
Computational Complexity

Lecture 1: P, NP and NP-completeness

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

April 4, 2024

Overview of practical information

Lecturer: Ronald de Haan (me@ronalddehaan.eu)

TAs: Wouter Vromen, Hannah Van Santvliet

Course web page: https://staff.science.uva.nl/r.dehaan/complexity2024/

Canvas page: https://canvas.uva.nl/courses/42595

Discourse: https://talk.computational-complexity.nl/

Book: Computational Complexity: A Modern Approach (Arora & Barak, 2009)

me@ronalddehaan.eu
https://staff.science.uva.nl/r.dehaan/complexity2024/
https://canvas.uva.nl/courses/42595
https://talk.computational-complexity.nl/

Discourse

We’ll use an online discussion board (using the Discourse system):
https://talk.computational-complexity.nl/

Questions about the material

(Feel free to answer each other’s questions)

Reflecting on the material

Summarizing the material together

Feel free to start discussion topics on any of these

https://talk.computational-complexity.nl/

Feedback

During the course:

Please give your ideas for improvement, e.g., anonymously on Discourse

After the course:

Please fill in the course evaluation questionnaire (for the OC and lecturer)

Course activities

Lectures:

Twice 45 minutes, with 15 minute break in between, not recorded

Exercise sessions:

Practice with material, discuss previous homework assignments

Homework assignments (50% of grade):

Three assignments, hand in via Canvas

You may work in pairs (but you do not have to)

Take-home exam (50% of grade):

At the end, open book, one week time to complete exam

Online discussions, question answering

What will we do today?

Decision problems

The complexity class P

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

NP-hardness and NP-completeness

Quadratic vs. Exponential

Important difference between
algorithms that run in time, say, n2

vs. algorithms that run in time, say, 2n

Illustration (time needed for 1010 steps per second):

n n2 steps 2n steps
2 0.00000002 msec 0.00000002 msec
5 0.00000015 msec 0.00000019 msec
10 0.00001 msec 0.0001 msec
20 0.00004 msec 0.10 msec
50 0.00025 msec 31.3 hours
100 0.001 msec 9.4 × 1011 years
1000 0.100 msec 7.9 × 10282 years

of atoms in universe ≈ 1080

Decision problems

To simplify the theory, we restrict our attention to yes/no questions

Definition (Decision problems)

A decision problem is a function f : Σ∗ → {0, 1} where for each input x ∈ Σ∗

the correct output f (x) is either 0 or 1.

Alternatively: a formal language L ⊆ Σ∗ where x ∈ L if and only if f (x) = 1.

For decision problems, we typically look at TMs that have two halting states:
qacc (for accept: f (x) = 1)
and qrej (for reject: f (x) = 0)

The complexity class P

Definition (polynomial-time computability)

A function f : Σ∗ → Σ∗ is polynomial-time computable (or computable in polynomial
time) if there exist a TM M and a constant c ∈ N such that:

M computes f
M runs in time O(|x |c)

Definition (the complexity class P)

P is the class (set) consisting of all decision problems L ⊆ Σ∗ that are computable in
polynomial time.

(In)tractability

Tractability: there exists a polynomial-time algorithm that solves the problem

Intractability: there exists no polynomial-time algorithm that solves the problem

(or sometimes phrased as: all algorithms that solve the problem
take exponential time or more, in the worst case)

How do we find out which of these two is the case?

Showing intractability: without any theory

Showing intractability: the ideal case

Showing intractability: using NP-completeness

Polynomial vs. exponential time

Definition (DTIME)

Let T : N→ N be a function. A language L ⊆ Σ∗ is in DTIME(T (n)) if there exists a
Turing machine that decides L and that runs in time O(T (n)).

Definition (the complexity classes P and EXP)

P =
⋃
c≥1

DTIME(nc) EXP =
⋃
c≥1

DTIME(2n
c
)

The complexity class NP

Definition (the complexity class NP)

A problem L ⊆ Σ∗ is in the complexity class NP if there is a polynomial p : N→ N and
a polynomial-time Turing machine M (the verifier) such that for every x ∈ Σ∗:

x ∈ L if and only if there exists some u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

The string u ∈ {0, 1}p(|x |) is called a certificate for x if M(x , u) = 1.

Example problem: 3-coloring

You are given an undirected graph

The task is to color each node with one of 3
colors so that the coloring is proper: no two
connected nodes have the same color

Example application: nodes are regions with
their own radio station, colors are radio
frequencies, and two nodes are connected if
the regions border each other; assign radio
frequencies without conflict

1 2

3

4

1 2

3

4

Example problem: 3-coloring (ct’d)

Let’s see why the (decision) problem of
3-coloring is in NP.

