Computational Complexity

Lecture 6: the Polynomial Hierarchy

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

April 19, 2024

Recap What we saw last time..

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE
- Logspace reductions
- NL-completeness

What will we do today?

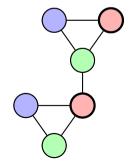
- The Polynomial Hierarchy
- Bounded quantifier alternation
- Alternating Turing machines

Example problem

• We saw that 3COL is NP-complete, but how about the following problem?

3COL-Extension = { (G, V_0) | G = (V, E) is an undirected graph, $V_0 \subseteq V$, and each 3-coloring of the vertices in V_0 can be extended to a proper 3-coloring of the entire graph G }

- There seems to be no single (polynomial-size) certificate for yes-inputs
- It is a " $\forall \exists$ -type" question
- We need a different complexity class to capture the complexity of 3COL-Extension



Definition (NP)

A language $L \subseteq \{0,1\}^*$ is in the class NP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

 $x \in L$ if and only if there exists some $u \in \{0,1\}^{q(|x|)}$ such that $\mathbb{M}(x,u) = 1$.

Definition (coNP)

A language $L \subseteq \{0,1\}^*$ is in the class coNP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

 $x \in L$ if and only if for all $u \in \{0,1\}^{q(|x|)}$ it holds that $\mathbb{M}(x,u) = 1$.

Definition (Σ_2^p)

A language $L \subseteq \{0,1\}^*$ is in the class Σ_2^p if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

$$x \in L$$
 if and only if there exists $u_1 \in \{0, 1\}^{q(|x|)}$ such that
for all $u_2 \in \{0, 1\}^{q(|x|)}$ it holds that $\mathbb{M}(x, u_1, u_2) = 1$.

Definition (Π_2^p)

A language $L \subseteq \{0,1\}^*$ is in the class Π_2^p if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

$$x \in L$$
 if and only if for all $u_1 \in \{0,1\}^{q(|x|)}$
there exists $u_2 \in \{0,1\}^{q(|x|)}$ such that $\mathbb{M}(x,u_1,u_2) = 1$

• It turns out that 3COL-Extension is Π_2^p -complete.

Definition (Σ_i^p)

Let $i \ge 1$. A language $L \subseteq \{0, 1\}^*$ is in the class Σ_i^p if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0, 1\}^*$:

```
x \in L if and only if there exists u_1 \in \{0, 1\}^{q(|x|)} such that
                              for all u_2 \in \{0, 1\}^{q(|x|)}
                               for all u_i \in \{0, 1\}^{q(|x|)}
                               it holds that \mathbb{M}(x, u_1, \ldots, u_i) = 1.
                                                                                            if i is even.
                               there exists u_i \in \{0, 1\}^{q(|x|)}
                               such that \mathbb{M}(x, u_1, \ldots, u_i) = 1.
                                                                                             if i is odd.
```

Definition (Π_i^p)

Let $i \ge 1$. A language $L \subseteq \{0, 1\}^*$ is in the class Π_i^p if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0, 1\}^*$:

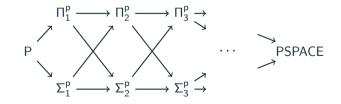
```
x \in L if and only if for all u_1 \in \{0, 1\}^{q(|x|)}
                               there exists u_2 \in \{0,1\}^{q(|x|)} such that
                               for all u_i \in \{0, 1\}^{q(|x|)}
                               it holds that \mathbb{M}(x, u_1, \ldots, u_i) = 1.
                                                                                             if i is odd.
                               there exists u_i \in \{0, 1\}^{q(|x|)}
                               such that \mathbb{M}(x, u_1, \ldots, u_i) = 1.
                                                                                           if i is even.
```

The Polynomial Hierarchy (PH)

Definition $(\Sigma_0^p, \Pi_0^p, PH)$

$$\Sigma_0^{\mathbf{p}} = \Pi_0^{\mathbf{p}} = \mathbf{P}$$
 $\mathbf{P}\mathbf{H} = \bigcup_{i \ge 0} \Sigma_i^{\mathbf{p}}.$

