Computational Complexity

Lecture 2: NP-completeness and the Cook-Levin Theorem

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

April 5, 2024

- Decision problems
- The complexity class P
- Nondeterministic Turing machines

■ More complexity classes: EXP, NP, coNP

- Polynomial-time reductions
- NP-hardness and NP-completeness

What will we do today?

- Prove that NP-complete problems exist ()

■ The Cook-Levin Theorem

■ Concrete reductions between problems

■ Search vs. decision problems

- We can encode Turing machines into binary strings, such that:

1 each string $s \in\{0,1\}^{*}$ represents some Turing machine \mathbb{M}
2 each Turing machine \mathbb{M} is represented by infinitely many strings $s \in\{0,1\}^{*}$
3 given a $T M \mathbb{M}$, we can efficiently compute a string s that represents \mathbb{M}

- Idea:
- Write out the tuple ($\ulcorner, Q, \delta)$, together with starting and halting states, in an appropriate alphabet, and then encode into binary
- Allow padding (cf. comments in programming languages)

Proposition

There exists a $\operatorname{TM} \mathbb{U}$ such that for every $x, s \in\{0,1\}^{*}$ it holds that $\mathbb{U}(x, s)=\mathbb{M}_{s}(x)$, where \mathbb{M}_{s} is the TM represented by the string s.

Moreover, if \mathbb{M}_{s} halts on x in time T, then $\mathbb{U}(x, s)$ halts in time $C \cdot T \log T$, where C depends only on s (and not on x).

- \mathbb{U} is an efficient universal Turing machine: it can simulate other TMs in an efficient way.

Definition

The decision problem TM-SAT is defined as follows:
TM-SAT $=\left\{\left(\alpha, x, 1^{n}, 1^{t}\right) \mid\right.$ there exists $u \in\{0,1\}^{n}$ such that \mathbb{M}_{α} outputs 1 on input (x, u) within t steps $\}$

Or, described in a different format:
Input: \quad A binary string α, a binary string x, a unary string 1^{n}, and a unary string 1^{t}.
Question: Does there exist a binary string $u \in\{0,1\}^{n}$ such that \mathbb{M}_{α} outputs 1 on input (x, u) within t steps?

TM-SAT is NP-complete

Proposition
TM-SAT is NP-complete

Proof (sketch).

Membership in NP: guess u, and verify by simulating \mathbb{M}_{α}.
NP-hardness:
Take an arbitrary $L \in N P$. Then there exists a polynomial p and a TM \mathbb{M} such that for all $x \in\{0,1\}^{*}$ there exists some $u \in\{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x, u)=1$ iff $x \in L$.
Let q be a polynomial bounding the running time of \mathbb{M}.
Take the reduction R from L to TM-SAT where:
$R(x)=\left(\operatorname{repr}(\mathbb{M}), x, 1^{p(|x|)}, 1^{q(|x|+p(|x|))}\right)$

- Propositional logic formulas φ are built from atomic propositions x_{1}, x_{2}, \ldots using Boolean operators $\wedge, \vee, \rightarrow, \neg$.
- For example, $\varphi_{1}=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right)$.
- A truth assignment is a function $\alpha: \operatorname{Vars}(\varphi) \rightarrow\{0,1\}$ that maps the atomic propositions to 1 (true) or 0 (false).
- For example, $\alpha_{1}=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 0\right\}$.
- The truth $\varphi[\alpha]$ of a formula φ under a truth assignment α is defined inductively, following the standard meaning of the operators.
- For example, $\varphi_{1}\left[\alpha_{1}\right]=0$.

Definition

The decision problem Formula-SAT is defined as follows:

$$
\begin{array}{r}
\text { Formula-SAT }=\left\{\varphi \left\lvert\, \begin{array}{l}
\varphi \text { is a propositional logic formula and there } \\
\text { exists a satisfying truth assignment } \alpha \text { for } \varphi
\end{array}\right.\right\}
\end{array}
$$

Or, described in a different format:
Input: \quad a propositional logic formula φ.
Question: Is φ satisfiable?

