Recap

- Approximation algorithms
- Limits of approximation algorithms
- PCP Theorem
What will we do today?

- Consider exponential-time and subexponential-time algorithms
- A new assumption: ETH
- Use this assumption to derive exponential-time lower bounds
Our favorite example: 3SAT

- Let’s find some exponential-time algorithms for 3SAT

- Take some 3CNF formula \(\varphi = c_1 \land \cdots \land c_m \) with \(\text{var}(\varphi) = \{x_1, \ldots, x_n\} \).

- Consider this naive algorithm:
 - Iterate over all truth assignments \(\alpha : \text{var}(\varphi) \rightarrow \{0, 1\} \)
 - If \(\alpha \) satisfies \(\varphi \), for some \(\alpha \), return 1; otherwise, return 0

- This algorithm takes time \(2^n \cdot O(m^c) \), for some \(c \in \mathbb{N} \)

- Can we do better?
Our favorite example: 3SAT (ct’d)

\(A_{\text{recursive}}(\varphi) : \)

\begin{align*}
\text{if } \varphi \text{ contains only clauses of size at most 2 then} \\
&\quad \text{decide if } \varphi \text{ is satisfiable in polynomial time, and return the answer;} \\
\text{else} \\
&\quad \text{take some clause } c_j \text{ in } \varphi \text{ of size 3;} \\
&\quad \text{for each of the 7 truth assignments } \alpha \text{ to } \text{var}(c_j) \text{ that satisfy } c_j \text{ do} \\
&\qquad \text{if } A_{\text{recursive}}(\varphi[\alpha]) = 1 \text{ then} \\
&\qquad \quad \text{return } 1; \\
&\qquad \text{end} \\
&\text{end} \\
&\text{return } 0;
\end{align*}

- This algorithm \(A_{\text{recursive}} \) takes time \(1.92^n \cdot O(m^c) \), for some \(c \in \mathbb{N} \)
 - Recursion tree has branching factor 7 and depth \(n/3 \), so is of size \(O(7^{n/3}) = O(1.92^n) \)
- Can we keep improving the base of the exponential? Is there some limit?
Functions between polynomial and exponential

exponential-time

\[2^n \cdot m \]

“ETH”

subexponential-time

\[n^{\log n} \cdot m^2, 2^{\sqrt{n}} \cdot m, \text{ etc.} \]

“P \neq \text{NP}”

polynomial-time

\[2m, m^2, n \cdot m^2, \text{ etc.} \]
The assumption $P \neq NP$ is not enough to rule out subexponential-time algorithms for NP-complete problems.

Typical strategy to rule out polynomial-time algorithms:

- Take some NP-complete L.
- Assume $P \neq NP$.
- Suppose that L is solvable in polynomial time.
- Then $P = NP$.

only works for polynomial time
Definition (δ_q)

For $q \geq 3$, let δ_q be the infimum of the set of constants c for which there exists an algorithm solving q-SAT in time $O(2^{cn}) \cdot m^{O(1)}$, where n is the number of variables in the q-SAT input and m the number of clauses.

Definition (Exponential-Time Hypothesis; ETH)

Exponential-Time Hypothesis (unproven conjecture): $\delta_3 > 0$.
ETH and subexponential-time algorithms for 3SAT

The ETH implies that there is no $2^{o(n)}$-time algorithm for 3SAT:

- Suppose that some $2^{o(n)}$-time algorithm A for 3SAT exists.
- Suppose also that the ETH is true: $\delta_3 > 0$.
- Then there is some c such that no $2^{cn} \cdot m^{O(1)}$-time algorithm for 3SAT exists.
- For large enough n, A runs in time $2^{cn} \cdot m^{O(1)}$.

So we can solve 3SAT in time $2^{O(n)}$, but—assuming the ETH—not in time $2^{o(n)}$.

- E.g., not in time $2^{O(n/\log n)}$, $2^{O(\sqrt{n})}$ or $n^{O(\log n)}$.

