
Computational Complexity

Lecture 13: Meta Complexity

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

May 23, 2024

What is meta complexity?

Meta complexity is an informal term referring to the computational complexity
study of problems that have a ‘complexity flavor’

So in a sense, meta complexity studies the complexity of complexity problems
(hence the phrase ‘meta’)

This turns out to be fruitful for studying various notions related to computational
complexity, learning, cryptography, etc.

Meta complexity connects

Kolmogorov complexity Circuit lower bounds

Pseudorandomness & cryptography

Proof complexity Learning
MCSP

The Minimum Circuit Size Problem

The Minimum Circuit Size Problem (MCSP)

MCSP:

Input: a Boolean function F over n variables given by its truth table
(containing 2n entries), and a positive integer s ∈ N (given in binary).

Question: does there exist a Boolean circuit C of size s that expresses the
function F?

MCSP[s], for a function s : N→ N:
Input: a Boolean function F over n variables given by its truth table
(containing 2n entries).

Question: does there exist a Boolean circuit C of size s(2n)
that expresses the function F?

Black-box problem

Intuitively, MCSP is a black-box problem:

We are given the input-output behavior of a function F

The task is to see if this function F has small circuits

Compare this to white-box problems such as SAT, where we are given an explicit
way to compute the Boolean function F about which we are answering a
question—namely, by means of a formula or circuit

MCSP is in NP

MCSP is in NP

Might seem odd at first:

Circuits to consider are exponentially large in the size of (the binary encoding of) s

Main idea:

There is always a circuit for F of size O(2n)

We are given the truth table of F as input, which is of size 2n

So we can guess a circuit C of size at most O(2n) in polynomial time

And check if C expresses F by iterating over all rows α in the truth table,
and checking if C (α) = F (α)

Open question: is MCSP in P? Is it NP-complete?

One main open research question:

Is MCSP NP-complete?

MCSP is not in P assuming OWFs exist.

(Connection via natural properties, which we will see later..)

Circuit lower bounds

Circuit lower bounds

One approach to trying to show P 6= NP is by giving circuit lower bounds

Circuit lower bounds for a class C of circuits: showing that there is a function f
that does not have small circuits within C

For example: Parity (computing whether a string has an even number of 1’s) is not
in AC0 (the class of polynomial-size constant-depth circuits), but it is in AC0[2]

The idea would be to do this for ever more expressive classes of circuits, leading
to NP 6⊆ P/poly, which implies P 6= NP

Circuit lower bounds (in a ‘picture’)

After some initial successes, this program stalled in the 1980s

State of results:

AC0 (AC0[p] (ACC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP.

A 2011 paper by Ryan Williams that won the 2024 Gödel Prize showed:

NEXP 6⊆ ACC0.

A connection between MCSP and circuit lower bounds

The following two are equivalent:

Showing that DTIME(2O(n)) does not have Boolean circuits of size s(n)

Efficiently (in polynomial time) constructing no-instances
of MCSP[s ′]—where s ′ = s ◦ log—of size 2n,given 2n in unary.

Main idea:

Suppose there is a problem L in DTIME(2O(n)) that has no circuits of size s(n).
Using this, we can compute in time 2O(n) = poly(2n) the truth table of problem L on
inputs of size n.
This is a no-instance of MCSP[s ′] of size 2n.

Suppose you can efficiently construct no-instances of MCSP[s ′] of size 2n.
Using this, for each input size, we can construct (in exponential time) a truth table
of a Boolean function that has no circuits of size s(n).
This yields a problem in DTIME(2O(n)) that has no circuits of size s(n).