- Some relations:
 - $\blacksquare \ \Pi_i^{\mathsf{p}} = \{ \ \overline{L} \mid L \in \Sigma_i^{\mathsf{p}} \ \}$
 - $\blacksquare \ \Sigma_1^p = \mathsf{NP}, \ \Pi_1^p = \mathsf{coNP}$
 - $\begin{array}{c} \bullet \quad \Sigma_{i}^{\mathsf{p}} \subseteq \Pi_{i+1}^{\mathsf{p}} \subseteq \Sigma_{i+2}^{\mathsf{p}}, \\ \Pi_{i}^{\mathsf{p}} \subseteq \Sigma_{i+1}^{\mathsf{p}} \subseteq \Pi_{i+2}^{\mathsf{p}} \end{array}$
 - $\blacksquare \ \Sigma_i^{\mathsf{p}} \subseteq \Sigma_{i+1}^{\mathsf{p}}, \ \Pi_i^{\mathsf{p}} \subseteq \Pi_{i+1}^{\mathsf{p}}$
 - $\Sigma_i^p \cup \Pi_i^p \subseteq \mathsf{PSPACE}$
 - $\blacksquare \ \mathsf{PH} \subseteq \mathsf{PSPACE}$



"Collapse" of the hierarchy

- Statements like "P \neq NP" and "NP \neq coNP" are widely believed conjectures
- We can use these as assumptions to show some results
 - E.g., assuming that $P \neq NP$, NP-complete problems are not in P.
- For some results, stronger conjectures seem necessary
- Another conjecture: "the PH does not collapse"
 - "the PH collapses to P" PH = P
 - "the PH collapses to the *i*th level" $PH = \Sigma_i^p$

Theorem

```
Let i \ge 1. If \Sigma_i^p = \prod_i^p, then PH = \Sigma_i^p.
If P = NP, then PH = P.
```

QBF problems complete for Σ_i^p and Π_i^p

•
$$\Sigma_i \text{SAT} = \{ \varphi = \exists \overline{u}_1 \forall \overline{u}_2 \dots Q_i \overline{u}_i \ \psi(\overline{u}_1, \dots, \overline{u}_i) : \varphi \text{ is a true QBF} \},$$

where each $\overline{u}_j = (u_{j,1}, \dots, u_{j,\ell})$ is a sequence of propositional variables,
 $\exists \overline{u}_j \text{ stands for } \exists u_{j,1} \exists u_{j,2} \dots \exists u_{j,\ell}, \text{ and } \forall \overline{u}_j \text{ for } \forall u_{j,1} \forall u_{j,2} \dots \forall u_{j,\ell} \}$

•
$$\Pi_i SAT = \{ \varphi = \forall \overline{u}_1 \exists \overline{u}_2 \dots Q_i \overline{u}_i \ \psi(\overline{u}_1, \dots, \overline{u}_i) : \varphi \text{ is a true QBF } \},$$

Theorem

Let $i \ge 1$. Then $\Sigma_i SAT$ is Σ_i^p -complete and $\Pi_i SAT$ is Π_i^p -complete (both under polynomial-time reductions).

Oracle characterizations of Σ_i^p and Π_i^p

Theorem

Let
$$i \geq 2$$
. Then $\Sigma_i^p = \mathsf{NP}^{\Sigma_{i-1}\mathsf{SAT}}$ and $\Pi_i^p = \mathsf{coNP}^{\Sigma_{i-1}\mathsf{SAT}}$.