Let G = (V ,E) be a graph with m nodes.

Consider as witness a binary string u of
length 2m, where the coloring of each node i
is given by the i ’th pair of bits—
say, 01 for red, 10 for green, and 11 for blue.

Given G and u, we can check in polynomial
time if the coloring given by u is proper.

1 2

3

4

s = 01 10 11 01

Nondeterministic Turing machines

Definition
A nondeterministic Turing machines (NTM) M is a variant of a (deterministic) Turing
machine, where some things are modified.

Instead of a single transition function δ, there are two transition functions δ1, δ2.

At each step, one of δ1, δ2 is chosen nondeterministically to determine the next
configuration.

(As halting states, it has an accept state qacc and a reject state qrej.)

We write M(x) = 1 if there is some sequence of nondeterministic choices such
that M reaches the state qacc on input x .

The machine M runs in time T (n) if for every input x and every sequence of
nondeterministic choices, M halts within T (|x |) steps.

Nondeterministic polynomial time (NP)

Definition (NTIME)

Let T : N→ N be a function. A problem L ⊆ Σ∗ is in NTIME(T (n)) if there exists a
nondeterministic Turing machine that decides L and that runs in time O(T (n)).

Proposition (characterization of NP)

NP =
⋃
c≥1

NTIME(nc)

The complexity class coNP

Definition (the complexity class coNP)

A problem L ⊆ Σ∗ is in coNP if L ∈ NP, where L = { x ∈ Σ∗ | x 6∈ L }.

Proposition (verifier characterization of coNP)

A problem L ⊆ Σ∗ is in coNP if there is a polynomial p : N→ N and a polynomial-time
Turing machine M (the verifier) such that for every x ∈ Σ∗:

x ∈ L if and only if for all u ∈ {0, 1}p(|x |) it holds that M(x , u) = 1.

NP ⊆ EXP

Proposition

NP ⊆ EXP.

Proof (idea).

Iterate over all possible witnesses u ∈ {0, 1}p(|x |), and check if M(x , u) = 1.

If for any u this is the case, return 1—otherwise, return 0.

There are 2p(|x |) such strings u, and so this takes time 2p(|x |) · q(|x |), for some
polynomial q.

An overview of complexity classes
(That we’ve seen so far..)

P

NP coNP

EXP

⊆ ⊆

⊆ ⊆

Polynomial-time reductions

Definition (polynomial-time reductions)

A problem L1 ⊆ Σ∗ is polynomial-time reducible to
a problem L2 ⊆ Σ∗ if there is a polynomial-time
computable function f : Σ∗ → Σ∗ (the reduction)
such that for every x ∈ Σ∗ it holds that:

x ∈ L1 if and only if f (x) ∈ L2.

We write L1 ≤p L2 to indicate that L1 is
polynomial-time reducible to L2.

x f (x)

f (x) ∈ L2?x ∈ L1?

NP-hardness and NP-completeness

Definition (NP-hardness)

A problem L ⊆ Σ∗ is NP-hard if every problem in NP is polynomial-time reducible to L.

Definition (NP-completeness)

A problem L ⊆ Σ∗ is NP-complete if L ∈ NP and L is NP-hard.

Some properties

Proposition

Polynomial-time reductions are transitive.
That is, if L1 ≤p L2 and L2 ≤p L3, then L1 ≤p L3.

Proposition

Take two problems L1, L2 ⊆ Σ∗. If L1 is polynomial-time reducible to L2 and L2 ∈ P,
then L1 ∈ P.

Some properties (ct’d)

Proposition

Take an NP-complete problem L ⊆ Σ∗. If L ∈ P, then P = NP.
In other words, assuming that P 6= NP, L 6∈ P.

Proof.
Since deterministic TMs can be seen also as nondeterministic TMs, we get P ⊆ NP.

We show that if L ∈ P, then NP ⊆ P.

(1) Take an arbitrary problem M ∈ NP.

(2) Since L is NP-complete, M ≤p L.

(3) Since L ∈ P, then also M ∈ P.

Since M was arbitrary, we know that NP ⊆ P.

Showing intractability: using NP-completeness

Recap

Decision problems

The complexity class P

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

NP-hardness and NP-completeness

Next time

Proving that NP-complete problems exist :-)