Natural proofs barrier

Combinatorial property: {Pn}n∈N where Pn ⊆ Fn and where Fn = {0, 1}2n is the
set of all Boolean functions on n variables

A property {Pn}n∈N is a natural property if:

Given a 2n-size truth table for a function f on n variables, checking whether f ∈ Pn

can be done in time 2O(n) – Constructiveness, or “easy to detect”

Pr
f∼{0,1}2n

[f ∈ Pn] ≥ 1/poly(2n) – Largeness, or “pretty common”

A natural property {Pn}n∈N is useful against P/poly if for any family f = {fn}n∈N
of Boolean functions such that fn ∈ Pn for all n it holds that the circuit size of f is
super-polynomial.

(These properties are a way of showing that functions f are not in P/poly)

Natural proofs barrier (ct’d)

Result by Razborov and Rudich (1994) that was awarded the 2007 Gödel Prize:

If there exists a natural property useful against P/poly, then there exist no
(subexponentially-secure) one-way functions.

In other words, assuming OWFs exist, then one needs non-natural properties to
show circuit lower bounds for P/poly

(Current proofs showing circuit lower bounds use natural properties)

Kolmogorov Complexity

Kolmogorov complexity: origins in randomness

One of the main roots of Kolmogorov complexity is the study of randomness

Consider the strings 000000000000 and 011011110010, both of length 12.

Is one more ‘random’ than the other?

How do we measure this? Perhaps considering a probability distribution over all
strings of length 12 and considering the probability of the strings. The uniform
distribution doesn’t help to define randomness.

Idea of Kolmogorov complexity: measure the amount to which strings can be
compressed.

Kolmogorov complexity

Pick some universal Turing machine U.

The Kolmogorov complexity C (x) of a string x is defined as:

C (x) = min{ |p| : U(p) = x }.

In other words, the Kolmogorov complexity C (x) of x is the size of the smallest
program p that, when executed by U, yields x as output.

Kolmogorov complexity is uncomputable

The problem of computing the Kolmogorov complexity C (x) of a string x is
uncomputable.

Main idea: an incompressibility argument.

Suppose, to derive a contradiction, that C is computable.

Consider the following algorithm AM , whose description will be of length P + logM:

Iterate over all strings x ∈ {0, 1}∗, from shortest to longer.

For each string x , compute C(x). If C(x) ≥ M, return x .

(In other words, AM returns the first string x with C(x) ≥ M.)

Now select M such that M > P + logM.

Let x be the string that AM returns. So C (x) ≤ P + logM < M.
This contradicts that C (x) ≥ M.

Time-bounded Kolmogorov complexity

Resource-bounded variants of Kolmogorov complexity have been considered.

Let t : N→ N.

Then:
C t(x) = min{ |p| : U(p) = x in time t(|x |) }.

Observation: for each x and each t, it holds that C (x) ≤ C t(x).

Levin’s Kt complexity

Levin’s Kt complexity is another variant that is based on time bounds.

It is defined as follows:

Kt(x) = min{ |p|+ log t : U(p) = x in time t }.

Observation: for each x , it holds that C (x) ≤ Kt(x).

Computational problems: MINKT, MKtP, and MKtP

MINKT: given a string x and s, t ∈ N in unary, decide whether there is a
program p of size ≤ s such that U(p) = x in time t.

in NP

MKtP: given a string x and s ∈ N in unary, decide whether there is a program p of
size ≤ s such that U(p) = x in time t(|x |).

in NP

MKtP: given a string x and s ∈ N in unary, decide whether Kt(x) ≤ s.

in EXP

Hardness vs. randomness

Cryptographic PRGs

Definition
Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function, and let ` : N→ N
be such that `(n) > n for each n. Then G is a secure pseudorandom generator (PRG)
of stretch `(n), if |G (x)| = `(|x |) for every x ∈ {0, 1}∗ and for every probabilistic
polynomial-time A there exists a negligible function ε such that for each n:∣∣Pr[A(G (Un)) = 1]− Pr[A(U`(n)) = 1]

∣∣ < ε(n).

Proposition

If OWFs exist, then for each c there exists a secure PRG with stretch `(n) = nc .

PRGs are useful building blocks for cryptographic schemes.

