Computational Complexity

Lecture 1: P, NP and NP-completeness

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

April 4, 2024

- Overview of practical information

Lecturer: Ronald de Haan (me@ronalddehaan.eu)

m TAs: Wouter Vromen, Hannah Van Santvliet

m Course web page: https://staff.science.uva.nl/r.dehaan/complexity2024/

Canvas page: https://canvas.uva.nl/courses/42595

m Discourse: https://talk.computational-complexity.nl/

Book: Computational Complexity: A Modern Approach (Arora & Barak, 2009)

me@ronalddehaan.eu
https://staff.science.uva.nl/r.dehaan/complexity2024/
https://canvas.uva.nl/courses/42595
https://talk.computational-complexity.nl/

m We'll use an online discussion board (using the Discourse system):
https://talk.computational-complexity.nl/

m Questions about the material
(Feel free to answer each other’s questions)
m Reflecting on the material

m Summarizing the material together

m Feel free to start discussion topics on any of these

https://talk.computational-complexity.nl/

N

m During the course:
m Please give your ideas for improvement, e.g., anonymously on Discourse
m After the course:

m Please fill in the course evaluation questionnaire (for the OC and lecturer)

- Course activities

m Lectures:

m Twice 45 minutes, with 15 minute break in between, not recorded

m Exercise sessions:

m Practice with material, discuss previous homework assignments

Homework assignments (50% of grade):

m Three assignments, hand in via Canvas

m You may work in pairs (but you do not have to)

m Take-home exam (50% of grade):

m At the end, open book, one week time to complete exam

Online discussions, question answering

- What will we do today?

Decision problems

The complexity class P

m Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

m NP-hardness and NP-completeness

- Quadratic vs. Exponential

m Important difference between
algorithms that run in time, say, n?
vs. algorithms that run in time, say, 2"

m lllustration (time needed for 1010 steps per second):

n

n? steps

2" steps

2
5
10
20
50
100
1000

0.00000002 msec
0.00000015 msec
0.00001 msec
0.00004 msec
0.00025 msec
0.001 msec
0.100 msec

m # of atoms in universe ~ 108

0.00000002 msec
0.00000019 msec
0.0001 msec
0.10 msec

31.3 hours

9.4 x 10™ years
7.9 x 10%2 years

- Decision problems

m To simplify the theory, we restrict our attention to yes/no questions

Definition (Decision problems)

A decision problem is a function f : X* — {0, 1} where for each input x € ©*
the correct output f(x) is either 0 or 1.

Alternatively: a formal language L C X* where x € L if and only if f(x) = 1.

m For decision problems, we typically look at TMs that have two halting states:
Gacc (for accept: f(x) = 1)
and gy (for reject: f(x) = 0)

- The complexity class P

Definition (polynomial-time computability)

A function f : ¥* — X* is polynomial-time computable (or computable in polynomial
time) if there exist a TM M and a constant ¢ € N such that:

m M computes f

m M runs in time O(|x|°)

Definition (the complexity class P)

P is the class (set) consisting of all decision problems L C ¥* that are computable in
polynomial time.

- (In)tractability

m [ractability: there exists a polynomial-time algorithm that solves the problem

m Intractability: there exists no polynomial-time algorithm that solves the problem

(or sometimes phrased as: all algorithms that solve the problem
take exponential time or more, in the worst case)

m How do we find out which of these two is the case?

Showing intractability: without any theory

“l can’t find an efficient algorithm, | guess I’'m just too dumb.”

- Showing intractability: the ideal case

“l can’t find an efficient algorithm, because no such algorithm is possible!”

Showing intractability: using NP-complet

“l can’t find an efficient algorithm, but neither can all these famous people.”

- Polynomial vs. exponential time

Definition (DTIME)

Let T:N — N be a function. A language L C ¥* is in DTIME(T (n)) if there exists a
Turing machine that decides L and that runs in time O(T(n)).

Definition (the complexity classes P and EXP)

P= U DTIME(n®) EXP = U DTIME(2™)

c>1 c>1

- The complexity class NP

Definition (the complexity class NP)

A problem L C ¥* is in the complexity class NP if there is a polynomial p: N — N and
a polynomial-time Turing machine M (the verifier) such that for every x € ¥*:

x €L ifand only if there exists some u € {0, 1}*(*) such that M(x, u) = 1.

