Recap

What we saw last time..

- Diagonalization arguments
- Time Hierarchy Theorems
- $P \neq EXP$
What will we do today?

- Can we use diagonalization to attack $P \neq \text{NP}$? (Spoiler: no.)
- Limits of diagonalization
- Relativizing results
- Oracles
One concrete interpretation of *diagonalization proofs*:

any proof technique that depends on the following properties of TMs:

1. effective representation of TMs by strings
2. ability of one TM to simulate another efficiently

We will see some limits of these proof techniques.
Oracles

- Black-box machine that can solve a decision problem O in a single time-step
Definition

An oracle Turing machine is a TM M that has a special (read-write) tape that we call the oracle tape and three special states $q_{\text{query}}, q_{\text{yes}}, q_{\text{no}} \in Q$.

To execute M, we specify some $O \subseteq \{0, 1\}^*$ that is used as the oracle for M.

Whenever during the execution, M is in the state q_{query} the machine (in the next step) enters the state q_{yes} if $w \in O$ and the state q_{no} if $w \notin O$—where w denotes the current contents of the special oracle tape.

The tape contents and tape heads do not change/move.

$M^O(x)$ denotes the output of M on input x with oracle O.

An oracle TM knows how to use any oracle $O \subseteq \{0, 1\}^*$
Relativized complexity classes

Definition
Let \(O \subseteq \{0, 1\}^* \) be a decision problem.

- \(P^O \) is the set of all decision problems that can be decided by a polynomial-time deterministic TM with oracle access to \(O \).
- \(NP^O \) is the set of all decision problems that can be decided by a polynomial-time nondeterministic TM with oracle access to \(O \).

We will use similar notation for variants of other complexity classes that are based on Turing machines with bounds on the running time, e.g., \(EXP^O \).
One concrete interpretation of *diagonalization proofs*:

any proof technique that depends on the following properties of TMs:

(I) effective representation of TMs by strings

(II) ability of one TM to simulate another efficiently

We will see some limits of these proof techniques.
Relativizing results

- Regardless of the choice of $O \subseteq \{0, 1\}^*$, properties (I) and (II) also hold for oracle TMs.

- *Relativizing results* are results that depend only on (I) and (II)
 - E.g., $P \not\subseteq \text{EXP}$

- Relativizing results also hold when you add *any* oracle $O \subseteq \{0, 1\}^*$
 - E.g., $P^O \not\subseteq \text{EXP}^O$, for each $O \subseteq \{0, 1\}^*$
The Baker-Gill-Solovay Theorem

Theorem (Baker, Gill, Solovay 1975)

There exist $A, B \subseteq \{0, 1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.

So no proof that $P = NP$ or $P \neq NP$ can be relativizing.
Let $A = \{ (\alpha, x, 1^n) \mid M_\alpha \text{ outputs 1 on input } x \text{ within } 2^n \text{ steps } \}$.

Then $\text{EXP} \subseteq P^A \subseteq \text{NP}^A \subseteq \text{EXP}$.

$\text{EXP} \subseteq P^A$ (idea):
- With one oracle query to A you can do exponential-time computation in one step.

$\text{NP}^A \subseteq \text{EXP}$ (idea):
- Simulate computation of NP^A machine in exponential time.
 - Enumerate all sequences of nondeterministic choices.
 - Compute answer to each (polynomial-size) oracle query.
Oracle B such that $P^B \neq NP^B$

For any $B \subseteq \{0, 1\}^*$, let $U_B = \{ 1^n \mid \text{there is some } x \in \{0, 1\}^n \text{ such that } x \in B \}$.

Then $U_B \in NP^B$.

- On any input 1^n, we use nondeterminism to guess $x \in \{0, 1\}^n$, and query the oracle B to check if $x \in B$.

We construct some $B \subseteq \{0, 1\}^*$ such that $U_B \not\in P^B$.

- Using diagonalization. :-)

Construct $B \subseteq \{0, 1\}^*$ such that $U_B \notin P^B$

- We gradually build up B in stages. Start with \emptyset. One stage for each $i \in \{0, 1\}^*$.

- In stage i:
 - For only finitely many strings x we chose whether $x \in B$ or $x \notin B$. Let n be larger than the length of any such x.
 - Run M_i on input 1^n for $2^n/10$ steps.
 - If M_i queries “$x \in B$?” for strings for which we already determined if $x \in B$ or $x \notin B$, use the same answer.
 - If M_i queries “$x \in B$?” for new strings, answer that $x \notin B$.
 - Ensure that M_i’s answer on 1^n after $2^n/10$ steps is wrong.
 - If M_i accepts 1^n, for all strings $x \in \{0, 1\}^n$, let $x \notin B$.
 - If M_i rejects 1^n, take some yet unqueried $x \in \{0, 1\}^n$, and let $x \in B$.

- Each TM is represented by infinitely many i, and every polynomial is smaller than $2^n/10$ for large enough n. So no TM can decide U_B in polynomial time with oracle access to B.
Suppose that we have a relativizing proof that $P = NP$

Then also $P^B = NP^B$, contradicting $P^B \neq NP^B$.

Suppose that we have a relativizing proof that $P \neq NP$

Then also $P^A \neq NP^A$, contradicting $P^A = NP^A$.
- Limits of diagonalization, relativizing results
- Oracles
- There exist $A, B \subseteq \{0, 1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.
Next time

- Space-bounded computation
- Limits on memory space