Definition

The decision problem CNF-SAT is defined as follows:
CNF-SAT $=\{\varphi \mid \varphi$ is a propositional logic formula in CNF and there exists a satisfying truth assignment α for φ \}

Or, described in a different format:
Input: \quad A propositional logic formula φ in CNF.
Question: Is φ satisfiable?

- Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals.

■ For example: $\varphi_{1}=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)$

Theorem (Cook 1971, Levin 1969)
CNF-SAT is NP-complete.

Polynomial-time computation in a picture For a single-tape TM

For each $t, i \in\{1, \ldots, T\}$ and each $\gamma \in \Gamma$: introduce a proposition $\boldsymbol{c}_{\boldsymbol{t}, \boldsymbol{i}, \gamma}$

For each $t, i \in\{1, \ldots, T\}$: introduce a proposition $\boldsymbol{h}_{\boldsymbol{t}, \boldsymbol{i}}$

For each $t \in\{1, \ldots, T\}$ and each $q \in Q$:
introduce a proposition $s_{t, q}$

$$
T \text { tape cells }
$$

$$
\text { introduce a proposition } n_{t, i}
$$

T timesteps

- Take an arbitrary $L \in N P$. Then there exist polynomials $p, q: \mathbb{N} \rightarrow \mathbb{N}$ and a TM \mathbb{M} running in time $q(n)$ such that for each $x \in\{0,1\}^{*}$:
$x \in L$ if and only if there exists $u \in\{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x, u)=1$.
- W.I.o.g., assume that \mathbb{M} is single-tape and that $q_{\text {acc }}$ and $q_{\text {rej }}$ are 'sinks'
- Take $T=q(|x|+p(|x|))$. That is, $T \geq$ running time of $\mathbb{M}(x, u)$.
- We will construct a formula φ (over the variables $c_{t, i, \gamma}, h_{t, i}, s_{t, q}$) that is satisfiable if and only if $x \in L$
- φ is the conjunction of several clauses (see next slides).

Proof of Cook-Levin Theorem (ct'd)

- Initialize tape contents:
- $\left(c_{1, i, x_{i}}\right)$
for $1 \leq i \leq|x|$
- $\left(c_{1, i, 0} \vee c_{1, i, 1}\right.$
- $\left(c_{1, i, \square}\right)$
for $|x|<i \leq|x|+p(|x|)$
for $|x|+p(|x|)<i \leq T$

■ Other initial conditions:

- $\left(h_{1,1}\right)$

■ $\left(s_{1, q_{s t a r t}}\right)$

Proof of Cook-Levin Theorem (ct'd)

- At most one symbol per cell (at each time):
- $\left(\neg c_{t, i, \gamma} \vee \neg c_{t, i, \gamma^{\prime}}\right) \quad$ for $1 \leq i, t \leq T$ and all $\gamma, \gamma^{\prime} \in \Gamma$ with $\gamma \neq \gamma^{\prime}$
- At most one tape head position at each time:
- ($\left.\neg h_{t, i} \vee \neg h_{t, i^{\prime}}\right) \quad$ for $1 \leq i, i^{\prime}, t \leq T$ with $i \neq i^{\prime}$
- At most one state at each time:
- ($\left.\neg s_{t, q} \vee \neg s_{t, q^{\prime}}\right) \quad$ for $1 \leq t \leq T$ and $q, q^{\prime} \in Q$ with $q \neq q^{\prime}$

Proof of Cook-Levin Theorem (ct'd)

- Correct transitions.

For $1 \leq i, t \leq T-1, \gamma \in \Gamma$, and $q \in Q:$
■ $\left(c_{t, i, \gamma} \wedge h_{t, i} \wedge s_{t, q}\right) \rightarrow\left(c_{t+1, i, \gamma^{\prime}} \wedge h_{t+1, i} \wedge s_{t+1, q^{\prime}}\right) \quad$ if $\delta(q, \gamma)=\left(q^{\prime}, \gamma^{\prime}, S\right)$
■ $\left(c_{t, i, \gamma} \wedge h_{t, i} \wedge s_{t, q}\right) \rightarrow\left(c_{t+1, i, \gamma^{\prime}} \wedge h_{t+1, i+1} \wedge s_{t+1, q^{\prime}}\right) \quad$ if $\delta(q, \gamma)=\left(q^{\prime}, \gamma^{\prime}, \mathrm{R}\right)$

