-size circuit family is a sequence $\{C_n\}_{n\in\mathbb{N}}$ of Boolean circuits, where each C_n has n inputs and a single output, and $|C_n| \le t(n)$ for each $n \in \mathbb{N}$.

Definition (SIZE(t(n)))

Let $t: \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \{0,1\}^*$ is in $\mathsf{SIZE}(t(n))$ if there exists a constant $c \in \mathbb{N}$ and a $(c \cdot t(n))$ -size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that for each $x \in \{0,1\}^*$:

$$x \in L$$
 if and only if $C_n(x) = 1$, where $n = |x|$.

The complexity class P/poly

Definition (P/poly)

$$\mathsf{P/poly} = \bigcup_{c>1} \mathsf{SIZE}(n^c).$$

■ In other words, P/poly is the class of all decision problems that can be decided by a polynomial-size circuit family.

$P \subseteq P/poly$

• (We consider only decision problems $L \subseteq \{0,1\}^*$ —i.e., binary alphabets.)

Theorem

 $P \subseteq P/\mathsf{poly}$.

- Main idea:
 - Like in the proof of the Cook-Levin Theorem, we encode polynomial-time computation in logic
 - Instead of using new, fresh variables we use nodes in the Boolean circuit (to encode tape contents, tape head positions, etc)

■ In fact, $P \subseteq P/poly$

Turing machines that take advice

■ We can characterize P/poly (or more generally, non-uniform complexity classes) also using TMs

- The algorithm might differ per input size n, so we will have to give the TM something that depends only on the input size
- This is called advice

Advice characterization of P/poly

Definition (TIME(t(n))/a(n))

Let $t, a : \mathbb{N} \to \mathbb{N}$ be functions. The class DTIME(t(n))/a(n) of languages decidable by O(t(n))-time Turing machines with a(n) bits of advice contains every decision problem $L \subseteq \{0,1\}^*$ such that:

■ there exists a sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n\in\{0,1\}^{a(n)}$ for each $n\in\mathbb{N}$ and an O(t(n))-time deterministic Turing machine \mathbb{M} such that for each $x\in\{0,1\}^*$:

$$x \in L$$
 if and only if $\mathbb{M}(x, \alpha_n) = 1$, where $n = |x|$.

Advice characterization of P/poly (ct'd)

Theorem

$$P/poly = \bigcup_{c \in I} DTIME(n^c)/n^d$$
.

- Main idea (for "⊆"):
 - Use a description of C_n as α_n , and then compute $C_n(x)$ in polynomial time
- Main idea (for "⊇"):
 - The computation of $\mathbb{M}(x, \alpha_n)$ on inputs $x \in \{0, 1\}^n$ can be encoded as a polynomial-size circuit $D_n(\cdot, \alpha_n)$, using ideas from the proof of the Cook-Levin Thm
 - The circuit C_n is D_n with α_n "hardwired in"

P-uniform circuit families

Definition

A circuit family $\{C_n\}_{n\in\mathbb{N}}$ is P-uniform if there exists a polynomial-time deterministic TM that on input 1^n outputs a description of C_n , for each $n\in\mathbb{N}$.

Theorem

A decision problem $L \subseteq \{0,1\}^*$ is in P if and only if decidable by a P-uniform circuit family $\{C_n\}_{n\in\mathbb{N}}$.

The Karp-Lipton Theorem

- Question: is SAT decidable by polynomial-size circuits (is it in P/poly)?
 - Perhaps by allowing the algorithm to change per input size, this might work
- The answer: No (assuming that the PH does not collapse)

Theorem (Karp, Lipton 1980)

If NP \subseteq P/poly, then $\Sigma_2^p = \Pi_2^p$.

Proof of the Karp-Lipton Thm The general argument

- Suppose that $NP \subseteq P/poly$.
- $\blacksquare \text{ We show that then } \Pi_2^p \subseteq \Sigma_2^p \text{, by showing } \Pi_2 \text{SAT} \in \Sigma_2^p.$
- We use the following lemma to swap the order of the quantifiers:

Lemma

If $NP \subseteq P/poly$, then there exists a polynomial-time algorithm that:

- takes polynomial-length advice, and
- **given a propositional formula** φ :
 - \blacksquare if φ is unsatisfiable, it outputs 0;
 - lacktriangleright if φ is satisfiable, it outputs a satisfying truth assignment α for φ .
- Idea behind the proof of the lemma: use self-reducibility of SAT.

Proof of the Karp-Lipton Thm

Completing the proof

- Take an arbitrary instance of Π_2 SAT: $\varphi = \forall \overline{u}. \exists \overline{v}. \psi(\overline{u}, \overline{v}).$
- Let q be the polynomial bounding the size of the advice $\{\alpha_n\}_{n\in\mathbb{N}}$ that can be used to compute satisfying assignments for SAT, in polynomial time with TM \mathbb{M} .
- This is the case if and only if:
 - \exists there exists some $\overline{w} \in \{0,1\}^{q(n)}$ such that
 - \forall for all $\overline{z} \in \{0,1\}^m$
- $\begin{array}{ll} \operatorname{poly} & \mathbb{M} \text{ uses } \overline{w} \text{ as advice to output the assignment } \gamma \\ & \text{on input } \psi[\overline{u} \mapsto \overline{z}] \text{ and } \gamma \text{ satisfies } \psi[\overline{u} \mapsto \overline{z}] \end{array}$
- Thus, $\Pi_2 SAT \in \Sigma_2^p$, and therefore $\Pi_2^p = \Sigma_2^p$.

Key: we check that γ is correct; because we don't know whether \overline{w} is the right advice

Recap

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- \blacksquare The Karp-Lipton Theorem: if NP \subseteq P/poly, then $\Sigma_2^p = \Pi_2^p$

Next time

- A "breather"
- Time to reflect on what we've done so far
- Requests for things to recap?