Computational Complexity

Lecture 10: Approximation Algorithms

Ronald de Haan me@ronalddehaan.eu

University of Amsterdan

Recap

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

What will we do today?

- Approximation algorithms
- Limits of approximation algorithms

Approximation algorithms

The main idea

- Many NP-complete problems are decision problems asking for an exact/optimal solutions
- Idea behind approximation: perhaps less than optimal solutions are enough, and easier to compute

Example: Vertex Cover

- Let G = (V, E) be an undirected graph. A subset $C \subseteq V$ is a *vertex cover* of G if each edge in E has at least one endpoint in C.
- Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k?
- We can find the size k_{min} of the smallest vertex cover—and a smallest vertex cover—by calling an algorithm for dec-VC a linear number of times.

Example: Vertex Cover

- Let G = (V, E) be an undirected graph. A subset $C \subseteq V$ is a *vertex cover* of G if each edge in E has at least one endpoint in C.
- Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k?
- We can find the size k_{min} of the smallest vertex cover—and a smallest vertex cover—by calling an algorithm for dec-VC a linear number of times.
- For approximation algorithms, we consider the following problem (say, opt-VC):

Input: an undirected graph
$$G = (V, E)$$

Output: a vertex cover
$$C \subseteq V$$
 of G

where we measure the quality of vertex covers C by their size (the closer to k_{\min} , the better)

Approximation algorithm for Vertex Cover

Definition (Approximation algorithms for VC)

Let $\rho < 1$. A ρ -approximation algorithm for vertex cover is an algorithm that, when given a graph G = (V, E) as input, outputs a vertex cover C of G of size at most $1/\rho$ of the minimum size of any vertex cover of G.

lacktriangle (Sometimes these are called $1/\rho$ -approximation algorithms.)

Approximation algorithm for Vertex Cover

■ For example, a polynomial-time 1/2-approximation algorithm for vertex cover:

```
C := \emptyset; \ G' := G;
while G' has edges do

| take some (arbitrary) edge e = \{v_1, v_2\} of G';
add v_1, v_2 to C and remove all edges containing v_1 or v_2 from G';
end
return C;
```

- Every edge in G has an endpoint in C, so C is a vertex cover
- The edges e_1, \ldots, e_m used to construct C are pairwise disjoint, and |C| = 2m
- Every vertex cover of G must hit each of e_1, \ldots, e_m , so must have size $\geq m$

Limits of approximation algorithms

- For vertex cover, we have a polynomial-time $^{1/2}$ -approximation algorithm. Can we get a polynomial-time $^{2/3}$ -approximation algorithm, or even one for each $\rho < 1$?
- The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition $(val(\varphi))$

Let φ be a propositional formula in CNF. Then val (φ) is the maximum ratio of clauses of φ that can be satisfied simultaneously by any truth assignment.

Thus, if φ is satisfiable, then $\operatorname{val}(\varphi) = 1$, and if φ is not satisfiable, then $\operatorname{val}(\varphi) < 1$.

Definition (Approximation algorithms for MAX3SAT)

Let $\rho < 1$. A ρ -approximation algorithm for MAX3SAT is an algorithm that, when given a 3CNF formula φ as input, outputs a truth assignment α that satisfies at least a $\rho \cdot \text{val}(\varphi)$ fraction of clauses of φ .

Limits of approximation algorithms

- To rule out ρ -approximation algorithms, we would need something like:
 - If $\varphi \in \mathsf{3SAT}$, then $\mathsf{val}(\varphi) = 1$
 - If $\varphi \notin 3SAT$, then $val(\varphi) < \rho$

- What the Cook-Levin Theorem gives us is a reduction *R* with:
 - If $x \in L$, then val(R(x)) = 1
 - If $x \notin L$, then $1 \frac{1}{|x|} \le val(R(x)) < 1$ you can satisfy all clauses except for one

■ So we cannot take any fixed ρ and rule out ρ -approximation algorithms

The PCP Theorem

Definition (PCP verifier)

Let $L \subseteq \{0,1\}^*$ and let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. We say that L has an (r(n), q(n))-PCP verifier if there is a polynomial-time probabilistic algorithm V with:

- (Efficiency) When given as input $x \in \{0,1\}^n$ and when given random access to a string $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$ (the proof), V uses at most r(n) random coin flips and makes at most q(n) nonadaptive queries to locations of π .
 - Random access: V can guery an oracle that gives the i-th bit of π .
 - Nonadaptive queries: the queries do not depend on the answers for previous queries.
- V always outputs either 0 or 1.
- (Completeness) If $x \in L$, then there exists a proof $\pi \in \{0,1\}^*$ of length at most $g(n)2^{r(n)}$ such that $\mathbb{P}[V^{\pi}(x) = 1] = 1$.
- (Soundness) If $x \notin L$, then for every proof $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$, it holds that $\mathbb{P}[V^{\pi}(x) = 1] \leq 1/2$.

The PCP Theorem (ct'd)

Definition (PCP(r(n), q(n)))

Let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. The class PCP(r(n), q(n)) consists of all decision problems $L \subseteq \{0, 1\}^*$ for which there exist constants c, d > 0 such that L has a $(c \cdot r(n), d \cdot q(n))$ -PCP verifier.

Theorem (PCP)

 $\mathsf{NP} = \mathsf{PCP}(\log n, 1).$

- $q(n) = O(1), r(n) = O(\log n),$ so the length $q(n)2^{r(n)}$ of proofs is polynomial
- A constant number q(n) = O(1) of random queries to the proof

The PCP Theorem and approximation algorithms

■ The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some $\rho < 1$ such that for all $L \in NP$ there is a polynomial-time reduction R from L to 3SAT where for all $x \in \{0,1\}^*$:

- if $x \in L$ then val(R(x)) = 1;
- if $x \notin L$ then $val(R(x)) < \rho$.
- For example: there exists some ρ < 1 such that if there exists a polynomial-time ρ -approximation algorithm for MAX3SAT, then P = NP.

Ruling out polynomial-time $\rho\text{-approximation}$ for MAX3SAT for some ρ

- **Statement**: there exists some ρ < 1 such that if there exists a polynomial-time ρ -approximation algorithm for MAX3SAT, then P = NP.
 - Let L = 3SAT. Then there exists some $\rho < 1$ such that there is a polynomial-time reduction R from 3SAT to 3SAT where, for all $x \in \{0, 1\}^*$:
 - if $\varphi \in \mathsf{3SAT}$ then $\mathsf{val}(R(\varphi)) = 1$;
 - if $\varphi \notin 3SAT$ then $val(R(\varphi)) < \rho$.
 - Suppose that there exists a polynomial-time ρ -approx. algorithm A for MAX3SAT.
 - We can then solve 3SAT in polynomial time as follows:
 - Take an arbitrary input φ for 3SAT.
 - Produce $\psi = R(\varphi)$ in polynomial time
 - \blacksquare Run A on ψ and count the fraction δ of clauses that are satisfied
 - If $\delta \ge \rho$, then $\varphi \in \mathsf{3SAT}$; if $\delta < \rho$, then $\varphi \not\in \mathsf{3SAT}$.

Recap

- Approximation algorithms
- Limits of approximation algorithms
- PCP Theorem

Next time

- Subexponential-time algorithms
- The Exponential Time Hypothesis (ETH)