The string u € {0,1}P(X) is called a certificate for x if M(x, u) = 1.

- Example problem: 3-coloring

m You are given an undirected graph

m The task is to color each node with one of 3 0 e
colors so that the coloring is proper: no two
connected nodes have the same color e

m Example application: nodes are regions with
their own radio station, colors are radio
frequencies, and two nodes are connected if °
the regions border each other; assign radio
frequencies without conflict

- Example problem: 3-coloring (ct'd)

m Let's see why the (decision) problem of

3-coloring is in NP. 6 e

m Let G = (V, E) be a graph with m nodes.

m Consider as witness a binary string u of a
length 2m, where the coloring of each node i
is given by the i'th pair of bits—
say, 01 for red, 10 for green, and 11 for blue. e

m Given G and u, we can check in polynomial

time if the coloring given by u is proper.
s=01101101

- Nondeterministic Turing machines

A nondeterministic Turing machines (NTM) M is a variant of a (deterministic) Turing
machine, where some things are modified.

m Instead of a single transition function ¢, there are two transition functions d1, d5.

m At each step, one of 01, 05 is chosen nondeterministically to determine the next
configuration.

(As halting states, it has an accept state gacc and a reject state gyej.)

We write M(x) = 1 if there is some sequence of nondeterministic choices such
that M reaches the state g.cc on input x.

The machine M runs in time T(n) if for every input x and every sequence of
nondeterministic choices, M halts within T(|x]|) steps.

- Nondeterministic polynomial time (NP)

Definition (NTIME)

Let T:N — N be a function. A problem L C X* isin NTIME(T(n)) if there exists a
nondeterministic Turing machine that decides L and that runs in time O(T(n)).

Proposition (characterization of NP)

NP = | J NTIME(n®)
c>1

- The complexity class coNP

Definition (the complexity class coNP)
A problem L C ¥* isiin coNP if L € NP, where L= { x € ¥* | x ¢ L }.

Proposition (verifier characterization of coNP)

A problem L C ¥* is in coNP if there is a polynomial p : N — N and a polynomial-time
Turing machine M (the verifier) such that for every x € X*:

x e L ifandonlyif for all ue {0,1}P(*) it holds that M(x, u) = 1.

NP C EXP.

Proof (idea).

m Iterate over all possible witnesses u € {0,1}P(X), and check if M(x, u) = 1.
m If for any u this is the case, return 1—otherwise, return 0.

m There are 2P(X)) such strings u, and so this takes time 2P(X) . g(|x|), for some
polynomial q.

An overview of complexity classes
(That we've seen so far..)

- Polynomial-time reductions

Definition (polynomial-time reductions)

A problem Ly C ¥* is polynomial-time reducible to

a problem L, C ¥* if there is a polynomial-time X ——— f(x)
computable function f : ¥* — ¥* (the reduction)

such that for every x € ¥* it holds that:

x €Ly ifandonlyif f(x) € Lo. x €147 < f(x) € Ly?

m We write L1 <, L to indicate that L; is
polynomial-time reducible to L.

- NP-hardness and NP-completeness

Definition (NP-hardness)

A problem L C Y* is NP-hard if every problem in NP is polynomial-time reducible to L.

Definition (NP-completeness)

A problem L C ¥* is NP-complete if L € NP and L is NP-hard.

- Some properties

Polynomial-time reductions are transitive.
That is, if L; < L> and L, <p L3, then L <p Ls.

Proposition

Take two problems L1, Ly C X*. If Ly is polynomial-time reducible to L, and L, € P,
then L; € P.

- Some properties (ct'd)

Take an NP-complete problem L C ¥*. If L € P, then P = NP.
In other words, assuming that P # NP, L & P.

Proof.

Since deterministic TMs can be seen also as nondeterministic TMs, we get P C NP.

We show that if L € P, then NP C P.

(1) Take an arbitrary problem M € NP.

(2) Since L is NP-complete, M <, L.

(3) Since L € P, then also M € P.

Since M was arbitrary, we know that NP C P. O]

Showing intractability: using NP-complet

“l can’t find an efficient algorithm, but neither can all these famous people.”

N

Decision problems

The complexity class P

m Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

m NP-hardness and NP-completeness

N

m Proving that NP-complete problems exist :-)

