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Recap

Probabilistic algorithms

Complexity classes BPP, RP, coRP, ZPP



What will we do today?

Approximation algorithms

Limits of approximation algorithms



Approximation algorithms
The main idea

Many NP-complete problems are decision problems asking for an exact/optimal
solutions

Idea behind approximation:
perhaps less than optimal solutions are enough, and easier to compute



Example: Vertex Cover

Let G = (V ,E ) be an undirected graph. A subset C ⊆ V is a vertex cover of G if
each edge in E has at least one endpoint in C .

Decision problem dec-VC:
given G and k ∈ N, does G have a vertex cover of size k?

We can find the size kmin of the smallest vertex cover—and a smallest vertex
cover—by calling an algorithm for dec-VC a linear number of times.

For approximation algorithms, we consider the following problem (say, opt-VC):

Input: an undirected graph G = (V ,E )

Output: a vertex cover C ⊆ V of G

where we measure the quality of vertex covers C by their size
(the closer to kmin, the better)
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Approximation algorithm for Vertex Cover

Definition (Approximation algorithms for VC)

Let ρ < 1. A ρ-approximation algorithm for vertex cover is an algorithm that, when
given a graph G = (V ,E ) as input, outputs a vertex cover C of G of size at most 1/ρ
of the minimum size of any vertex cover of G .

(Sometimes these are called 1/ρ-approximation algorithms.)



Approximation algorithm for Vertex Cover

For example, a polynomial-time 1/2-approximation algorithm for vertex cover:

C := ∅; G ′ := G ;
while G ′ has edges do

take some (arbitrary) edge e = {v1, v2} of G ′;
add v1, v2 to C and remove all edges containing v1 or v2 from G ′;

end
return C ;

Every edge in G has an endpoint in C , so C is a vertex cover

The edges e1, . . . , em used to construct C are pairwise disjoint, and |C | = 2m

Every vertex cover of G must hit each of e1, . . . , em, so must have size ≥ m



Limits of approximation algorithms

For vertex cover, we have a polynomial-time 1/2-approximation algorithm. Can we
get a polynomial-time 2/3-approximation algorithm, or even one for each ρ < 1?

The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition (val(ϕ))

Let ϕ be a propositional formula in CNF. Then val(ϕ) is the maximum ratio of clauses
of ϕ that can be satisfied simultaneously by any truth assignment.

Thus, if ϕ is satisfiable, then val(ϕ) = 1, and if ϕ is not satisfiable, then val(ϕ) < 1.

Definition (Approximation algorithms for MAX3SAT)

Let ρ < 1. A ρ-approximation algorithm for MAX3SAT is an algorithm that, when
given a 3CNF formula ϕ as input, outputs a truth assignment α that satisfies at least a
ρ · val(ϕ) fraction of clauses of ϕ.



Limits of approximation algorithms

To rule out ρ-approximation algorithms, we would need something like:

If ϕ ∈ 3SAT, then val(ϕ) = 1

If ϕ 6∈ 3SAT, then val(ϕ) < ρ

What the Cook-Levin Theorem gives us is a reduction R with:

If x ∈ L, then val(R(x)) = 1

If x 6∈ L, then 1− 1/|x| ≤ val(R(x)) < 1 – you can satisfy all clauses except for one

So we cannot take any fixed ρ and rule out ρ-approximation algorithms



The PCP Theorem

Definition (PCP verifier)

Let L ⊆ {0, 1}∗ and let q, r : N→ N be functions. We say that L has
an (r(n), q(n))-PCP verifier if there is a polynomial-time probabilistic algorithm V with:

(Efficiency) When given as input x ∈ {0, 1}n and when given random access to a
string π ∈ {0, 1}∗ of length at most q(n)2r(n) (the proof), V uses at most r(n)
random coin flips and makes at most q(n) nonadaptive queries to locations of π.

Random access: V can query an oracle that gives the i-th bit of π.
Nonadaptive queries: the queries do not depend on the answers for previous queries.

V always outputs either 0 or 1.
(Completeness) If x ∈ L, then there exists a proof π ∈ {0, 1}∗ of length at
most q(n)2r(n) such that P [ V π(x) = 1 ] = 1.
(Soundness) If x 6∈ L, then for every proof π ∈ {0, 1}∗ of length at most q(n)2r(n),
it holds that P [ V π(x) = 1 ] ≤ 1/2.



The PCP Theorem (ct’d)

Definition (PCP(r(n), q(n)))

Let q, r : N→ N be functions. The class PCP(r(n), q(n)) consists of all decision
problems L ⊆ {0, 1}∗ for which there exist constants c , d > 0 such that L has
a (c · r(n), d · q(n))-PCP verifier.

Theorem (PCP)

NP = PCP(log n, 1).

q(n) = O(1), r(n) = O(log n), so the length q(n)2r(n) of proofs is polynomial

A constant number q(n) = O(1) of random queries to the proof



The PCP Theorem and approximation algorithms

The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some ρ < 1 such that for all L ∈ NP there is a polynomial-time
reduction R from L to 3SAT where for all x ∈ {0, 1}∗:

if x ∈ L then val(R(x)) = 1;
if x 6∈ L then val(R(x)) < ρ.

For example: there exists some ρ < 1 such that if there exists a polynomial-time
ρ-approximation algorithm for MAX3SAT, then P = NP.



Ruling out polynomial-time ρ-approximation for MAX3SAT for some ρ

Statement: there exists some ρ < 1 such that if there exists a polynomial-time
ρ-approximation algorithm for MAX3SAT, then P = NP.

Let L = 3SAT. Then there exists some ρ < 1 such that there is a polynomial-time
reduction R from 3SAT to 3SAT where, for all x ∈ {0, 1}∗:

if ϕ ∈ 3SAT then val(R(ϕ)) = 1;

if ϕ 6∈ 3SAT then val(R(ϕ)) < ρ.

Suppose that there exists a polynomial-time ρ-approx. algorithm A for MAX3SAT.

We can then solve 3SAT in polynomial time as follows:
Take an arbitrary input ϕ for 3SAT.

Produce ψ = R(ϕ) in polynomial time

Run A on ψ and count the fraction δ of clauses that are satisfied

If δ ≥ ρ, then ϕ ∈ 3SAT; if δ < ρ, then ϕ 6∈ 3SAT.



Recap

Approximation algorithms

Limits of approximation algorithms

PCP Theorem



Next time

Subexponential-time algorithms

The Exponential Time Hypothesis (ETH)


