Computational Complexity

Lecture 13: Meta Complexity

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

May 23, 2024

- What is meta complexity?

m Meta complexity is an informal term referring to the computational complexity
study of problems that have a ‘complexity flavor’

m So in a sense, meta complexity studies the complexity of complexity problems
(hence the phrase ‘meta’)

m This turns out to be fruitful for studying various notions related to computational
complexity, learning, cryptography, etc.

- Meta complexity connects

Pseudorandomness & cryptography

Proof complexity / | Learning
\ X/

Kolmogorov complexity Circuit lower bounds

The Minimum Circuit Size Problem

- The Minimum Circuit Size Problem (MCSP)

m MCSP:

m /nput: a Boolean function F over n variables given by its truth table
(containing 2" entries), and a positive integer s € N (given in binary).

m Question: does there exist a Boolean circuit C of size s that expresses the
function F?

m MCSP(s], for a function s : N — N:

m /nput: a Boolean function F over n variables given by its truth table
(containing 2" entries).

m Question: does there exist a Boolean circuit C of size s(2")
that expresses the function F?

- Black-box problem

m Intuitively, MCSP is a black-box problem:
m We are given the input-output behavior of a function F

m The task is to see if this function F has small circuits

m Compare this to white-box problems such as SAT, where we are given an explicit
way to compute the Boolean function F about which we are answering a
question—namely, by means of a formula or circuit

- MCSP is in NP

m MCSP is in NP

m Might seem odd at first:

m Circuits to consider are exponentially large in the size of (the binary encoding of) s

m Main idea:
m There is always a circuit for F of size O(2")
m We are given the truth table of F as input, which is of size 2"
m So we can guess a circuit C of size at most O(2") in polynomial time

m And check if C expresses F by iterating over all rows « in the truth table,
and checking if C(«a) = F(a)

- Open question: is MCSP in P? Is it NP-complete?

m One main open research question:

Is MCSP NP-complete?

m MCSP is not in P assuming OWFs exist.

m (Connection via natural properties, which we will see later..)

Circuit lower bounds

- Circuit lower bounds

m One approach to trying to show P # NP is by giving circuit lower bounds

m Circuit lower bounds for a class C of circuits: showing that there is a function f
that does not have small circuits within C

m For example: Parity (computing whether a string has an even number of 1's) is not
in AC? (the class of polynomial-size constant-depth circuits), but it is in AC°[2]

m The idea would be to do this for ever more expressive classes of circuits, leading
to NP Z P/poly, which implies P # NP

- Circuit lower bounds (in a ‘picture’)

m After some initial successes, this program stalled in the 1980s

m State of results:

AC® C AC%[p] C ACCO C TCOC NCY C L CNLCAC!CNC2CPCNP.

m A 2011 paper by Ryan Williams that won the 2024 Gddel Prize showed:

NEXP ¢ ACCC.

- A connection between MCSP and circuit lower bounds

m The following two are equivalent:
m Showing that DTIME(2°(") does not have Boolean circuits of size s(n)

m Efficiently (in polynomial time) constructing no-instances
of MCSP[s']—where s’ = s o log—of size 2",given 2" in unary.

m Main idea:

m Suppose there is a problem L in DTIME(2°(") that has no circuits of size s(n).
Using this, we can compute in time 29(") = poly(2") the truth table of problem L on
inputs of size n.

This is a no-instance of MCSP[s'] of size 2".

m Suppose you can efficiently construct no-instances of MCSP[s’] of size 2".
Using this, for each input size, we can construct (in exponential time) a truth table
of a Boolean function that has no circuits of size s(n).
This yields a problem in DTIME(2°(") that has no circuits of size s(n).

