Computational Complexity

Lecture 4: Relativization and the Baker-Gill-Solovay Theorem

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

Recap

What we saw last time..

- Diagonalization arguments
- Time Hierarchy Theorems
- \blacksquare P \neq EXP

What will we do today?

- Can we use diagonalization to attack $P \stackrel{?}{=} NP$? (Spoiler: no.)
- Limits of diagonalization
- Relativizing results
- Oracles

Diagonalization

■ One concrete interpretation of *diagonalization proofs*:

any proof technique that depends on the following properties of TMs:

- (I) effective representation of TMs by strings
- (II) ability of one TM to simulate another efficiently

■ We will see some limits of these proof techniques.

Oracles

lacksquare Black-box machine that can solve a decision problem O in a single time-step

Oracle Turing machines

Definition

An oracle Turing machine is a TM \mathbb{M} that has a special (read-write) tape that we call the oracle tape and three special states $q_{query}, q_{yes}, q_{no} \in Q$.

To execute \mathbb{M} , we specify some $O \subseteq \{0,1\}^*$ that is used as the *oracle* for \mathbb{M} .

Whenever during the execution, \mathbb{M} is in the state q_{query} the machine (in the next step) enters the state q_{yes} if $w \in O$ and the state q_{no} if $w \notin O$ —where w denotes the current contents of the special oracle tape.

The tape contents and tape heads do not change/move.

 $\mathbb{M}^{O}(x)$ denotes the output of \mathbb{M} on input x with oracle O.

■ An oracle TM knows how to use *any* oracle $O \subseteq \{0,1\}^*$

Relativized complexity classes

Definition

Let $O \subseteq \{0,1\}^*$ be a decision problem.

- P^O is the set of all decision problems that can be decided by a polynomial-time deterministic TM with oracle access to O.
- NP^O is the set of all decision problems that can be decided by a polynomial-time nondeterministic TM with oracle access to O.
- We will use similar notation for variants of other complexity classes that are based on Turing machines with bounds on the running time, e.g., EXP^O.

Diagonalization

■ One concrete interpretation of *diagonalization proofs*:

any proof technique that depends on the following properties of TMs:

- (I) effective representation of TMs by strings
- (II) ability of one TM to simulate another efficiently

■ We will see some limits of these proof techniques.

Relativizing results

- Regardless of the choice of $O \subseteq \{0,1\}^*$, properties (I) and (II) also hold for oracle TMs
- Relativizing results are results that depend only on (I) and (II)
 - E.g., P ⊊ EXP
- Relativizing results also hold when you add any oracle $O \subseteq \{0,1\}^*$
 - E.g., $P^O \subseteq EXP^O$, for each $O \subseteq \{0,1\}^*$

The Baker-Gill-Solovay Theorem

Theorem (Baker, Gill, Solovay 1975)

There exist $A, B \subseteq \{0,1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.

■ So no proof that P = NP or $P \neq NP$ can be relativizing.

Oracle A such that $P^A = NP^A$

- Let $A = \{ (\alpha, x, 1^n) \mid \mathbb{M}_{\alpha} \text{ outputs } 1 \text{ on input } x \text{ within } 2^n \text{ steps } \}.$
- Then $EXP \subseteq P^A \subseteq NP^A \subseteq EXP$.
- EXP \subseteq P^A (idea):
 - With one oracle query to A you can do exponential-time computation in one step.
- $NP^A \subseteq EXP$ (idea):
 - Simulate computation of NP^A machine in exponential time.
 - Enumerate all sequences of nondeterministic choices.
 - Compute answer to each (polynomial-size) oracle query.

Oracle B such that $P^B \neq NP^B$

- For any $B \subseteq \{0,1\}^*$, let $U_B = \{ 1^n \mid \text{there is some } x \in \{0,1\}^n \text{ such that } x \in B \}$.
- Then $U_B \in NP^B$.
 - On any input 1^n , we use nondeterminism to guess $x \in \{0,1\}^n$, and query the oracle B to check if $x \in B$.
- We construct some $B \subseteq \{0,1\}^*$ such that $U_B \notin P^B$.
 - Using diagonalization. :-)

Construct $B \subseteq \{0,1\}^*$ such that $U_B \notin P^B$

- We gradually build up B in stages. Start with \emptyset . One stage for each $i \in \{0,1\}^*$.
- In stage *i*:
 - For only finitely many strings x we chose whether $x \in B$ or $x \notin B$. Let n be larger than the length of any such x.
 - Run \mathbb{M}_i on input 1^n for $2^n/10$ steps.
 - If \mathbb{M}_i queries " $x \in B$?" for strings for which we already determined if $x \in B$ or $x \notin B$, use the same answer.
 - If M_i queries " $x \in B$?" for new strings, answer that $x \notin B$.
 - Ensure that M_i 's answer on 1^n after $2^n/10$ steps is wrong.
 - If \mathbb{M}_i accepts $\mathbf{1}^n$, for all strings $x \in \{0,1\}^n$, let $x \notin B$.
 - If M_i rejects 1^n , take some yet unqueried $x \in \{0,1\}^n$, and let $x \in B$.
- Each TM is represented by infinitely many i, and every polynomial is smaller than $2^n/10$ for large enough n. So no TM can decide U_B in polynomial time with oracle access to B.

No relativizing results for P vs. NP

- \blacksquare Suppose that we have a relativizing proof that P = NP
- Then also $P^B = NP^B$, contradicting $P^B \neq NP^B$.

- lacksquare Suppose that we have a relativizing proof that P \neq NP
- Then also $P^A \neq NP^A$, contradicting $P^A = NP^A$.

Recap

- Limits of diagonalization, relativizing results
- Oracles
- There exist $A, B \subseteq \{0,1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.

Next time

- Space-bounded computation
- Limits on memory space