Computational Complexity

Lecture 12: Average-case complexity and Impagliazzo's Five Worlds

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

Recap

- Subexponential-time complexity
- Exponential-Time Hypothesis (ETH)

What will we do today?

- Average-case complexity
- One-way functions
- Impagliazzo's Five Worlds

Worst-case complexity

- A problem $L \subseteq \{0,1\}^*$ can be solved in worst-case running time T(n) if there exists an algorithm A that solves L and that halts within time T(|x|) for each $x \in \{0,1\}^*$.
- In other words, the worst-case running time T(n) is the maximum of the running times for all inputs of size n.

Distributional problems

Definition (distributional problems)

A distributional problem $\langle L, \mathcal{D} \rangle$ consists of a language $L \subseteq \{0,1\}^*$ and a sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of probability distributions, where each \mathcal{D}_n is a probability distribution over $\{0,1\}^n$.

The class distP / avgP

Definition (distP)

 $\langle L, \mathcal{D} \rangle$ is in the class distP (also called: avgP) if there exists a deterministic TM \mathbb{M} that decides L and a constant $\epsilon > 0$ such that for all $n \in \mathbb{N}$:

$$\mathbb{E}_{x \in_{\mathbb{R}} \mathcal{D}_n} [\operatorname{time}_{\mathbb{M}}(x)^{\epsilon}] \text{ is } O(n).$$

■ The ϵ is there for technical reasons—to invert a polynomial to O(n).

Polynomial-time computable distributions

Definition (P-computable distributions)

A sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions is P-computable if there exists a polynomial-time TM that, given $x \in \{0,1\}^n$, computes:

$$\mu_{\mathcal{D}_n}(x) = \sum_{\substack{y \in \{0,1\}^n \\ y < x}} \mathbb{P}_n[y],$$

where $y \le x$ if the number represented by the binary string y is at most the number represented by the binary string x.

Polynomial-time samplable distributions

Definition (P-samplable distributions)

A sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions is P-samplable if there exists a polynomial-time probabilistic TM \mathbb{M} such that for each $n \in \mathbb{N}$, the random variables $\mathbb{M}(1^n)$ and \mathcal{D}_n are equally distributed.

The class distNP and sampNP

Definition (distNP)

A problem $\langle L, \mathcal{D} \rangle$ is in distNP if $L \in \text{NP}$ and \mathcal{D} is P-computable.

Definition (sampNP)

A problem $\langle L, \mathcal{D} \rangle$ is in sampNP if $L \in \mathsf{NP}$ and \mathcal{D} is P-samplable.

■ The questions "distNP $\stackrel{?}{=}$ distP" and "sampNP $\stackrel{?}{=}$ distP" are average-case analogues of the question "NP $\stackrel{?}{=}$ P"

One-way functions (OWFs)

Definition (one-way functions)

A polynomial-time computable function $f:\{0,1\}^* \to \{0,1\}^*$ is a *one-way function* if for every polynomial-time probabilistic TM $\mathbb M$ there is a negligible function $\epsilon:\mathbb N\to [0,1]$ such that for every $n\in\mathbb N$:

$$\mathop{\mathbb{P}}_{\substack{x \in_{\mathbb{R}}\{0,1\}^n \ y=f(x)}} \left[\; \mathbb{M}(y) = x' \; \mathsf{such \; that} \; f(x') = y \;
ight] < \epsilon(n)$$

where a function $\epsilon : \mathbb{N} \to [0,1]$ is *negligible* if $\epsilon(n) = \frac{1}{n^{\omega(1)}}$, that is, for every c and sufficiently large n, $\epsilon(n) < \frac{1}{n^c}$.

- Conjecture: there exist one-way functions (implying $P \neq NP$)
- OWFs can be used to create private-key cryptography

OWFs as building blocks for cryptography

Definition

An encryption scheme is a pair (E, D) of algorithms, each taking a key k and a message x, such that $D_k(E_k(x)) = x$.

The scheme is *perfectly secret*, for messages of length m and keys of length n, if for every pair $x, x' \in \{0, 1\}^m$ of messages, the distributions $E_{U_n}(x)$ and $E_{U_n}(x')$ are identical.

The scheme is *computationally secure* if for every probabilistic polynomial-time algorithm A, there is a negligible function $\epsilon : \mathbb{N} \to [0,1]$ such that

$$\underset{\substack{k \in \mathbb{R} \ \{0,1\}^n \\ x \in \mathbb{R} \ \{0,1\}^m}}{\mathbb{P}} \left[A(E_k(x)) = (i,b) \text{ s.t. } x_i = b \right] < 1/2 + \epsilon(n).$$

■ Suppose that OWFs exist. Then for every $c \in \mathbb{N}$ there exists a computationally secure encryption scheme (E, D) using n-length keys for n^c -length messages.

Impagliazzo's Five Worlds (1995)

Five possible situations regarding the status of various complexity-theoretic assumptions:

- Algorithmica
- Heuristica
- Pessiland
- Minicrypt
- Cryptomania

Russell Impagliazzo. A personal view of average-case complexity. In: Proceedings of the 10th Annual IEEE Conference on Structure in Complexity Theory, pp. 134–147, 1995.

Algorithmica

 \blacksquare P = NP (or NP \subseteq BPP)

- ► Say, SAT is linear-time solvable
- ► This is a computational utopia
- ▶ There exist efficient algorithms for creative tasks, e.g., writing proofs
- ► Essentially no cryptography possible (private-key nor public-key)

Heuristica

 \blacksquare P \neq NP, but distNP, sampNP \subseteq distP

- ightharpoonup Breakthroughs of P = NP work almost all the time
- ► So cryptography breaks too

Pessiland

- distNP, sampNP $\not\subseteq$ distP (so P \neq NP)
- one-way functions do not exist

 \blacktriangleright No computational breakthroughs, and most cryptography schemes do not work

Minicrypt

■ One-way functions exist (so $P \neq NP$ and dist $NP \nsubseteq distP$)

- ► No "P = NP"-type breakthroughs
- ► Private-key cryptography works
- ► All "highly structured" problems in NP, such as integer factoring, are solvable in polynomial-time
- ► Public-key cryptography might not work

Cryptomania

■ Factoring large integers takes exponential time on average (or a corresponding result for a similar problem)

- lacktriangle No general-purpose efficient algorithms (P eq NP)
- Private-key and public-key cryptography works

Impagliazzo's Five Worlds (1995)

- Five worlds:
 - Algorithmica efficient general-purpose algorithms
 - Heuristica
 - Pessiland worst of all worlds
 - Minicrypt
 - Cryptomania all kinds of cryptography possible

■ (Technically, these cases are not exhaustive—there are some "weirdland" scenarios, e.g., the case where SAT \in P, but the fastest algorithm takes time $\Theta(n^{100})$.)

Recap

- Average-case complexity
- One-way functions
- Impagliazzo's Five Worlds

Next time

■ Recent research directions: Meta Complexity