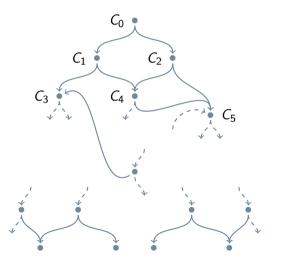
- (Or replace $\sum_{i=1}^{p}$ SAT by any $\sum_{i=1}^{p}$ -complete or $\prod_{i=1}^{p}$ -complete problem.)
- This is often written as: $\Sigma_i^p = NP^{\Sigma_{i-1}^p}$ and $\Pi_i^p = coNP^{\Sigma_{i-1}^p}$

Configuration graphs

Configurations C consist of: (1) tape contents (2) tape head positions (3) state $q \in Q$

Configuration graph of a TM $\mathbb M$ on some input x:

- Nodes are all the configurations that are reachable from the initial configuration C₀
- Edge from C to C' if applying one of the transition functions in C results in C'



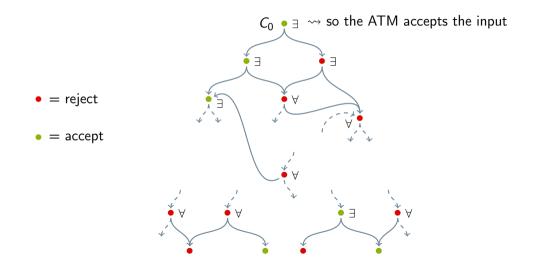
Definition (Alternating Turing machines; ATMs)

- Instead of a single transition function δ , there are two transition functions δ_1, δ_2 .
- The set $Q \setminus \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}$ is partitioned into Q_{\exists} and Q_{\forall} .
- Executions of alternating TMs are defined using a labeling procedure on the *configuration graph*. Repeatedly apply, until a fixpoint is reached:
 - Label each configuration with q_{acc} with "accept."
 - If a configuration c with $q \in Q_{\exists}$ has an edge to a configuration c' that is labeled with "accept," then label c with "accept."
 - If a configuration c has a state q ∈ Q_∀ and both configurations c', c" that are reachable from it in the graph are labeled with "accept," then label c with "accept."

The TM accepts the input if the starting configuration is labeled with "accept."

■ The TM runs in time *T*(*n*) if for every input *x* and for every possible sequence of transition function choices, the machine halts after at most *T*(|*x*|) steps.

Alternating Turing machines (ct'd)



Definition (ATIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \{0, 1\}^*$ is in ATIME(T(n)) if there exists an ATM that decides L and that runs in time O(T(n)).

Definition (Σ_i TIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \{0, 1\}^*$ is in $\Sigma_i \text{TIME}(T(n))$ if there exists an ATM that decides L, that runs in time O(T(n)), whose initial state is in Q_{\exists} , and that on every input and on every path in the configuration graph alternates at most i - 1 times between Q_{\exists} and Q_{\forall} .

• Π_i TIME is defined similarly to Σ_i TIME, with the difference that the initial state of the ATM is in Q_{\forall}

ATM characterizations

Theorem

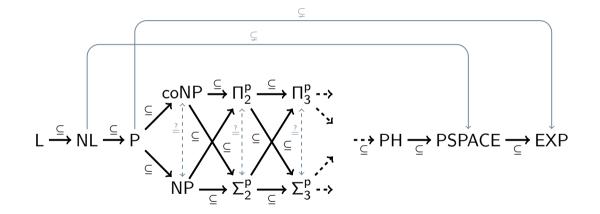
$$\mathsf{PSPACE} = \bigcup_{c \ge 0} \mathsf{ATIME}(n^c).$$

Theorem

Let $i \ge 1$. Then:

$$\Sigma_i^p = \bigcup_{c \ge 0} \Sigma_i \mathsf{TIME}(n^c) \qquad \qquad \Pi_i^p = \bigcup_{c \ge 0} \Pi_i \mathsf{TIME}(n^c).$$

An overview of complexity classes



- The classes Σ_i^p and Π_i^p
- The Polynomial Hierarchy
- $\Sigma_i^{\rm p}$ -complete and $\Pi_i^{\rm p}$ -complete QBF problems
- Characterizations using oracles and ATMs

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem