Computational Complexity

Lecture 1: P, NP and NP-completeness

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

April 4, 2024

- Lecturer: Ronald de Haan (me@ronalddehaan.eu)
- TAs: Wouter Vromen, Hannah Van Santvliet
- Course web page: https://staff.science.uva.nl/r.dehaan/complexity2024/
- Canvas page: https://canvas.uva.nl/courses/42595
- Discourse: https://talk.computational-complexity.nl/
- Book: Computational Complexity: A Modern Approach (Arora & Barak, 2009)

- We'll use an online discussion board (using the Discourse system): https://talk.computational-complexity.nl/
 - Questions about the material

(Feel free to answer each other's questions)

- Reflecting on the material
- Summarizing the material together

• Feel free to start discussion topics on any of these

- During the course:
 - Please give your ideas for improvement, e.g., anonymously on Discourse
- After the course:
 - Please fill in the course evaluation questionnaire (for the OC and lecturer)

Lectures:

- Twice 45 minutes, with 15 minute break in between, not recorded
- Exercise sessions:
 - Practice with material, discuss previous homework assignments
- Homework assignments (50% of grade):
 - Three assignments, hand in via Canvas
 - You may work in pairs (but you do not have to)
- Take-home exam (50% of grade):
 - At the end, open book, one week time to complete exam
- Online discussions, question answering

What will we do today?

- Decision problems
- The complexity class P
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness

Quadratic vs. Exponential

- Important difference between algorithms that run in time, say, n²
 vs. algorithms that run in time, say, 2ⁿ
- Illustration (time needed for 10¹⁰ steps per second):

п	n ² steps	2 ⁿ steps
2	0.00000002 msec	0.00000002 msec
5	0.00000015 msec	0.00000019 msec
10	0.00001 msec	0.0001 msec
20	0.00004 msec	0.10 msec
50	0.00025 msec	31.3 hours
100	0.001 msec	$9.4 imes10^{ extsf{11}}$ years
1000	0.100 msec	$7.9 imes10^{282}$ years

• # of atoms in universe $\approx 10^{80}$

To simplify the theory, we restrict our attention to yes/no questions

Definition (Decision problems)

A decision problem is a function $f : \Sigma^* \to \{0, 1\}$ where for each input $x \in \Sigma^*$ the correct output f(x) is either 0 or 1.

Alternatively: a formal language $L \subseteq \Sigma^*$ where $x \in L$ if and only if f(x) = 1.

 ■ For decision problems, we typically look at TMs that have two halting states: *q*_{acc} (for *accept*: *f*(*x*) = 1) and *q*_{rej} (for *reject*: *f*(*x*) = 0)

Definition (polynomial-time computability)

A function $f : \Sigma^* \to \Sigma^*$ is polynomial-time computable (or computable in polynomial time) if there exist a TM \mathbb{M} and a constant $c \in \mathbb{N}$ such that:

- \mathbb{M} computes f
- \mathbb{M} runs in time $O(|x|^c)$

Definition (the complexity class P)

P is the class (set) consisting of all decision problems $L \subseteq \Sigma^*$ that are computable in polynomial time.

- Tractability: there exists a polynomial-time algorithm that solves the problem
- Intractability: there exists no polynomial-time algorithm that solves the problem

(or sometimes phrased as: all algorithms that solve the problem take exponential time or more, in the worst case)

How do we find out which of these two is the case?

Showing intractability: without any theory

"I can't find an efficient algorithm, I guess I'm just too dumb."

Showing intractability: the ideal case

"I can't find an efficient algorithm, because no such algorithm is possible!"

Showing intractability: using NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

Definition (DTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \Sigma^*$ is in DTIME(T(n)) if there exists a Turing machine that decides L and that runs in time O(T(n)).

Definition (the complexity classes P and EXP)

$$\mathsf{P} = \bigcup_{c \ge 1} \mathsf{DTIME}(n^c) \qquad \qquad \mathsf{EXP} = \bigcup_{c \ge 1} \mathsf{DTIME}(2^{n^c})$$

Definition (the complexity class NP)

A problem $L \subseteq \Sigma^*$ is in the complexity class NP if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} (the *verifier*) such that for every $x \in \Sigma^*$:

 $x \in L$ if and only if there exists some $u \in \{0,1\}^{p(|x|)}$ such that $\mathbb{M}(x,u) = 1$.

The string $u \in \{0,1\}^{p(|x|)}$ is called a *certificate* for x if $\mathbb{M}(x,u) = 1$.

