Computational Complexity

Lecture 10: Approximation Algorithms

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

May 7, 2024

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

What will we do today?

- Approximation algorithms
- Limits of approximation algorithms

■ Many NP-complete problems are decision problems asking for an exact/optimal solutions

- Idea behind approximation:
perhaps less than optimal solutions are enough, and easier to compute

Example: Vertex Cover

- Let $G=(V, E)$ be an undirected graph. A subset $C \subseteq V$ is a vertex cover of G if each edge in E has at least one endpoint in C.
- Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k ?
- We can find the size $k_{\text {min }}$ of the smallest vertex cover-and a smallest vertex cover-by calling an algorithm for dec-VC a linear number of times.

- Let $G=(V, E)$ be an undirected graph. A subset $C \subseteq V$ is a vertex cover of G if each edge in E has at least one endpoint in C.
- Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k ?
- We can find the size $k_{\text {min }}$ of the smallest vertex cover-and a smallest vertex cover-by calling an algorithm for dec-VC a linear number of times.

■ For approximation algorithms, we consider the following problem (say, opt-VC):
Input: an undirected graph $G=(V, E)$
Output: a vertex cover $C \subseteq V$ of G
where we measure the quality of vertex covers C by their size (the closer to $k_{\text {min }}$, the better)

Approximation algorithm for Vertex Cover

Definition (Approximation algorithms for VC)

Let $\rho<1$. A ρ-approximation algorithm for vertex cover is an algorithm that, when given a graph $G=(V, E)$ as input, outputs a vertex cover C of G of size at most $1 / \rho$ of the minimum size of any vertex cover of G.

- (Sometimes these are called $1 / \rho$-approximation algorithms.)

Approximation algorithm for Vertex Cover

■ For example, a polynomial-time 1/2-approximation algorithm for vertex cover:
$C:=\emptyset ; G^{\prime}:=G$;
while G^{\prime} has edges do
take some (arbitrary) edge $e=\left\{v_{1}, v_{2}\right\}$ of G^{\prime};
add v_{1}, v_{2} to C and remove all edges containing v_{1} or v_{2} from G^{\prime};
end
return C;

- Every edge in G has an endpoint in C, so C is a vertex cover
- The edges e_{1}, \ldots, e_{m} used to construct C are pairwise disjoint, and $|C|=2 m$

■ Every vertex cover of G must hit each of e_{1}, \ldots, e_{m}, so must have size $\geq m$

Limits of approximation algorithms

■ For vertex cover, we have a polynomial-time $1 / 2$-approximation algorithm. Can we get a polynomial-time 2/3-approximation algorithm, or even one for each $\rho<1$?

■ The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition $(\operatorname{val}(\varphi))$

Let φ be a propositional formula in CNF. Then $\operatorname{val}(\varphi)$ is the maximum ratio of clauses of φ that can be satisfied simultaneously by any truth assignment.
Thus, if φ is satisfiable, then $\operatorname{val}(\varphi)=1$, and if φ is not satisfiable, then $\operatorname{val}(\varphi)<1$.

Definition (Approximation algorithms for MAX3SAT)

Let $\rho<1$. A ρ-approximation algorithm for MAX3SAT is an algorithm that, when given a 3CNF formula φ as input, outputs a truth assignment α that satisfies at least a $\rho \cdot \operatorname{val}(\varphi)$ fraction of clauses of φ.

- To rule out ρ-approximation algorithms, we would need something like:
- If $\varphi \in 3 \mathrm{SAT}$, then $\operatorname{val}(\varphi)=1$
- If $\varphi \notin$ 3SAT, then $\operatorname{val}(\varphi)<\rho$
- What the Cook-Levin Theorem gives us is a reduction R with:
- If $x \in L$, then $\operatorname{val}(R(x))=1$

■ If $x \notin L$, then $1-1 /|x| \leq \operatorname{val}(R(x))<1$ - you can satisfy all clauses except for one

- So we cannot take any fixed ρ and rule out ρ-approximation algorithms

Definition (PCP verifier)

Let $L \subseteq\{0,1\}^{*}$ and let $q, r: \mathbb{N} \rightarrow \mathbb{N}$ be functions. We say that L has an $(r(n), q(n))-P C P$ verifier if there is a polynomial-time probabilistic algorithm V with:

- (Efficiency) When given as input $x \in\{0,1\}^{n}$ and when given random access to a string $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ (the proof), V uses at most $r(n)$ random coin flips and makes at most $q(n)$ nonadaptive queries to locations of π.
- Random access: V can query an oracle that gives the i-th bit of π.
- Nonadaptive queries: the queries do not depend on the answers for previous queries.
- V always outputs either 0 or 1 .
- (Completeness) If $x \in L$, then there exists a proof $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$ such that $\mathbb{P}\left[V^{\pi}(x)=1\right]=1$.
- (Soundness) If $x \notin L$, then for every proof $\pi \in\{0,1\}^{*}$ of length at most $q(n) 2^{r(n)}$, it holds that $\mathbb{P}\left[V^{\pi}(x)=1\right] \leq 1 / 2$.

Definition $(\operatorname{PCP}(r(n), q(n)))$

Let $q, r: \mathbb{N} \rightarrow \mathbb{N}$ be functions. The class $\operatorname{PCP}(r(n), q(n))$ consists of all decision problems $L \subseteq\{0,1\}^{*}$ for which there exist constants $c, d>0$ such that L has a $(c \cdot r(n), d \cdot q(n))$-PCP verifier.

Theorem (PCP)

$N P=P C P(\log n, 1)$.

- $q(n)=O(1), r(n)=O(\log n)$, so the length $q(n) 2^{r(n)}$ of proofs is polynomial
- A constant number $q(n)=O(1)$ of random queries to the proof

The PCP Theorem and approximation algorithms

- The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some $\rho<1$ such that for all $L \in$ NP there is a polynomial-time reduction R from L to 3SAT where for all $x \in\{0,1\}^{*}$:

- if $x \in L$ then $\operatorname{val}(R(x))=1$;
- if $x \notin L$ then $\operatorname{val}(R(x))<\rho$.

■ For example: there exists some $\rho<1$ such that if there exists a polynomial-time ρ-approximation algorithm for MAX3SAT, then $\mathrm{P}=\mathrm{NP}$.

■ Statement: there exists some $\rho<1$ such that if there exists a polynomial-time ρ-approximation algorithm for MAX3SAT, then $\mathrm{P}=\mathrm{NP}$.

- Let $L=$ 3SAT. Then there exists some $\rho<1$ such that there is a polynomial-time reduction R from 3SAT to 3SAT where, for all $x \in\{0,1\}^{*}$:

■ if $\varphi \in$ 3SAT then $\operatorname{val}(R(\varphi))=1$;

- if $\varphi \notin$ 3SAT then $\operatorname{val}(R(\varphi))<\rho$.
- Suppose that there exists a polynomial-time ρ-approx. algorithm A for MAX3SAT.
- We can then solve 3SAT in polynomial time as follows:
- Take an arbitrary input φ for 3SAT.
- Produce $\psi=R(\varphi)$ in polynomial time
- Run A on ψ and count the fraction δ of clauses that are satisfied
- If $\delta \geq \rho$, then $\varphi \in$ 3SAT; if $\delta<\rho$, then $\varphi \notin$ 3SAT.
- Approximation algorithms
- Limits of approximation algorithms
- PCP Theorem
- Subexponential-time algorithms
- The Exponential Time Hypothesis (ETH)