- Natural proofs barrier

m Combinatorial property: {P,},en where P, C F, and where F, = {0,1}2" is the
set of all Boolean functions on n variables

m A property {Pp}nen is a natural property if:

m Given a 2"-size truth table for a function f on n variables, checking whether f € P,

can be done in time 2°0(") — Constructiveness, or “easy to detect”
[Pro [f€P,]>Ypoly2") — Largeness, or “pretty common”
Fr{0,1}2"

m A natural property {P,}nen is useful against P/poly if for any family f = {f,}nen
of Boolean functions such that f, € P, for all n it holds that the circuit size of f is
super-polynomial.

m (These properties are a way of showing that functions f are not in P/poly)

- Natural proofs barrier (ct'd)

m Result by Razborov and Rudich (1994) that was awarded the 2007 Godel Prize:

m If there exists a natural property useful against P/poly, then there exist no
(subexponentially-secure) one-way functions.

m In other words, assuming OWFs exist, then one needs non-natural properties to
show circuit lower bounds for P/poly

m (Current proofs showing circuit lower bounds use natural properties)

Kolmogorov Complexity

- Kolmogorov complexity: origins in randomness

m One of the main roots of Kolmogorov complexity is the study of randomness
m Consider the strings 000000000000 and 011011110010, both of length 12.
m Is one more ‘random’ than the other?

m How do we measure this? Perhaps considering a probability distribution over all
strings of length 12 and considering the probability of the strings. The uniform
distribution doesn’t help to define randomness.

m |dea of Kolmogorov complexity: measure the amount to which strings can be
compressed.

- Kolmogorov complexity

m Pick some universal Turing machine U.

m The Kolmogorov complexity C(x) of a string x is defined as:

C(x) = min{ |p| : U(p) = x }.

m In other words, the Kolmogorov complexity C(x) of x is the size of the smallest
program p that, when executed by U, yields x as output.

- Kolmogorov complexity is uncomputable

m The problem of computing the Kolmogorov complexity C(x) of a string x is
uncomputable.

m Main idea: an incompressibility argument.

m Suppose, to derive a contradiction, that C is computable.

Consider the following algorithm A, whose description will be of length P + log M:
B lterate over all strings x € {0,1}", from shortest to longer.
m For each string x, compute C(x). If C(x) > M, return x.
m (In other words, Ay returns the first string x with C(x) > M.)

m Now select M such that M > P + log M.

m Let x be the string that Ay returns. So C(x) < P+ log M < M.
This contradicts that C(x) > M.

- Time-bounded Kolmogorov complexity

m Resource-bounded variants of Kolmogorov complexity have been considered.
mlett:N—N.

m Then:
Ct(x) = min{ |p| : U(p) = x in time t(|x]) }.

m Observation: for each x and each t, it holds that C(x) < C(x).

- Levin's Kt complexity

m Levin's Kt complexity is another variant that is based on time bounds.

m It is defined as follows:

Kt(x) = min{ |p| + logt : U(p) = x in time t }.

m Observation: for each x, it holds that C(x) < Kt(x).

- Computational problems: MINKT, MK®P, and MKtP

m MINKT: given a string x and s, t € N in unary, decide whether there is a
program p of size < s such that U(p) = x in time t.

m in NP

m MK!P: given a string x and s € N in unary, decide whether there is a program p of
size < s such that U(p) = x in time t(|x|).

m in NP

m MKtP: given a string x and s € N in unary, decide whether Kt(x) < s.
m in EXP

Hardness vs. randomness

- Cryptographic PRGs

Definition

Let G : {0,1}* — {0,1}* be a polynomial-time computable function, and let £ : N — N
be such that ¢(n) > n for each n. Then G is a secure pseudorandom generator (PRG)
of stretch £(n), if |G(x)| = £(|x|) for every x € {0,1}* and for every probabilistic
polynomial-time A there exists a negligible function € such that for each n:

IPrA(G(Up)) = 1] — PrlA(Uyy)) = 1]| < €(n).

Proposition

If OWFs exist, then for each c there exists a secure PRG with stretch ¢(n) = n°.

m PRGs are useful building blocks for cryptographic schemes.

