Computational Complexity

Lecture 2: NP-completeness and the Cook-Levin Theorem

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

April 5, 2024

Recap

What we saw last time..

Decision problems

The complexity class P

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP
Polynomial-time reductions

NP-hardness and NP-completeness

- What will we do today?

m Prove that NP-complete problems exist ©

The Cook-Levin Theorem

m Concrete reductions between problems

m Search vs. decision problems

- Representing Turing machines as (binary) strings

m We can encode Turing machines into binary strings, such that:

each string s € {0,1}* represents some Turing machine M
each Turing machine M is represented by infinitely many strings s € {0,1}*

given a TM M, we can efficiently compute a string s that represents M

m ldea:

m Write out the tuple (T, Q,d), together with starting and halting states, in an
appropriate alphabet, and then encode into binary

m Allow padding (cf. comments in programming languages)

- Efficient universal Turing machine

Proposition

There exists a TM U such that for every x,s € {0,1}* it holds that U(x, s) = M(x),
where M is the TM represented by the string s.

Moreover, if M halts on x in time T, then U(x, s) halts in time C - T log T, where C
depends only on s (and not on x).

m U is an efficient universal Turing machine: it can simulate other TMs in an
efficient way.

- Our first NP-complete problem

The decision problem TM-SAT is defined as follows:

TM-SAT = { (a, x,1",1%) | there exists u € {0,1}" such that
M, outputs 1 on input (x, u) within t steps }

Or, described in a different format:

Input: A binary string «, a binary string x, a unary string 1",

and a unary string 1*.

Question: Does there exist a binary string u € {0,1}" such that M,
outputs 1 on input (x, u) within t steps?

- TM-SAT is NP-complete

TM-SAT is NP-complete

Proof (sketch).
Membership in NP: guess u, and verify by simulating M,,.
NP-hardness:

Take an arbitrary L € NP. Then there exists a polynomial p and a TM M such that for
all x € {0,1}* there exists some u € {0, 1}P(X]) such that M(x, u) = 1 iff x € L.

Let g be a polynomial bounding the running time of M.

Take the reduction R from L to TM-SAT where:
R(x) = (repr(M), x, 1P(xD) 1q(|X|+P(|X|))) 0

- Propositional logic

m Propositional logic formulas ¢ are built from atomic propositions xi, xo, . . .
using Boolean operators A, V, —, .

m For example, p1 = (x1 V —x2) A (—x1 V x3).

m A truth assignment is a function « : Vars(p) — {0, 1} that maps the atomic
propositions to 1 (true) or 0 (false).

m For example, a3 = {x3 — 1,x — 1, x3 — 0}.

m The truth ¢[a] of a formula ¢ under a truth assignment « is defined inductively,
following the standard meaning of the operators.

m For example, ¢1][a1] = 0.

- Propositional satisfiability

The decision problem Formula-SAT is defined as follows:

Formula-SAT = { ¢ | ¢ is a propositional logic formula and there
exists a satisfying truth assignment « for ¢ }

Or, described in a different format:

Input: A propositional logic formula ¢.

Question: Is ¢ satisfiable?

- Propositional satisfiability of CNF formulas

The decision problem CNF-SAT is defined as follows:

CNF-SAT = { ¢ | ¢ is a propositional logic formula in CNF and there
exists a satisfying truth assignment « for ¢ }

Or, described in a different format:

Input: A propositional logic formula ¢ in CNF.

Question: Is ¢ satisfiable?

m Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals.

m For example: v1 = (x1 V =x2) A (—x1 V x3) A (mx2 V X3 V Xq)

- The Cook-Levin Theorem

Theorem (Cook 1971, Levin 1969)
CNF-SAT Jjs NP-complete.

Polynomial-time computation in a picture

For a single-tape TM

For each t,iec{1,..., T}
and each v € T:

introduce a proposition Ct,i~y

Foreach t,ie {1,..., T}
introduce a proposition hy ;

Foreacht € {1,..., T}
and each g € Q:
introduce a proposition s; 4

ado
qz
q7

T tape cells
A

O .

O .

O .

> T timesteps

- Proof of Cook-Levin Theorem

m Take an arbitrary L € NP. Then there exist polynomials p,g: N — Nanda TM M
running in time g(n) such that for each x € {0, 1}*:

x € L if and only if there exists u € {0,1}P(X) such that M(x, u) = 1.
m W.lo.g., assume that M is single-tape and that gacc and gyej are ‘sinks’

m Take T = q(|x| + p(|x])). Thatis, T > running time of M(x, u).

m We will construct a formula ¢ (over the variables c; ., hy i, St,q)
that is satisfiable if and only if x € L

m ¢ is the conjunction of several clauses (see next slides).