Complexity-theoretic PRGs

Definition
A distribution R over {0, 1}m is (S , ε)-pseudorandom if for every circuit C of size at
most S :

|Pr[C (R) = 1]− Pr[C (Um) = 1]| < ε.

Let S : N→ N be some function. A 2n-time computable function G : {0, 1}∗ → {0, 1}∗
is an S(`)-pseudorandom generator if |G (z)| = S(|z |) for every z ∈ {0, 1}∗ and for
every ` ∈ N the distribution G (U`) is (S(`)3, 1/10)-pseudorandom.

Differences with cryptographic PRGs:

Running time may be 2n (instead of polynomial)

We will look at stretch S(`) = 2O(`), vs. e.g., stretch `(n) = n + 1.

The adversaries are circuits rather than probabilistic algorithms.

PRGs and derandomization

Result by Nisan and Wigderson (1988):

If there is some f ∈ E = DTIME(2O(n)) that is average-case hard for
subexponential-size circuits, then there exists a complexity-theoretic PRG with
exponential stretch, and as a result P = BPP.

Result by Impagliazzo and Wigderson (1997):

If there is some f ∈ E = DTIME(2O(n)) that is worst-case hard for
subexponential-size circuits, then there exists a complexity-theoretic PRG with
exponential stretch, and as a result P = BPP.

Learning

PAC Learning

Probably Approximately Correct (PAC) learning works as follows

Take an instance space X . A concept c ⊆ X is a subset of instances. A concept
class C is a set of concepts.

An algorithm A PAC-learns C if the following holds, for any (unknown) probability
distribution D over the instances, and for any (unknown) correct concept c0 ∈ C .

The algorithm takes as input 0 < ε, δ < 1. It runs in time polynomial in 1/ε and 1/δ.

It may (probabilistically) sample instances x according to the distribution D, and it
receives the correct answer for x (i.e., whether x ∈ c0).

With probability at least 1− δ it outputs a concept h ∈ C such that the average
error of h w.r.t. c0 (according to the distribution D) is at most ε.

PAC Learning Boolean Circuits

An algorithm PAC-learns a class C of Boolean functions if for any function f ∈ C
on n variables the following holds:

The algorithm takes as input 0 < ε, δ < 1.
The running time does not depend more than polynomially on 1/ε and 1/δ.

It may call f as an oracle—i.e., for strings x ∈ {0, 1}n, the oracle returns the value
of f (x).

With probability at least 1− δ it outputs a circuit C that agrees with f on all but
an ε fraction of strings x ∈ {0, 1}n.

Learning via natural properties

Carmosino, Impagliazzo, Kabanets and Kolokolova (2016) showed a connection
between natural properties and learning.

In simplified and imprecise form, the result states that:

If there is a natural property that is useful against circuits in class C,

then using this property, one can construct a randomized algorithm that
PAC-learns C.

(The running time of the learning algorithm depends on the strength of the natural
property: the stronger the natural property, the faster the learning algorithm.)

(The proof of this result uses the connection between circuit lower bounds and
PRGs.)

Recent directions and results

Some recent directions and results..

Worst-case to average-case reductions: ruling out Heuristica

See, e.g., a survey paper by Hirahara (2022; link)

Evidence that MCSP is NP-complete:

Partial MCSP is NP-complete (2022; link)

Reducing SAT to variants of MCSP (2023; link)

Connections to Kolmogorov complexity:

OWFs exist if and only if time-bounded Kolmogorov complexity is hard on average
(2020; link)

OWFs exist if and only if an NP-complete problem related to Kolmogorov complexity
is hard on average (2020; link)

Replacing SAT oracles by MCSP oracles in complexity-theoretic results (2018; link)

http://bulletin.eatcs.org/index.php/beatcs/article/view/688
https://ieeexplore.ieee.org/document/9996601
https://eccc.weizmann.ac.il/report/2023/165/
https://ieeexplore.ieee.org/document/9317907
https://ieeexplore.ieee.org/document/9317907
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.7

