
Computational Complexity

Lecture 5: Space complexity

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

April 18, 2024

Recap
What we saw last time..

Limits of diagonalization, relativizing results

Oracles

There exist A,B ⊆ {0, 1}∗ such that PA = NPA and PB 6= NPB .

What will we do today?

Space-bounded computation

Limits on memory space

L, NL, PSPACE, NPSPACE

Logspace reductions

NL-completeness

Space-bounded computation

Instead of measuring the number T (n) of steps, we will measure the number S(n)
of tape cells used

For time bounds, T (n) < n typically makes no sense

In less than n steps, the machine cannot even read the input

However, for space bounds, S(n) < n does make sense in some situations

For space-bounded computation:

The input tape is read-only

We count how many tape cells on the ‘work tapes’ are used

SPACE and NSPACE

Definition (SPACE)

Let S : N→ N be a function. A decision problem L ⊆ Σ∗ is in SPACE(S(n)) if there
exists a Turing machine that decides L and that on inputs of length n its tape heads
(excluding on the input tape) visit at most c · S(n) tape cells.

Definition (NSPACE)

Let S : N→ N be a function. A decision problem L ⊆ Σ∗ is in NSPACE(S(n)) if there
exists a nondeterministic Turing machine that decides L and that on inputs of length n
its tape heads (excluding on the input tape) visit at most c · S(n) tape cells.

Some first relations between time and space

Theorem
If S : N→ N is a space-constructible function, then:

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))).

Assumption of space-constructibility rules out ‘weird’ functions.

S is space-constructible if there exists a TM that computes the function x 7→ S(|x |)
in space O(S(|x |)), for each x ∈ {0, 1}∗

Some space classes

Definition

PSPACE =
⋃
c≥1

SPACE(nc) L = SPACE(log n)

NPSPACE =
⋃
c≥1

NSPACE(nc) NL = NSPACE(log n)

By the previous theorem, then L ⊆ NL ⊆ P and PSPACE ⊆ NPSPACE ⊆ EXP.

What is an example of a problem in PSPACE? SAT

What is an example of a problem in NL? Reachability in graphs

Space Hierarchy Theorem

Theorem
If f , g : N→ N are space-constructible functions such that f (n) is o(g(n)), then:

SPACE(f (n)) (SPACE(g(n)) and NSPACE(f (n)) (NSPACE(g(n)).

As a result: L (PSPACE and NL (NPSPACE.

Quantified Boolean Formulas

Definition (QBFs)

A quantified Boolean formula (QBF) (in prenex form) is of the form
Q1x1Q2x2 · · ·Qmxm ϕ(x1, . . . , xm), where each Qi is one of the two quantifiers ∃ or ∀,
where the variables x1, . . . , xm range over {0, 1}, and where ϕ is a propositional formula
(without quantifiers).

Truth of QBFs is defined recursively, based on the typical semantics of ∃ and ∀.

For example, ∃x1∀x2 (x1 ∨ ¬x2) ∧ (x1 ∨ x2) is a QBF

Definition (TQBF)

The language TQBF consists of all QBFs that are true.

PSPACE-completeness

Theorem
TQBF is PSPACE-complete (under polynomial-time reductions).

Why is TQBF in PSPACE?

Use a recursive algorithm.
For ϕ = ∃xi ψ, recurse on ψ[xi 7→ 0] and ψ[xi 7→ 1],
and return 1 if and only if at least one of the
recursive calls returns 1. Similarly for ϕ = ∀xi ψ.

This takes exponential time, but polynomial space:

The recursion depth is linear in |ϕ|.

Space can be reused.

With polynomial space, we keep track
of the position in the recursion tree,
and if we’re going up or down.

•

• •

• • • •

0 1

0 1 0 1

1

{x1 7→ 0, x2 7→ 1}

01

PSPACE-completeness

Theorem
TQBF is PSPACE-complete (under polynomial-time reductions).