Example problem: 3-coloring

- You are given an undirected graph
- The task is to color each node with one of 3 colors so that the coloring is proper: no two connected nodes have the same color
- Example application: nodes are regions with their own radio station, colors are radio frequencies, and two nodes are connected if the regions border each other; assign radio frequencies without conflict

Example problem: 3-coloring (ct'd)

- Let's see why the (decision) problem of 3-coloring is in NP.
- Let G = (V, E) be a graph with *m* nodes.
- Consider as witness a binary string u of length 2m, where the coloring of each node i is given by the i'th pair of bits say, 01 for red, 10 for green, and 11 for blue.
- Given *G* and *u*, we can check in polynomial time if the coloring given by *u* is *proper*.

 $s = 01 \ 10 \ 11 \ 01$

Definition

A nondeterministic Turing machines (NTM) \mathbb{M} is a variant of a (deterministic) Turing machine, where some things are modified.

- Instead of a single transition function δ , there are two transition functions δ_1, δ_2 .
- At each step, one of δ_1, δ_2 is chosen nondeterministically to determine the next configuration.
- (As halting states, it has an accept state q_{acc} and a reject state q_{rej} .)
- We write M(x) = 1 if there is some sequence of nondeterministic choices such that M reaches the state q_{acc} on input x.
- The machine M runs in time T(n) if for every input x and every sequence of nondeterministic choices, M halts within T(|x|) steps.

Definition (NTIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A problem $L \subseteq \Sigma^*$ is in NTIME(T(n)) if there exists a nondeterministic Turing machine that decides L and that runs in time O(T(n)).

Proposition (characterization of NP)

$$\mathsf{NP} = \bigcup_{c \ge 1} \mathsf{NTIME}(n^c)$$

Definition (the complexity class coNP)

A problem $L \subseteq \Sigma^*$ is in coNP if $\overline{L} \in NP$, where $\overline{L} = \{ x \in \Sigma^* \mid x \notin L \}$.

Proposition (verifier characterization of coNP)

A problem $L \subseteq \Sigma^*$ is in coNP if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} (the *verifier*) such that for every $x \in \Sigma^*$:

 $x \in L$ if and only if for all $u \in \{0,1\}^{p(|x|)}$ it holds that $\mathbb{M}(x,u) = 1$.

 $\mathsf{NP}\subseteq\mathsf{EXP}$

Proposition

 $\mathsf{NP}\subseteq\mathsf{EXP}.$

Proof (idea).

- Iterate over all possible witnesses $u \in \{0,1\}^{p(|x|)}$, and check if $\mathbb{M}(x, u) = 1$.
- If for any u this is the case, return 1—otherwise, return 0.
- There are $2^{p(|x|)}$ such strings u, and so this takes time $2^{p(|x|)} \cdot q(|x|)$, for some polynomial q.

An overview of complexity classes (*That we've seen so far..*)

Definition (polynomial-time reductions)

A problem $L_1 \subseteq \Sigma^*$ is polynomial-time reducible to a problem $L_2 \subseteq \Sigma^*$ if there is a polynomial-time computable function $f : \Sigma^* \to \Sigma^*$ (the reduction) such that for every $x \in \Sigma^*$ it holds that:

 $x \in L_1$ if and only if $f(x) \in L_2$.

■ We write $L_1 \leq_p L_2$ to indicate that L_1 is polynomial-time reducible to L_2 .

Definition (NP-hardness)

A problem $L \subseteq \Sigma^*$ is NP-hard if every problem in NP is polynomial-time reducible to L.

Definition (NP-completeness)

A problem $L \subseteq \Sigma^*$ is NP-complete if $L \in NP$ and L is NP-hard.

Proposition

Polynomial-time reductions are transitive. That is, if $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

Proposition

Take two problems $L_1, L_2 \subseteq \Sigma^*$. If L_1 is polynomial-time reducible to L_2 and $L_2 \in P$, then $L_1 \in P$.

Proposition

Take an NP-complete problem $L \subseteq \Sigma^*$. If $L \in P$, then P = NP. In other words, assuming that $P \neq NP$, $L \notin P$.

Proof.

Since deterministic TMs can be seen also as nondeterministic TMs, we get $P \subseteq NP$.

```
We show that if L \in P, then NP \subseteq P.
```

- (1) Take an arbitrary problem $M \in NP$.
- (2) Since L is NP-complete, $M \leq_p L$.
- (3) Since $L \in P$, then also $M \in P$.

Since *M* was arbitrary, we know that NP \subseteq P.

Showing intractability: using NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

- Decision problems
- The complexity class P
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness

Proving that NP-complete problems exist :-)