The ETH implies $P \neq NP$—or in other words: $P = NP$ implies that the ETH is false.
Showing ETH-based lower bounds for other problems

- Take VC as example—solvable in time $2^{O(v)}$, where v is the number of vertices.
- Can we show a matching lower bound—i.e., VC not solvable in time $2^{o(v)}$?

Idea:
- Use reduction from 3SAT to VC
 - v of VC needs to increase at most linearly in n of 3SAT
 - In the reduction that we have, v is linear in $n + m$

- Suppose VC is solvable in time $2^{o(v)}$ using some algorithm A
- Idea to construct a $2^{o(n)}$-time algorithm for 3SAT:
 - use reduction from 3SAT to VC
 - then run A to solve the resulting VC instance
- Only works in time $2^{o(n)}$ if v is linear in n.
Sparsification Lemma

For each $\epsilon > 0$, there is a constant $\kappa(\epsilon)$ such that every 3CNF formula φ with n variables and m clauses can be expressed as:

$$\varphi \equiv \bigvee_{i=1}^{t} \psi_i,$$

where $t \leq 2^{\epsilon n}$ and each ψ_i is a 3CNF formula on the same variables as φ and with $\kappa(\epsilon) \cdot n$ clauses.

Moreover, this disjunction $\bigvee_{i=1}^{t} \psi_i$ can be computed in time $2^{\epsilon n} \cdot m^{O(1)}$.
Assuming the ETH, 3SAT cannot be solved in time $2^{o(n+m)}$

- Assume the ETH, i.e., $\delta_3 > 0$.
- Suppose that 3SAT can be solved in time $2^{o(n+m)}$ with some algorithm A.
- Take some c with $0 < c < \delta_3$.
- We will show that 3SAT is solvable in time $2^{cn} \cdot m^{O(1)}$:
 - Take some 3CNF formula φ with n variables and m clauses.
 - Let $\epsilon = c/2$.
 - Construct the ψ_i's from the Sparsification Lemma (using the value $\epsilon = c/2$)
 - Run the algorithm A on these ψ_i's.
 - Return 1 if some ψ_i is satisfiable; return 0 otherwise.
 - This runs in time $2^{cn} \cdot m^{O(1)}$.

 - For large enough n, running A on ψ_i takes time $2^{\epsilon n} m^{O(1)}$ – since $|\psi_i|$ is linear in n.

Suppose VC is solvable in time $2^{o(v)}$ using some algorithm A, where v is the number of vertices.

Idea to construct a $2^{o(n+m)}$-time algorithm for 3SAT:

- Take some 3CNF formula φ
- Use polynomial-time reduction R from 3SAT to VC: $R(\varphi) = (G, k)$ with $G = (V, E)$, where $v = |V| = O(n + m)$
- Then run A to decide if G has a vertex cover of size k (which is the case if and only if φ is satisfiable)
- This runs in time $|\varphi|^{O(1)} + 2^{o(v)} = 2^{o(n+m)}$.

So, assuming the ETH, there is no $2^{o(v)}$-time algorithm for VC.
Strong Exponential-Time Hypothesis (SETH)

Definition (\(\delta_q\); repeated)

For \(q \geq 3\), let \(\delta_q\) be the infimum of the set of constants \(c\) for which there exists an algorithm solving \(q\)-SAT in time \(O(2^{cn}) \cdot m^{O(1)}\), where \(n\) is the number of variables in the \(q\)-SAT input and \(m\) the number of clauses.

Definition (Strong Exponential-Time Hypothesis; SETH)

Strong Exponential-Time Hypothesis (unproven conjecture):

\[
\lim_{q \to \infty} \delta_q = 1.
\]

- The SETH is a stronger assumption than the ETH
- SETH implies that CNF-SAT cannot be solved in time \(O(2^{cn})\) for any \(c < 1\)
- Considered exponential-time and subexponential-time algorithms
- Assumption about (impossibility of) subexponential-time algorithms: ETH
- How to use the ETH to derive exponential-time lower bounds
Next time

- Average-case complexity
- Impagliazzo’s Five Worlds