
Computational Complexity

Lecture 2: NP-completeness and the Cook-Levin Theorem

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

April 5, 2024

Recap
What we saw last time..

Decision problems

The complexity class P

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

NP-hardness and NP-completeness

What will we do today?

Prove that NP-complete problems exist �

The Cook-Levin Theorem

Concrete reductions between problems

Search vs. decision problems

Representing Turing machines as (binary) strings

We can encode Turing machines into binary strings, such that:

1 each string s ∈ {0, 1}∗ represents some Turing machine M

2 each Turing machine M is represented by infinitely many strings s ∈ {0, 1}∗

3 given a TM M, we can efficiently compute a string s that represents M

Idea:

Write out the tuple (Γ,Q, δ), together with starting and halting states, in an
appropriate alphabet, and then encode into binary

Allow padding (cf. comments in programming languages)

Efficient universal Turing machine

Proposition

There exists a TM U such that for every x , s ∈ {0, 1}∗ it holds that U(x , s) = Ms(x),
where Ms is the TM represented by the string s.

Moreover, if Ms halts on x in time T , then U(x , s) halts in time C · T logT , where C
depends only on s (and not on x).

U is an efficient universal Turing machine: it can simulate other TMs in an
efficient way.

Our first NP-complete problem

Definition
The decision problem TM-SAT is defined as follows:

TM-SAT = { (α, x , 1n, 1t) | there exists u ∈ {0, 1}n such that
Mα outputs 1 on input (x , u) within t steps }

Or, described in a different format:

Input: A binary string α, a binary string x , a unary string 1n,
and a unary string 1t .

Question: Does there exist a binary string u ∈ {0, 1}n such that Mα

outputs 1 on input (x , u) within t steps?

TM-SAT is NP-complete

Proposition

TM-SAT is NP-complete

Proof (sketch).

Membership in NP: guess u, and verify by simulating Mα.

NP-hardness:

Take an arbitrary L ∈ NP. Then there exists a polynomial p and a TM M such that for
all x ∈ {0, 1}∗ there exists some u ∈ {0, 1}p(|x |) such that M(x , u) = 1 iff x ∈ L.

Let q be a polynomial bounding the running time of M.

Take the reduction R from L to TM-SAT where:
R(x) = (repr(M), x , 1p(|x |), 1q(|x |+p(|x |)))

Propositional logic

Propositional logic formulas ϕ are built from atomic propositions x1, x2, . . .
using Boolean operators ∧,∨,→,¬.

For example, ϕ1 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3).

A truth assignment is a function α : Vars(ϕ)→ {0, 1} that maps the atomic
propositions to 1 (true) or 0 (false).

For example, α1 = {x1 7→ 1, x2 7→ 1, x3 7→ 0}.

The truth ϕ[α] of a formula ϕ under a truth assignment α is defined inductively,
following the standard meaning of the operators.

For example, ϕ1[α1] = 0.

Propositional satisfiability

Definition
The decision problem Formula-SAT is defined as follows:

Formula-SAT = { ϕ | ϕ is a propositional logic formula and there
exists a satisfying truth assignment α for ϕ }

Or, described in a different format:

Input: A propositional logic formula ϕ.

Question: Is ϕ satisfiable?

Propositional satisfiability of CNF formulas

Definition
The decision problem CNF-SAT is defined as follows:

CNF-SAT = { ϕ | ϕ is a propositional logic formula in CNF and there
exists a satisfying truth assignment α for ϕ }

Or, described in a different format:

Input: A propositional logic formula ϕ in CNF.

Question: Is ϕ satisfiable?

Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals.

For example: ϕ1 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4)

The Cook-Levin Theorem

Theorem (Cook 1971, Levin 1969)

CNF-SAT is NP-complete.

Polynomial-time computation in a picture
For a single-tape TM

T timesteps

T tape cells

...

0 1 1 0 · · ·

1 1 1 0 · · ·

1 0 1 0 · · ·
...

q0

q2

q7
...

For each t, i ∈ {1, . . . ,T}
and each γ ∈ Γ:
introduce a proposition ct,i ,γ

For each t, i ∈ {1, . . . ,T}:
introduce a proposition ht,i

For each t ∈ {1, . . . ,T}
and each q ∈ Q:
introduce a proposition st,q

Proof of Cook-Levin Theorem

Take an arbitrary L ∈ NP. Then there exist polynomials p, q : N→ N and a TM M
running in time q(n) such that for each x ∈ {0, 1}∗:

x ∈ L if and only if there exists u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

W.l.o.g., assume that M is single-tape and that qacc and qrej are ‘sinks’

Take T = q(|x |+ p(|x |)). That is, T ≥ running time of M(x , u).

We will construct a formula ϕ (over the variables ct,i ,γ , ht,i , st,q)
that is satisfiable if and only if x ∈ L

ϕ is the conjunction of several clauses (see next slides).