- Proof of Cook-Levin Theorem (ct'd)

m Initialize tape contents:

u (Cl,f,Xf) for1 <i< ‘x|
m (c1i0Vcrin) for |x| < i < |x|+ p(|x|)
m (c1,i0) for |x| +p(Ix|)<i<T

m Other initial conditions:
| | (hl,l)

u (sluqltart)

- Proof of Cook-Levin Theorem (ct'd)

m At most one symbol per cell (at each time):

m(2Ciy Vciy) forl1<it<Tandall~,+ €Tl with vy #~
m At most one tape head position at each time:

m (—he; Vi) for 1< i,i",t < T with i # /"
m At most one state at each time:

B (Seq V Stg) for1<t<Tandgq,q € Qwithg#¢q

- Proof of Cook-Levin Theorem (ct'd)

m Correct transitions.
For1<i,t<T—-1,v€Tl,and g€ Q:
B (Ceiny AheiNseq) = (Cerrin A her1i A Ser1,q) if 6(q,v) =(¢',7,9)
B (Ceiy AheiAseg) = (Cer1yiy A hegrivi ASerrg) if0(q,7) = (4,7, R)

B (Ceiy AheiANseq) = (Cerri Aheprici Aserr,g) 1T 0(g,7) =(q',7,L)

- Proof of Cook-Levin Theorem (ct'd)

m No change when the tape head is away:
] (CtJ”Y /\ﬁht’,') — Ct41,i,7 for1<t<T-1,1<i<Tand yel
m The machine must accept:

] sTvqacc

- Proof of Cook-Levin Theorem (ct'd)

m The formula ¢ is satisfiable if and only if there exists some u € {0, 1}P(X) such
that M(x, u) = 1, and thus if and only if x € L.

m The conjuncts of ¢ can be equivalently rewritten as clauses (of size < 4)

m(aAbAc)=(dAenf) —
(maVv bV -acVd)A(maV-bV-ocVe)A(-aV bV -cVf)

m Computing ¢ takes polynomial time.

m Polynomial number of atomic propositions and clauses

The decision problem 3SAT is defined as follows:

3SAT = { ¢ | ¢ is a propositional logic formula in 3CNF and there
exists a satisfying truth assignment « for ¢ }

Or, described in a different format:

Input: A propositional logic formula ¢ in 3CNF.

Question: Is ¢ satisfiable?

m 3CNF: each clause (disjunction) contains at most 3 literals

- 3SAT is NP-complete

Theorem (Cook 1971, Levin 1969)
3SAT is NP-complete.

m The formula that we constructed is in 4CNF. So 4SAT is NP-complete.
We give a polynomial-time reduction from 4SAT to 3SAT.

m We replace each clause ¢ = (1 V £y V {3V {4) of length 4 by:
(61 V by V ZC) AN (—\ZC VU3V 64),
where z. is a fresh variable.

m The resulting formula ¢’ is satisfiable if and only if the original formula ¢ is
satisfiable.

- The web of reductions

VL € NP
Theorem 2.10 (Lemma 2.11)

SAT Theorem 2.10 (Lemma 2.14)

Theorem 2.17 Theorem 2.16
INTEGERPROG
dHAMPATH SSAT Ex 2.21
l Ex2.18 Theorem 2.15 Ex 217

HAMPATH INDSET ExactoneSSAT 3COL

/Ex 2.18
SP

Ex 2.17l
HAMCYCLE Ex2.15 SUBSETSUM
Ex2.11 >/

THEOREMS CLIQUE VERTEXCOVER
Ex2.22
l Ex2.16
Ex2.19 MAXCUT
QUADEQ
COMBINATORIAL

AUCTION

- 3COL is NP-complete

Theorem (Karp 1972)
3COL is NP-complete.

m We will show NP-hardness by reduction from 3SAT.

for each variable x;

for each clause ¢;

Example

p = (—|X1 V =X \/X3), o = {Xl = Lix = 1,x3 = 1}

Example

p = (—|X1 V =X \/X3), o = {Xl = Lix = 1,x3 = 1}

Example

p = (—|X1 V =X \/X3), o = {Xl = Lix = 1,x3 = 1}

Example

p = (—|X1 V =X \/X3), o = {Xl = Lix = 1,x3 = 0}

Example

p = (—|X1 V =X \/X3), o = {Xl = Lix = 1,x3 = 0}

- Search vs. decision

m Does NP-completeness tell us something useful about the search problems on
which our decision problems are based?

Proposition

Suppose that P = NP. Then for every L € NP and each verifier Ml for L, there exists a
polynomial-time Turing machine B that on input x € L outputs a certificate u for x.

Hamiltonian cycles in grid graphs

For the homework..

m A grid graph G.. ..and a Hamiltonian cycle in G.

Slitherlink

For the homework..

.2. .1.2.3.3. 29 3132 3 3

.2.1. .1.1.2. 02.1. .1 1 20
*2%1%2° *1°*3° 212 1213
[] .2.3. .1.2. 2 3 01 2
.2.3. .3. .1. 02030 030 .10
.2.2.1.2.1.2. 02 2 1 2 1.20
e 6 o o o o o o —0—0—0—0

m A Slitherlink instance /.. ..and a solution for /.

N

m Prove that NP-complete problems exist ©

The Cook-Levin Theorem

m Concrete reductions between problems

m Search vs. decision problems

N

m Diagonalization arguments
m Time Hierarchy Theorems

m P £EXP