- $\left(c_{t, i, \gamma} \wedge h_{t, i} \wedge s_{t, q}\right) \rightarrow\left(c_{t+1, i, \gamma^{\prime}} \wedge h_{t+1, i-1} \wedge s_{t+1, q^{\prime}}\right) \quad$ if $\delta(q, \gamma)=\left(q^{\prime}, \gamma^{\prime}, \mathrm{L}\right)$

Proof of Cook-Levin Theorem (ct'd)

- No change when the tape head is away:
- $\left(c_{t, i, \gamma} \wedge \neg h_{t, i}\right) \rightarrow c_{t+1, i, \gamma} \quad$ for $1 \leq t \leq T-1,1 \leq i \leq T$ and $\gamma \in \Gamma$
- The machine must accept:
- $S_{T, q_{\mathrm{acc}}}$

Proof of Cook-Levin Theorem (ct'd)

- The formula φ is satisfiable if and only if there exists some $u \in\{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x, u)=1$, and thus if and only if $x \in L$.
- The conjuncts of φ can be equivalently rewritten as clauses (of size ≤ 4)

$$
\begin{aligned}
& -(a \wedge b \wedge c) \rightarrow(d \wedge e \wedge f) \quad \mapsto \\
& \quad(\neg a \vee \neg b \vee \neg c \vee d) \wedge(\neg a \vee \neg b \vee \neg c \vee e) \wedge(\neg a \vee \neg b \vee \neg c \vee f)
\end{aligned}
$$

■ Computing φ takes polynomial time.

- Polynomial number of atomic propositions and clauses

Definition

The decision problem 3SAT is defined as follows:
3SAT $=\{\varphi \mid \varphi$ is a propositional logic formula in 3CNF and there exists a satisfying truth assignment α for φ \}

Or, described in a different format:
Input: A propositional logic formula φ in 3CNF.
Question: Is φ satisfiable?

- 3CNF: each clause (disjunction) contains at most 3 literals

3SAT is NP-complete

Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.

- The formula that we constructed is in 4CNF. So 4SAT is NP-complete. We give a polynomial-time reduction from 4SAT to 3SAT.

■ We replace each clause $c=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{4}\right)$ of length 4 by:

$$
\left(\ell_{1} \vee \ell_{2} \vee z_{c}\right) \wedge\left(\neg z_{c} \vee \ell_{3} \vee \ell_{4}\right)
$$

where z_{c} is a fresh variable.

- The resulting formula φ^{\prime} is satisfiable if and only if the original formula φ is satisfiable.

The web of reductions

3COL is NP-complete

Theorem (Karp 1972)
3COL is NP-complete.

- We will show NP-hardness by reduction from 3SAT.

for each clause c_{j}

Example
$\varphi=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$

Example

$$
\varphi=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right), \alpha=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 1\right\}
$$

Example

$$
\varphi=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right), \alpha=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 1\right\}
$$

Example

$$
\varphi=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right), \alpha=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 1\right\}
$$

Example

$$
\varphi=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right), \alpha=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 0\right\}
$$

Example

$$
\varphi=\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right), \alpha=\left\{x_{1} \mapsto 1, x_{2} \mapsto 1, x_{3} \mapsto 0\right\}
$$

- Does NP-completeness tell us something useful about the search problems on which our decision problems are based?

Proposition

Suppose that $P=N P$. Then for every $L \in N P$ and each verifier \mathbb{M} for L, there exists a polynomial-time Turing machine \mathbb{B} that on input $x \in L$ outputs a certificate u for x.

Hamiltonian cycles in grid graphs
For the homework..

- A grid graph G..

..and a Hamiltonian cycle in G.

Slitherlink
For the homework.

- A Slitherlink instance I..

Recap

- Prove that NP-complete problems exist :

■ The Cook-Levin Theorem

■ Concrete reductions between problems
■ Search vs. decision problems

- Diagonalization arguments
- Time Hierarchy Theorems
- $\mathrm{P} \neq \mathrm{EXP}$