Why is TQBF PSPACE-hard?
Reduce arbitrary polynomial-space computation of TM M on input x to TQBF;
(computation that uses p(n) space takes time at most 2q(n))

Main idea: construct a QBF ϕc1,c2,t that expresses that the computation leads from
configuration c1 to configuration c2 within t steps, and return ϕc0,caccept,2q(n)

ϕc1,c2,t has propositional variables that correspond to the configurations c1, c2
For t = 1, this can be done analogously to the proof of the Cook-Levin Theorem

For t > 1: ϕc1,c2,t expresses ∃m (ϕc1,m,dt/2e ∧ ϕm,c2,dt/2e) – m is a sequence of vars

To avoid exponential blowup, write ϕc1,c2,t in the following way:

∃m∀c3∀c4 ((“c3 = c1” ∧ “c4 = m”) ∨ (“c3 = m” ∧ “c4 = c2”))→ ϕc3,c4,dt/2e

Savitch’s Theorem

Theorem (Savitch 1970)

For every space-constructible S : N→ N with S(n) ≥ log n:

NSPACE(S(n)) ⊆ SPACE(S(n)2).

So, in particular, PSPACE = NPSPACE.

Proof strategy (for PSPACE = NPSPACE):

Show that TQBF is NPSPACE-complete and in PSPACE.

Logspace reductions

To investigate L
?
= NL, we need reductions that are weak enough.

Since L ⊆ NL ⊆ P, every problem in L ∪ NL is reducible to each other using
polynomial-time reductions.

You can solve any problem in L ∪ NL in polynomial time.

Reduction: solve the problem, and output a trivial yes-input or a trivial no-input.

Logspace reductions (ct’d)

Definition
A function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace computable if:

f is polynomially bounded, i.e., there exists some c
such that |f (x)| ≤ |x |c for every x ∈ {0, 1}∗, and

the languages Lf = { (x , i) | f (x)i = 1 } and L′f = { (x , i) | i ≤ |f (x)| }
are in the complexity class L, where f (x)i denotes the ith bit of f (x).

Definition
A language B is logspace-reducible to a language C (also written B ≤` C) if there is a
function f : {0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and for
each x ∈ {0, 1}∗ it holds that x ∈ B if and only if f (x) ∈ C .

NL-completeness

A language B is NL-complete if B ∈ NL and C ≤` B for every C ∈ NL.

Logspace reductions are transitive: if B ≤` C and C ≤` D, then B ≤` D.

If B ≤` C and C ∈ L, then B ∈ L.

So, if any NL-complete language is in L, then L = NL.

An NL-complete problem

•s

•

•

•

•t

•

•

Consider graph reachability in directed graphs:

PATH = { (G , s, t) | G = (V ,E) is a directed graph, s, t ∈ V ,
and t is reachable from s in G }

PATH is NL-complete. Why is it in NL?

Keep the current and next node in memory (logspace).

Guess the next node, check if they are connected,
and forget the previous node.

Start at s, accept if you reach t.

Keep the length of the path you already visited in memory (logspace),
and stop when it is longer than |V | (to avoid looping forever).

Immerman-Szelepcsényi Theorem

Theorem (Immerman 1988, Szelepcsényi 1987)

For every space-constructible S : N→ N with S(n) > log n:

NSPACE(S(n)) = coNSPACE(S(n)).

In particular: NL = coNL.

An overview of complexity classes

L NL P

NP

coNP

PSPACE EXP
⊆ ⊆

⊆

⊆

⊆

⊆

⊆
?
=

coNL NPSPACE

coNPSPACE

= =

=

((

Recap

Space-bounded computation

Limits on memory space

L, NL, PSPACE = NPSPACE

Logspace reductions

NL-completeness

Next time

Complexity classes between P and PSPACE

The Polynomial Hierarchy

Bounded quantifier alternation

Alternating Turing machines

