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N

m Probabilistic algorithms

m Complexity classes BPP, RP, coRP, ZPP



- What will we do today?

m Approximation algorithms

m Limits of approximation algorithms



Approximation algorithms

The main idea

m Many NP-complete problems are decision problems asking for an exact/optimal
solutions

m /dea behind approximation:
perhaps less than optimal solutions are enough, and easier to compute



- Example: Vertex Cover

m Let G = (V, E) be an undirected graph. A subset C C V is a vertex cover of G if
each edge in E has at least one endpoint in C.

m Decision problem dec-VC:
given G and k € N, does G have a vertex cover of size k?

m We can find the size ky;, of the smallest vertex cover—and a smallest vertex
cover—by calling an algorithm for dec-\VVC a linear number of times.
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- Example: Vertex Cover

Let G = (V, E) be an undirected graph. A subset C C V is a vertex cover of G if
each edge in E has at least one endpoint in C.

Decision problem dec-VC:
given G and k € N, does G have a vertex cover of size k?

We can find the size ki, of the smallest vertex cover—and a smallest vertex
cover—by calling an algorithm for dec-\VVC a linear number of times.

For approximation algorithms, we consider the following problem (say, opt-VC):
Input:  an undirected graph G = (V, E)
Output: a vertex cover CC V of G

where we measure the quality of vertex covers C by their size
(the closer to kmin, the better)



- Approximation algorithm for Vertex Cover

Definition (Approximation algorithms for VC)

Let p < 1. A p-approximation algorithm for vertex cover is an algorithm that, when
given a graph G = (V, E) as input, outputs a vertex cover C of G of size at most 1/

of the minimum size of any vertex cover of G.

m (Sometimes these are called 1/p-approximation algorithms.)



- Approximation algorithm for Vertex Cover

m For example, a polynomial-time 1/2-approximation algorithm for vertex cover:

C:=0; G:=¢G;

while G’ has edges do

take some (arbitrary) edge e = {vy, o} of G’;

add vi, v, to C and remove all edges containing v; or v» from G’;

end
return C;

m Every edge in G has an endpoint in C, so C is a vertex cover
m The edges e, ..., ey used to construct C are pairwise disjoint, and |C| = 2m

m Every vertex cover of G must hit each of ey, ..., en, so must have size > m



- Limits of approximation algorithms

m For vertex cover, we have a polynomial-time 1/2-approximation algorithm. Can we
get a polynomial-time 2/3-approximation algorithm, or even one for each p < 17

m The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition (val(¢))

Let ¢ be a propositional formula in CNF. Then val(¢) is the maximum ratio of clauses
of ¢ that can be satisfied simultaneously by any truth assignment.

Thus, if ¢ is satisfiable, then val(p) = 1, and if ¢ is not satisfiable, then val(y) < 1.

Definition (Approximation algorithms for MAX3SAT)

Let p < 1. A p-approximation algorithm for MAX3SAT is an algorithm that, when
given a 3CNF formula ¢ as input, outputs a truth assignment « that satisfies at least a
p - val(p) fraction of clauses of ¢.



- Limits of approximation algorithms

m To rule out p-approximation algorithms, we would need something like:
m If o € 3SAT, then val(p) =1

m If o € 3SAT, then val(¢) < p

m What the Cook-Levin Theorem gives us is a reduction R with:
m If x € L, then val(R(x)) =1

mIf x &€ L, then 1 — /x| < val(R(x)) < 1 — you can satisfy all clauses except for one

m So we cannot take any fixed p and rule out p-approximation algorithms



- The PCP Theorem

Definition (PCP verifier)

Let L C {0,1}* and let g,r : N — N be functions. We say that L has
an (r(n), g(n))-PCP verifier if there is a polynomial-time probabilistic algorithm V with:

m (Efficiency) When given as input x € {0,1}" and when given random access to a
string € {0, 1}* of length at most g(n)2"(" (the proof), V uses at most r(n)
random coin flips and makes at most g(n) nonadaptive queries to locations of 7.

m Random access: V can query an oracle that gives the i-th bit of 7.
m Nonadaptive queries: the queries do not depend on the answers for previous queries.

m V always outputs either 0 or 1.

m (Completeness) If x € L, then there exists a proof m € {0,1}* of length at
most g(n)2"(" such that P[ V™(x) =1]=1.

m (Soundness) If x ¢ L, then for every proof 7 € {0,1}* of length at most g(n)2"("),
it holds that P[ V7™(x) =1] < 1/2.



- The PCP Theorem (ct'd)

Definition (PCP(r(n), g(n)))

Let g,r : N — N be functions. The class PCP(r(n), g(n)) consists of all decision
problems L C {0,1}* for which there exist constants ¢, d > 0 such that L has

a (c-r(n),d-q(n))-PCP verifier.

Theorem (PCP)
NP = PCP(log n, 1).

m g(n) = O(1), r(n) = O(log n), so the length q(n)2"(") of proofs is polynomial

m A constant number g(n) = O(1) of random queries to the proof



- The PCP Theorem and approximation algorithms

m The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some p < 1 such that for all L € NP there is a polynomial-time
reduction R from L to 3SAT where for all x € {0,1}*:

m if x € L then val(R(x)) = 1,
m if x € L then val(R(x)) < p.

m For example: there exists some p < 1 such that if there exists a polynomial-time
p-approximation algorithm for MAX3SAT, then P = NP.



- Ruling out polynomial-time p-approximation for MAX3SAT for some p

m Statement: there exists some p < 1 such that if there exists a polynomial-time
p-approximation algorithm for MAX3SAT, then P = NP.

m Let L = 3SAT. Then there exists some p < 1 such that there is a polynomial-time
reduction R from 3SAT to 3SAT where, for all x € {0,1}*:

m if ¢ € 3SAT then val(R(¢)) = 1,
m if o & 3SAT then val(R(p)) < p.

m Suppose that there exists a polynomial-time p-approx. algorithm A for MAX3SAT.

m We can then solve 3SAT in polynomial time as follows:

Take an arbitrary input ¢ for 3SAT.

Produce ) = R(¢p) in polynomial time

Run A on ¢ and count the fraction § of clauses that are satisfied

If 6 > p, then ¢ € 3SAT; if § < p, then ¢ & 3SAT.



N

m Approximation algorithms
m Limits of approximation algorithms

m PCP Theorem



N

m Subexponential-time algorithms

m The Exponential Time Hypothesis (ETH)