Proof of Cook-Levin Theorem (ct’d)

Initialize tape contents:

(c1,i,xi) for 1 ≤ i ≤ |x |

(c1,i,0 ∨ c1,i,1) for |x | < i ≤ |x |+ p(|x |)

(c1,i,�) for |x |+ p(|x |) < i ≤ T

Other initial conditions:

(h1,1)

(s1,qstart)

Proof of Cook-Levin Theorem (ct’d)

At most one symbol per cell (at each time):

(¬ct,i,γ ∨ ¬ct,i,γ′) for 1 ≤ i , t ≤ T and all γ, γ′ ∈ Γ with γ 6= γ′

At most one tape head position at each time:

(¬ht,i ∨ ¬ht,i ′) for 1 ≤ i , i ′, t ≤ T with i 6= i ′

At most one state at each time:

(¬st,q ∨ ¬st,q′) for 1 ≤ t ≤ T and q, q′ ∈ Q with q 6= q′

Proof of Cook-Levin Theorem (ct’d)

Correct transitions.

For 1 ≤ i , t ≤ T − 1, γ ∈ Γ, and q ∈ Q:

(ct,i,γ ∧ ht,i ∧ st,q)→ (ct+1,i,γ′ ∧ ht+1,i ∧ st+1,q′) if δ(q, γ) = (q′, γ′, S)

(ct,i,γ ∧ ht,i ∧ st,q)→ (ct+1,i,γ′ ∧ ht+1,i+1 ∧ st+1,q′) if δ(q, γ) = (q′, γ′,R)

(ct,i,γ ∧ ht,i ∧ st,q)→ (ct+1,i,γ′ ∧ ht+1,i−1 ∧ st+1,q′) if δ(q, γ) = (q′, γ′, L)

Proof of Cook-Levin Theorem (ct’d)

No change when the tape head is away:

(ct,i,γ ∧ ¬ht,i)→ ct+1,i,γ for 1 ≤ t ≤ T − 1, 1 ≤ i ≤ T and γ ∈ Γ

The machine must accept:

sT ,qacc

Proof of Cook-Levin Theorem (ct’d)

The formula ϕ is satisfiable if and only if there exists some u ∈ {0, 1}p(|x |) such
that M(x , u) = 1, and thus if and only if x ∈ L.

The conjuncts of ϕ can be equivalently rewritten as clauses (of size ≤ 4)

(a ∧ b ∧ c)→ (d ∧ e ∧ f) 7→
(¬a ∨ ¬b ∨ ¬c ∨ d) ∧ (¬a ∨ ¬b ∨ ¬c ∨ e) ∧ (¬a ∨ ¬b ∨ ¬c ∨ f)

Computing ϕ takes polynomial time.

Polynomial number of atomic propositions and clauses

3SAT

Definition
The decision problem 3SAT is defined as follows:

3SAT = { ϕ | ϕ is a propositional logic formula in 3CNF and there
exists a satisfying truth assignment α for ϕ }

Or, described in a different format:

Input: A propositional logic formula ϕ in 3CNF.

Question: Is ϕ satisfiable?

3CNF: each clause (disjunction) contains at most 3 literals

3SAT is NP-complete

Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.

The formula that we constructed is in 4CNF. So 4SAT is NP-complete.
We give a polynomial-time reduction from 4SAT to 3SAT.

We replace each clause c = (`1 ∨ `2 ∨ `3 ∨ `4) of length 4 by:

(`1 ∨ `2 ∨ zc) ∧ (¬zc ∨ `3 ∨ `4),

where zc is a fresh variable.

The resulting formula ϕ′ is satisfiable if and only if the original formula ϕ is
satisfiable.

The web of reductions

3COL is NP-complete

Theorem (Karp 1972)

3COL is NP-complete.

We will show NP-hardness by reduction from 3SAT.

Gadgets

Gadgets

T

F X

xi ¬xi for each variable xi

`2 `3

`1

for each clause cj

Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3)

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 1}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 1}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 1}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 0}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 0}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

×

Search vs. decision

Does NP-completeness tell us something useful about the search problems on
which our decision problems are based?

Proposition

Suppose that P = NP. Then for every L ∈ NP and each verifier M for L, there exists a
polynomial-time Turing machine B that on input x ∈ L outputs a certificate u for x .

Hamiltonian cycles in grid graphs
For the homework..

·
•
•
•
•
•
•

·
•
•
•
•
•
•

•
•
·
·
·
•
•

•
•
·
·
·
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

·
•
•
•
•
•
•

·
•
•
•
•
•
•

·
•
•
•
•
•
•

•
•
·
·
·
•
•

•
•
·
·
·
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

·
•
•
•
•
•
•

A grid graph Gand a Hamiltonian cycle in G .

Slitherlink
For the homework..

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

2
2
2

2
2

1
1
2
3
2

1

2
3

1

2
1

3
2

3
1
2
1

1

3
2
3
2
1
2

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

2
2
2

2
2

1
1
2
3
2

1

2
3

1

2
1

3
2

3
1
2
1

1

3
2
3
2
1
2

A Slitherlink instance Iand a solution for I .

Recap

Prove that NP-complete problems exist �

The Cook-Levin Theorem

Concrete reductions between problems

Search vs. decision problems

Next time

Diagonalization arguments

Time Hierarchy Theorems

P 6= EXP

