
Computational Complexity

Lecture 10: Approximation Algorithms

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

May 7, 2024

Recap

Probabilistic algorithms

Complexity classes BPP, RP, coRP, ZPP

What will we do today?

Approximation algorithms

Limits of approximation algorithms

Approximation algorithms
The main idea

Many NP-complete problems are decision problems asking for an exact/optimal
solutions

Idea behind approximation:
perhaps less than optimal solutions are enough, and easier to compute

Example: Vertex Cover

Let G = (V ,E) be an undirected graph. A subset C ⊆ V is a vertex cover of G if
each edge in E has at least one endpoint in C .

Decision problem dec-VC:
given G and k ∈ N, does G have a vertex cover of size k?

We can find the size kmin of the smallest vertex cover—and a smallest vertex
cover—by calling an algorithm for dec-VC a linear number of times.

For approximation algorithms, we consider the following problem (say, opt-VC):

Input: an undirected graph G = (V ,E)

Output: a vertex cover C ⊆ V of G

where we measure the quality of vertex covers C by their size
(the closer to kmin, the better)

Example: Vertex Cover

Let G = (V ,E) be an undirected graph. A subset C ⊆ V is a vertex cover of G if
each edge in E has at least one endpoint in C .

Decision problem dec-VC:
given G and k ∈ N, does G have a vertex cover of size k?

We can find the size kmin of the smallest vertex cover—and a smallest vertex
cover—by calling an algorithm for dec-VC a linear number of times.

For approximation algorithms, we consider the following problem (say, opt-VC):

Input: an undirected graph G = (V ,E)

Output: a vertex cover C ⊆ V of G

where we measure the quality of vertex covers C by their size
(the closer to kmin, the better)

Approximation algorithm for Vertex Cover

Definition (Approximation algorithms for VC)

Let ρ < 1. A ρ-approximation algorithm for vertex cover is an algorithm that, when
given a graph G = (V ,E) as input, outputs a vertex cover C of G of size at most 1/ρ
of the minimum size of any vertex cover of G .

(Sometimes these are called 1/ρ-approximation algorithms.)

Approximation algorithm for Vertex Cover

For example, a polynomial-time 1/2-approximation algorithm for vertex cover:

C := ∅; G ′ := G ;
while G ′ has edges do

take some (arbitrary) edge e = {v1, v2} of G ′;
add v1, v2 to C and remove all edges containing v1 or v2 from G ′;

end
return C ;

Every edge in G has an endpoint in C , so C is a vertex cover

The edges e1, . . . , em used to construct C are pairwise disjoint, and |C | = 2m

Every vertex cover of G must hit each of e1, . . . , em, so must have size ≥ m

Limits of approximation algorithms

For vertex cover, we have a polynomial-time 1/2-approximation algorithm. Can we
get a polynomial-time 2/3-approximation algorithm, or even one for each ρ < 1?

The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition (val(ϕ))

Let ϕ be a propositional formula in CNF. Then val(ϕ) is the maximum ratio of clauses
of ϕ that can be satisfied simultaneously by any truth assignment.

Thus, if ϕ is satisfiable, then val(ϕ) = 1, and if ϕ is not satisfiable, then val(ϕ) < 1.

Definition (Approximation algorithms for MAX3SAT)

Let ρ < 1. A ρ-approximation algorithm for MAX3SAT is an algorithm that, when
given a 3CNF formula ϕ as input, outputs a truth assignment α that satisfies at least a
ρ · val(ϕ) fraction of clauses of ϕ.

Limits of approximation algorithms

To rule out ρ-approximation algorithms, we would need something like:

If ϕ ∈ 3SAT, then val(ϕ) = 1

If ϕ 6∈ 3SAT, then val(ϕ) < ρ

What the Cook-Levin Theorem gives us is a reduction R with:

If x ∈ L, then val(R(x)) = 1

If x 6∈ L, then 1− 1/|x| ≤ val(R(x)) < 1 – you can satisfy all clauses except for one

So we cannot take any fixed ρ and rule out ρ-approximation algorithms

The PCP Theorem

Definition (PCP verifier)

Let L ⊆ {0, 1}∗ and let q, r : N→ N be functions. We say that L has
an (r(n), q(n))-PCP verifier if there is a polynomial-time probabilistic algorithm V with:

(Efficiency) When given as input x ∈ {0, 1}n and when given random access to a
string π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most r(n)
random coin flips and makes at most q(n) nonadaptive queries to locations of π.

Random access: V can query an oracle that gives the i-th bit of π.
Nonadaptive queries: the queries do not depend on the answers for previous queries.

V always outputs either 0 or 1.
(Completeness) If x ∈ L, then there exists a proof π ∈ {0, 1}∗ of length at
most q(n)2r(n) such that P [V π(x) = 1] = 1.
(Soundness) If x 6∈ L, then for every proof π ∈ {0, 1}∗ of length at most q(n)2r(n),
it holds that P [V π(x) = 1] ≤ 1/2.

The PCP Theorem (ct’d)

Definition (PCP(r(n), q(n)))

Let q, r : N→ N be functions. The class PCP(r(n), q(n)) consists of all decision
problems L ⊆ {0, 1}∗ for which there exist constants c , d > 0 such that L has
a (c · r(n), d · q(n))-PCP verifier.

Theorem (PCP)

NP = PCP(log n, 1).

q(n) = O(1), r(n) = O(log n), so the length q(n)2r(n) of proofs is polynomial

A constant number q(n) = O(1) of random queries to the proof

The PCP Theorem and approximation algorithms

The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some ρ < 1 such that for all L ∈ NP there is a polynomial-time
reduction R from L to 3SAT where for all x ∈ {0, 1}∗:

if x ∈ L then val(R(x)) = 1;
if x 6∈ L then val(R(x)) < ρ.

For example: there exists some ρ < 1 such that if there exists a polynomial-time
ρ-approximation algorithm for MAX3SAT, then P = NP.

Ruling out polynomial-time ρ-approximation for MAX3SAT for some ρ

Statement: there exists some ρ < 1 such that if there exists a polynomial-time
ρ-approximation algorithm for MAX3SAT, then P = NP.

Let L = 3SAT. Then there exists some ρ < 1 such that there is a polynomial-time
reduction R from 3SAT to 3SAT where, for all x ∈ {0, 1}∗:

if ϕ ∈ 3SAT then val(R(ϕ)) = 1;

if ϕ 6∈ 3SAT then val(R(ϕ)) < ρ.

Suppose that there exists a polynomial-time ρ-approx. algorithm A for MAX3SAT.

We can then solve 3SAT in polynomial time as follows:
Take an arbitrary input ϕ for 3SAT.

Produce ψ = R(ϕ) in polynomial time

Run A on ψ and count the fraction δ of clauses that are satisfied

If δ ≥ ρ, then ϕ ∈ 3SAT; if δ < ρ, then ϕ 6∈ 3SAT.

Recap

Approximation algorithms

Limits of approximation algorithms

PCP Theorem

Next time

Subexponential-time algorithms

The Exponential Time Hypothesis (ETH)