- Complexity-theoretic PRGs

A distribution R over {0,1}" is (S, €)-pseudorandom if for every circuit C of size at

most S:
IPr[C(R) = 1] — Pr[C(Un) =1]| <.

Let S: N — N be some function. A 2"-time computable function G : {0,1}* — {0,1}*
is an S(¢)-pseudorandom generator if |G(z)| = S(|z|) for every z € {0,1}* and for
every £ € N the distribution G(U,) is (S(¢)3,1/10)-pseudorandom.

m Differences with cryptographic PRGs:
m Running time may be 2" (instead of polynomial)
m We will look at stretch S(¢) = 29() vs. e.g., stretch £(n) = n+ 1.

m The adversaries are circuits rather than probabilistic algorithms.

- PRGs and derandomization

m Result by Nisan and Wigderson (1988):

m If there is some f € E = DTIME(29(") that is average-case hard for
subexponential-size circuits, then there exists a complexity-theoretic PRG with
exponential stretch, and as a result P = BPP.

m Result by Impagliazzo and Wigderson (1997):
m If there is some f € E = DTIME(29(") that is worst-case hard for

subexponential-size circuits, then there exists a complexity-theoretic PRG with
exponential stretch, and as a result P = BPP.

Learning

- PAC Learning

m Probably Approximately Correct (PAC) learning works as follows

m Take an instance space X. A concept ¢ C X is a subset of instances. A concept
class C is a set of concepts.

m An algorithm A PAC-learns C if the following holds, for any (unknown) probability
distribution D over the instances, and for any (unknown) correct concept ¢p € C.

m The algorithm takes as input 0 < €, < 1. It runs in time polynomial in 1/c and /5.

m It may (probabilistically) sample instances x according to the distribution D, and it
receives the correct answer for x (i.e., whether x €).

m With probability at least 1 — § it outputs a concept h € C such that the average
error of h w.r.t. ¢o (according to the distribution D) is at most .

- PAC Learning Boolean Circuits

m An algorithm PAC-learns a class C of Boolean functions if for any function f € C
on n variables the following holds:

m The algorithm takes as input 0 < ¢, < 1.
The running time does not depend more than polynomially on 1/c and 1/s.

m It may call f as an oracle—i.e., for strings x € {0,1}", the oracle returns the value
of f(x).

m With probability at least 1 — § it outputs a circuit C that agrees with f on all but
an e fraction of strings x € {0,1}".

- Learning via natural properties

m Carmosino, Impagliazzo, Kabanets and Kolokolova (2016) showed a connection
between natural properties and learning.

m In simplified and imprecise form, the result states that:
m If there is a natural property that is useful against circuits in class C,

m then using this property, one can construct a randomized algorithm that
PAC-learns C.

(The running time of the learning algorithm depends on the strength of the natural
property: the stronger the natural property, the faster the learning algorithm.)

(The proof of this result uses the connection between circuit lower bounds and
PRGs.)

Recent directions and results

- Some recent directions and results..

m Worst-case to average-case reductions: ruling out Heuristica
m See, e.g., a survey paper by Hirahara (2022; link)

m Evidence that MCSP is NP-complete:
m Partial MCSP is NP-complete (2022; link)
m Reducing SAT to variants of MCSP (2023; link)

m Connections to Kolmogorov complexity:

m OWFs exist if and only if time-bounded Kolmogorov complexity is hard on average
(2020; link)

m OWFs exist if and only if an NP-complete problem related to Kolmogorov complexity
is hard on average (2020; link)

m Replacing SAT oracles by MCSP oracles in complexity-theoretic results (2018; link)

http://bulletin.eatcs.org/index.php/beatcs/article/view/688
https://ieeexplore.ieee.org/document/9996601
https://eccc.weizmann.ac.il/report/2023/165/
https://ieeexplore.ieee.org/document/9317907
https://ieeexplore.ieee.org/document/9317907
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.7

